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Abstract: Human endeavors generate a significant quantity of bio-waste, even lignocellulosic waste,
due to rapid industrialization and urbanization, and can cause pollution to aquatic ecosystems,
and contribute to detrimental animal and human health because of the toxicity of consequent hy-
drolysis products. This paper contributes to a new understanding of the lignocellulosic waste
bio-pretreatment process from a literature review, which can provide better biorefinery operational
outcomes. The simultaneous partial biological lignin, cellulose and hemicellulose lysis, i.e., si-
multaneous semi-lignino-holocellulolysis, is aimed at suggesting that when ligninolysis ensues,
holocellulolysis is simultaneously performed for milled lignocellulosic waste instead of having a
sequential process of initial ligninolysis and subsequent holocellulolysis as is currently the norm.
It is presumed that such a process can be solely performed by digestive enzyme cocktails from the
monkey cups of species such as Nepenthes, white and brown rot fungi, and some plant exudates.
From the literature review, it was evident that the pretreatment of milled lignocellulosic waste is
largely incomplete, and ligninolysis including holocellulolysis ensues simultaneously when the waste
is milled. It is further proposed that lignocellulosic waste pretreatment can be facilitated using an
environmentally friendly approach solely using biological means. For such a process to be under-
stood and applied on an industrial scale, an interdisciplinary approach using process engineering
and microbiology techniques is required.

Keywords: lignocellulosic waste; cellulolysis; hemicellulolysis; ligninolysis; nepenthes species;
plant exudates

1. Introduction

Environmental pollution by lignocellulosic waste dumped into the environment
by various processing industries has been acknowledged to be toxic [1], and thus can
have a negative effect on the earth’s ecology and human health. Therefore, the excessive
landfilling of this type of waste is discouraged. Lignocellulosic waste generates acidic
leachate with phenols being one of the major toxicants that poisons water bodies [2]. Such a
leachate was determined to have a negative effect on several aquatic organisms [3,4].
Although there are other industries, i.e., petroleum refineries, gas and coking industries,
pharmaceutical manufacturers, explosives/munition manufactures, phenol–formaldehyde
resin manufactures, plastic and varnish industries among others [5] producing phenol
containing waste, the focus of this perspective was on lignocellulosic waste.

Generally, 1.77–2.4 Gt of waste from cereals, roots and tubers, oilseeds, and fruit and
vegetables are produced globally annually [6] and most can be classified as lignocellulosic
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waste with a significant cellulose, hemicellulose and lignin content [7]. Cellulose, hemicel-
lulose and lignin content in lignocellulosic waste varies in most lignocellulosic materials.
Research has successfully demonstrated that lignocellulosic waste can be treated using
several techniques [8–10], with landfilling being one of the oldest disposal methods; how-
ever, it produces greenhouse gasses in the form of carbon, which is released as CH4, which
further pollutes the environment [11]. To further understand lignocellulosic waste, and to
mitigate its influence on the environment for repurposing and cleaner disposal, understand-
ing of its composition and currently available pretreatment methods, i.e., pre-treatment
strategies such as physical, chemical, biological and physico-chemical [12], must be further
developed.

Overall, it is difficult for enzymatic hydrolysis to decouple the lignin in lignocel-
lulosic waste into its primary components due to the bond structure of lignin-cellulose-
hemicellulose. This limits the delignification efficiency via natural ligninolysis of the ligno-
cellulosic waste [13]; however, lignin can be degraded using a different physico-chemical
methods. These methods cannot be classified as environmentally benign. However, they
boost the enzymatic hydrolysis of residual holocelluloses, i.e., cellulose and hemicellulose,
in a sequential process whereby the lignocellulosic waste is initially physico-chemically
pretreated and subsequently hydrolyzed using cellulases from different species, i.e., As-
pergillus, Penicillium and Trichoderma spp. [14]. Some of these pretreatment processes are
ineffective in delignifying the firm organization of lignin.

However, peroxidases from fungi such as Phanerochaete chrysosporium and have been
proven to facilitate ligninolysis and thus biodegrade the rigid structure of lignin [15].
This provides for biological ligninolysis, exposing the holocellulosic matrix of the biomass
to hydrolysis, and reducing the need for chemical solution usage in lignocellulosic waste
pretreatment [16]. These peroxidases have been produced in high volumes using membrane
bioreactor technology [17]. It is therefore feasible to introduce a biological pretreatment of
lignin containing lignocellulosic waste, in a process optimized for ligninolysis to expose
holocellulosic components to hydrolysis, i.e., holocellulolysis. In fact, lignocellulosic waste
is predominantly made up of irregular β-1.4 glycosidic bonds. These bonds can be lysed
by cellulases and β-1.3-β-1.4 glucanases from different microorganisms, e.g., Chaetomium
sp. [18] and some Nepenthes specie enzymes, i.e., enzymes produced by N. alata [19]
and N. ventrata [20]. Furthermore, it was previously reported that there is evidence of
leaf litter decomposition and mineralization in the cups of N. ampullaria [21]. The use
of pitcher monkey cup extracts for lignocellulose waste pretreatment was also reported
elsewhere [22]. Rottloff et al. [23] reported that Nepenthes species have evolved an arsenal
of enzymes and the digestive fluids is composed of proteins, including hydrolytic enzymes,
some of which can be useful in lignocellulose waste pretreatment. The availability and
cultivation of species such as those of Nepenthes can be achieved using a hydroponic
growth method [24] to mitigate against regional unavailability and for large-scale digestive
juice production.

Consequently, the absolute hydrolysis of lignocellulosic waste into fermentable sug-
ars requires a cocktail of oxidative and hydrolytic enzymes. Although researchers have
used cellulases for years to ease the pretreatment process post physico-chemical treat-
ment, cellulases are not adequate to complete ligninolysis and holocellulolysis simultane-
ously. Moreover, as cellulose is also usually intricated in hemicellulose, i.e., cellulose is
entrapped in hemicellulose, a significantly abundant natural polymer found in lignocellu-
losic waste. Furthermore, hemicellulose is constituted by xylan with further ester bonds
bound to lignin [25]. Its hydrolysis involves diverse conditions and numerous methods
to competently hydrolyze it into fermentable monomers [26]. The primary constituent
of hemicellulose, xylan, can be hydrolyzed by a cocktail of enzymes [13,27] to decouple
any residual bonds. These are enzymes produced as exudates or extracellular bioproducts
from a variety of microorganisms (see Table 1), which can be used to lyse lignocellulosic
waste. This can be effected via beneficiation and further sustainable utilization of obtained
hydrolysates for the production of added-value products. Therefore, the simultaneous
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partial biological delignification (ligninolysis) and holocellulose decoupling, (holocelluloly-
sis), herein referred to as semi-lignino-holocellulolysis can describe mechanisms associated
with enzymatic ligninolysis, hemicelluloses and celluloses lysis in lignocellulosic waste
without the use of chemical pretreatment. Overall, in lignocellulosic waste pretreatment,
some lignin and holocellulose remains intact (see Table 2, highlighting other pretreatment
methods and their products) even when an alkali pretreatment is used; a method previ-
ously determined to increase cellulose digestibility by enhancing lignin solubilization [28].
Thus the notion of semi-ligninolysis and holocellulolysis is valid.

Overall, for the progress of an environmental friendly set-up, delignification (ligninol-
ysis) is warranted using appropriate plant and microbial oxidative/digestive enzymes. The
latter can be used as one of the key processes that are appropriate to limit environmental
contamination by the lignocellulose waste, while efficiently ligninolyzing the recalcitrant
lignin structure to uncover holocelluloses [29] for simultaneous ligninolysis and holocel-
lulolysis. This was initially reported in Dlangamandla et al. [22] and Angadam et al. [16],
with some of the digestive enzymes reported in Hasan et al. [30] being shown to support
semi-lignino-holocellulolysis; however, feasibility studies for implementation on an indus-
trial scale are ongoing. Even the assessment of oxidation-reduction potential and acidic
strength evaluations of symbiont extracts from the Nepenthes sp. pods clearly indicate a
high potential to facilitate oxi-reductive reactions and are very compatible to even those of
the commonly used dilute (1%) sulphuric acid solution (see Table 3), which is preferred, to
increase cellulose accessibility by weakening the hemicellulose bonds. Overall, the use for
plant and microbial enzymes including extracts will require a physical pretreatment step,
such as milling of the lignocellulose waste to increase the overall biocatalysis area and to
condition the lignocellulosic waste for enhanced lysis.

Overall, research has proven that commonly used lignocellulosic waste pretreatment
processes such as hot water, dilute sulphuric acid, and alkali methods including cellu-
lases, are being encouraged and are considered to be inexpensive, suitable, and effective.
The use of harsh delignification methods, such as chemical treatment methods, does affect
subsequent cellulase/enzyme facilitated hydrolysis to produce fermentable sugars [31].
This can be categorized as inappropriate for a green chemistry approach for biorefinery
development due to the production of residual toxicants such as furfural, phenolic com-
pounds, etc., all of which affect fermentation. These residual toxicants can affect enzymatic
hydrolysis and microbial action towards hydrolysate conversion during fermentation
due to their toxicity [32]. Therefore, in summary, this paper contributes to a new un-
derstanding that lignocellulosic waste pretreatment is largely a partial and simultaneous
lignino-holocellulolysis process, even when chemical pretreatments are used. Evidently,
this process can be supported solely by a cocktail of enzymes from a variety of plant and
microbial sources. Previously, Dlangamandla et al. [22] also demonstrated total phenolic
compound reduction, i.e., <3 g/Kg, in hydrolysates solely pretreated with digestive juices
of N. mirabilis; albeit with 2.6 g/Kg reducible sugars from mixed lignocellulose waste using
non-optimum conditions.
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Table 1. Components in lignocellulosic waste, processes and a few examples of enzymes and their source associated with
the waste component lysis.

Components in
Lignocellulosic

Waste
Process Enzymes Source of Enzymes in Plants

and/or Organisms Reference

Lignin Delignification
(ligninolysis)

Lignin peroxidase,
Manganese peroxidase,

Laccase

Phanerochaete chrysosporium,
Phaseolus vulgaris,

Ganoderma lucidum IBL-05,
Trametes villosa

[16,33–35]

Cellulose Cellulolysis

(holocellulolysis)

β-glucosidases
Cellulases

Endo-glucanase
Exo β-1.3-β-1.4-glucanase

Acetyl xylan esterase
Cellulase-free xylanase
Arabinofuranosidase
α-arabinofuranosidase,

feruloyl esterase

Bacillus sonorensis BD92
N. mirabilis

Bacillus subtilis CBS31
Thielavia terrestris Co3Bag1

Alkalibacillus favidus
Paenibacillus sp. N1
Streptomyces lividus

Aspergillus hortai CRM1919,
Lactobacillus crispatus

[36–45]Hemicellulose Hemicellulolysis

Table 2. Evidence of partial lignin-hemicellulose-cellulose lysis during lignocellulose waste pretreatment using alkaline
pretreatments (Basis: 35 g of waste feedstock) [46].

Lignocellulose Waste Component Concentration in Untreated Waste (%) Concentration in Pretreated Waste (%)

Cellulose 43.4–35.9 42.8–32.4
Hemicellulose 29.1–18.7 23.1–10.7

Lignin 30.1–29.0 25.8–4.1

Other by-product constituents in lignocellulose waste from different pretreatment
methods [47]. Acid-based methods: aliphatic carboxylic acids, phenylic compounds, furans;
hydrothermal processing: acetic acid, furan aldehydes; mild alkaline methods: acetic acid,
hydroxy acids, dicarboxylic acids, phenolic compounds; oxidative methods: aldonic and
aldaric acids, furoic acid, phenolic acids, acetic acid [47].

Table 3. Direct comparison of dilute (1% v/v) sulphuric acid solution (Grauer 1991) to N. mirabilis pod extracts [16,22].

Solution/Extract
(Characteristics) Oxidation Reduction Potential (mV) pH Acid Strength

N. mirabilis digestives pod extracts (contains
symbionts and a cocktail of enzymes known for

lignino-holocellulolysis)
510–526 1.8–2.2 Strong

Sulphuric acid
(1% v/v, free of symbionts and enzymes) 354.2 0.7 Strong

2. Current Beneficiation of Lignocellulosic Waste Using Different
Pretreatment Techniques

Pretreating lignocellulosic waste is a mandatory phase to accomplish hydrolysis of
biorefinery feedstock aimed at producing value-added products, i.e., fermentable sugar
(highest release of reducing sugars, i.e., up to 10.70 ± 0.14 g/Kg biomass of glucose
and 12.41 ± 0.34 g/Kg biomass of xylose from lignocellulose waste [41]), in biorefinery
processes [48]. Pretreatment facilitates ligninolysis and consequently, uncovering holocellu-
loses for the subsequent successful hydrolysis of the lignocellulosic waste with negligible
energy intake, to accomplish the outmost fermentable sugar extraction [49,50]. Numer-
ous techniques, such as hot water, dilute sulphuric etc., have been utilized to eliminate the
recalcitrant lignin in lignocellulosic waste focusing on the feedstock being beneficiated to
mitigate environmental pollution. Several lignocellulosic waste pretreatment approaches
have been impractical and wasteful due to some technical challenges, which include the
low yield and the formation of inhibitory by-products, e.g., furfural (up to 34.5 g/Kg),
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hydroxymethyl furfural (up to 29.5 g/Kg), total phenolics compounds (up to 4.1 g/Kg)
and weak organic acids (up to 114.9 g/Kg), including total furans (up to 34.5 g/Kg) [51,52].
The processes involved bio-physico-chemical ligninolysis and holocellulolysis of ligno-
cellulosic waste include physical (milling), thermal (hot water), chemical (dilute acid,
caustic) and microbial-based processes [53,54]. Formation of by-product toxicants is usu-
ally observed during dilute acid and alkaline pretreatment as lignin is being partially
degraded [48,51]; however, it is still assumed to be the ideal pretreatment method for an
industrialized approach to date. Some common types of acid used in pretreating lignocel-
lulosic waste from agriculture and forestry include dilute sulphuric (H2SO4), phosphoric
(H3PO4), hydrochloric (HCl), and nitric (HNO3) acid [55]. Nonetheless, it has been proven
that dilute sulphuric acid is the best and is frequently used in chemo-ligninolysis because
of its suitability for degrading a widespread selection of lignocellulosic waste, even in a
mixed form [56,57].

The alkaline (corrosive) pretreatment methods including those using sodium hydrox-
ide (NaOH) solutions, are commonly known for lignin lysis. Some other alkaline-based
methods include ammonia fiber explosion (AFEX), ammonia recycle percolation (ARP),
lime [Ca(OH)2] and aqueous ammonia soaking (AAS), using chemical generally observed
to be readily available, cheap and provide for consistent lignocellulosic waste pre-treatment.
Alkaline pretreatment techniques are dynamic at low heat and pressure; however, they
require a large quantity of water, while using less energy when compared to dilute acid
pretreatment, consequently lowering enzyme loading, which is essential for hydrolysis
and hence can lower the general operational costs of a biorefinery [58].

3. Ligninolysis of Lignocellulosic Waste: Physico-Chemical and Biological Methods

Ligninolysis describes the decoupling of lignin from lignocellulosic waste through
ligninolysis, which is achieved initially by milling/grinding to reduce the waste crys-
tallinity [59]. Chemical oxidation or acidification to reduce lignin-holocellulose bond
strength by disrupting aryl-ether, C-C and xylosidic links and breaking of acetyl ester link-
ages [8] is a process which can also be achieved solely by biological means. This includes
the decomposition of ether bonds [10], subsequent to the decoupling of phenolic/non-
phenolic structures within the lignocellulosic waste [60]. All these types of ligninolysis can
be described as physico-chemi-ligninolysis, as they involve physical and chemical means
of lignin lysis, for which an alternative technological approach is needed for the process to
be environmentally benign. Overall, this means a biological approach.

The act of enzymatic hydrolysis of lignin can be described as ligninolysis. Filamen-
tous fungi and other microorganisms, including those in the family of Basidiomycetes such
as white rot fungi (WRF) for ligninolysis, and brown rot fungi (BRF) for holocellulolysis,
have proven to be the most commonly known natural matter disintegrators for the breaking
down of lignin [61], in particular lignocellulosic waste. WRF-facilitated ligninolysis is prin-
cipally the hydrolysis of lignin with insignificant holocellulose breakdown [62]. The major
enzymes involved in such ligninolysis include Lignin peroxidases (LiPs), Manganese per-
oxidases (MnPs) and Laccase (Lac) produced by a variety of fungi (e.g., Phanerochaete
chrysosporium, Pleurotus ostreatus (Jacq.), Pleurotus kumm (MCC16)) under nutrient-limited
conditions, similar to BRF, such as Chaetomium sp., Ceratocystis sp., and Kretzschmaria deusta,
which produce enzymes such as cellulases, laccase, and lignin peroxidases, all known to
solubilize lignino-holocelluloses [18]. However, there are uncertainties as to whether these
are the sole streamlined bio-delignifiers and bio-holocellulolisers of lignocellulosic waste.
Although lignin is resistant because of its low porosity, and thus protects the energy-rich
holocellulose of plants cell walls, it can be solubilized using the digestive extracts of plants,
such as those of Nepenthes sp., in combination with cellulases releasing coniferyl, synapyl,
and p-coumaryl alcohols, including ferulic acid, glucuronic acid, and the acetyl group [63]
(see Figure 1(a1,a2)).
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Figure 1. Cont.
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Figure 1. Molecular structures of products of (a1) ligninolysis and (a2) holocellulolysis; (b) process of cellulolysis including
enzymes at each biocatalysis step, and (c) enzyme action site involvement in hemicellulolysis including end-products.

4. Holocellulolysis of Lignocellulosic Waste

Research has shown that when lignocellulosic waste is pretreated either by physical,
chemical, or biological methods, lignin, and holocelluloses, are partially lysed simulta-
neously. The main enzymes responsible for the breaking down of the crystalline and
amorphous structure of cellulose are known as Endo-glucanase (EGs) and Exo-glucanase II
(CBHs-II). The endo-glucanase decomposes the 1,4-β-glycosidic bonds, while the CBHs
decouples the non-reducible ends of crystalline structure of the cellulose. When the EGs
and CBHs act on cellulose, an amorphous structure is produced, which is catalyzed by
cellubiase to produce certain products. These are cellubiose units which are further bio-
transformed into di- and tetra-saccharides. Finally, β-glycosidase reduces these sugars into
monosaccharides. This scenario is diagrammatically represented in Figure 1b. Unlike cellu-
lose, hemicellulose (xylan) is more complex and its lysis requires more specific and multiple
enzymes. Endo-xylanase hydrolyzes the main chains of xylan, and β-xylan esterase re-
duces xylooligosaccharides into xylose, with α-arabinofuranosidase and α-glucuronidase
acting on the xylan backbone for the removal of arabinose and 4-o-methyl glucuronic
acid. The esterases thereafter reduce the acetyl substitutions on the xylose, while feruloyl
esterases hydrolyse the ester bonds located between arabinose substitutions and ferulic
acid. Furthermore, feruloyl esterases also makes it easier to decouple hemicellulose in
lignocellulosic waste. Figure 1c illustrates the hemicellulose structure and individual en-
zyme types, including actions on individual bonds, to release a variety of reducible sugars
and other byproducts. As illustrated in Table 1, a large number of these enzymes can be
sourced from plant or microbial sources.

5. Simultaneous Partial Biological Ligninolysis and Holocellulolysis
5.1. Perspective on Semi-Delignino-Holocellulolysis

Lignin is responsible for the rigidity and the nature of plants including lignocellulosic
waste. The mash structure of the lignin contains surface pores, which are amorphous in
nature (see Figure 2a), and consist of irregularly based carbon molecules. This explains why
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some plants are able to secret plant exudates externally to the bark of a tree, some of which
are used as a defense mechanism. This enables organisms such as WRF, which produces
lignin and manganese peroxidases, including laccase, to initially lyse this amorphous
region to start the ligninolysis of the lignin barrier directly [15]. Similarly, BRF exploits
the amorphous regions in lignocellulosic waste by initially producing oxidation reactive
species to further weaken the amorphous regions of the lignocellulosic waste, subsequent
to holocellulolysis via a cocktail of glycoside hydrolases, leaving the lignin residue (see
Figure 2a). Additionally, the simultaneous, i.e., co-current, ligninolysis and holocelluloly-
sis can take place during the decomposition of such lignocellulosic waste in a symbiotic
environment, implying that the hydrolysate will be richer in both lignin products and holo-
cellulose constituents, such as mono- and tetra-saccharides. Therefore, the classification
of this phenomenon, i.e., simultaneous ligninolysis and holocellulolysis, can be termed
lignino-holocellulolysis. Overall, during pretreatment of lignocellulosic waste, some resid-
ual lignin and holocellulose are present in the residue, which indicates partial, i.e., semi,
pretreatment. It is therefore logical to have the classification ‘semi-lignino-holocellulolysis.
Lignin and holocellulose can consequently be partially degraded simultaneously because
as lignin is recalcitrant, some acidic extracellular bio-products can directly act on the lignin
structure. For example, the production of LiP and MnP from P. chrysosporium was shown to
reduce the pH of the environment in which the organism was grown while the oxidative-
reduction potential increased [17]. This would thereafter enable the hydrolases and other
enzymes to biocatalytically lyse holocelluloses, while ligninolysis ensues. This can be
optimized and effectively used to pretreat even mixed lignocellulosic waste. Some plant
digestion extracts, i.e., those of N. mirabilis, have a high acidic strength and can therefore
solubilize some lignin components [21], weakening their structure such that cellulases can
easily penetrate the holocellulose [22]. This type of reaction is irreversible and is assumed
to follow multiple bioreactions in parallel, as illustrated in Figure 2c, and not in series as
shown in Figure 2b [9].

Figure 2. Cont.
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Figure 2. (a) Illustration of the rigid and amorphous regions of lignocellulosic waste and how plant-based or microbial
enzymes will facilitate semi-lignino-holocellulolysis; (b) depiction of the hydrolysis of lignocellulose waste (A) into primary
products, R (alcohols)-for ligninolysis and S (cellulose/hemicellulose) for holocellulolysis simultaneously; (c1) demonstra-
tion of semi-lignino-holocellulolysis as irreversible reactions in series; and (c2) demonstration of simultaneous semi-lignino-
holocellulolysis as irreversible first order reactions in parallel.

5.2. Plant Exudates and Enzyme Cocktails for Semi-Lignino-Holocellulolysis of
Lignocellulosic Waste

Plant exudates contain bioactive compounds such as amylases, invertases, phos-
phatases, proteases, and polygalacturonases, which include certain amino acids, organic
acids, reducible sugars, phenolics, flavonoids, etc. Furthermore, studies have shown that
plant extracts from plants of the genus Nepenthes contains β-glucosidases, xylanases and
carboxylesterases, proteases, ribonucleases, nucleases, phosphatase hydrolasse, esterases,
ribonucleases, and amylases, which are used to digest insects trapped in the fluid inside
monkey cups [64]. These fluids are acidic and have a pH between 1.5 to 6, depending
on the species [22]. A lot still needs to be researched regarding the bioactive ingredients
found in carnivorous plant cocktails [65]. There are some common enzymes found in both
plant exudates and in Nepenthes sp. that can be useful in the delignification of lignocel-
lulosic waste and in particular, the lysis of holocellulose [66,67]. Overall, alternatives for
lignino-holocellulolysis in a process in which there is minimal use of chemicals or high
temperature and pressure will provide for a better, environmentally benign process that
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will have a minimal impact on the environment, whilst providing for process sustainability
and integration.

6. Future Perspective, Mitigation of Limitations, and Economic Impact

Future perspective: from the preceding studies, it appears that the various techniques
that have been exploited in the quest to pretreat bio-waste for the extraction of value-added
products are posing newer challenges. These include the production of inhibitory products
such as phenolic compounds, furfural, organic weak acids, etc. [68] Although chemical
pretreatments produce more inhibitors such as phenolic compounds, the presence of lipases
and esterases in pitcher digestive juices [69] for lignin-holocellulolysis is advantageous,
as these enzymes have been determined to hydrolyze some phenolic compounds [70].
The use of acids to pretreat bio-waste such as lignocellulosic waste can therefore be expen-
sive, and it is not eco-friendly. The future lies with the sole use of plant-based digestive
extracts and microorganism-based enzymes under optimal conditions, as some plant diges-
tive enzymes have been shown even to have similar characteristics to those of certain dilute
strong acids, albeit with the added advantage of having active enzymes and symbionts
within such extracts.

Mitigation of limitations: biological pretreatment of lignocellulosic waste, using, for ex-
ample, N. mirabilis digestive extracts, can be effective, and the carboxylesterases that are
available in the plant extracts can assist in reducing the inhibitory bio-products produced
during pretreatment of bio-waste, such as lignocellulosic waste [22]. The use of such plant
extracts in the pretreatment of lignocellulosic waste will limit environmental harm in any
process developed. However, a further development of this strategy is required.

Economic impact: in developed countries, the use of renewables is rising rapidly [71],
and therein lie opportunities for developing countries to use their locally available biomass
for value-added product manufacturing. For lignocellulose waste beneficiation, indus-
tries can use a well-defined ecological criterion, and bring savings in terms of emissions
trading among many other economic benefits as reported as elsewhere [71]. Recently,
Angadam [16] reported on the pretreatment, i.e., using N. mirabilis digestive juices, of
lignocellulosic pomace as a waste for high reducible sugar production. This is just one
of the examples which can be used for economic benefits while taking into account en-
vironmental safety. Furthermore, the exploitation of the knowledge and understanding
of the idea of lignocellulosic waste biological pretreatment in which partial simultaneous
lignino-holocellulolysis ensues, will therefore affect reactor system prototype designs [72].

7. Conclusions

Lignocellulosic waste is made up of holocelluloses that are bonded together in a
lignin matrix. This type of bio-waste can be used in biorefineries for the production of
value-added products such as bio-alcohols by using bio-physico-chemical pretreatment
methods and enzymes from plants and microorganisms. Holocellulose hydrolysis can be
achieved solely by a cocktail of enzymes such as endoglucanases, cellobiohydrolases, and β-
glucosidases enzymes. These can lyse the lignocellulosic waste via lysis of the hemicellulose
by decoupling of β-1,4 D-xylose polymer bonds by endo 1,4-β-xylanase or endoxylanase,
1,4-β-xylan esterases, α-1-arabinofuranosidases, and α-glucuronidases, etc. This occurs in
a process whereby there is a concurrent semi-biological deligninolysis and holocellulolysis
using a process herein termed semi-lignino-holocellulolysis. To achieve a higher efficacy of
semi-lignino-holocellulolysis, ligninolysis accomplished by milling/grinding to reduce the
lignocellulosic waste crystallinity has to be the primary step, as this will disrupt linkages
within the waste matrix for effective hydrolysis. In general, there are some enzymes
found both in plant exudates, e.g., Nepenthes species, which are microbially produced
extracellularly and can be used for semi-lignino-holocellulolysis of lignocellulosic waste
to allow an environmentally benign process, and to mitigate against the use of chemicals,
heat, and pressurized systems, to which this paper contributes as a necessary discussion
for biorefinery development.
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