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Abstract: The rational design of cost effective and highly efficient oxygen evolution reaction (OER)
catalysts plays an extremely important role in promoting the commercial applications of electro-
chemical water splitting. Herein we reported a sacrificial template strategy for the preparation of
borate anion doped Co3O4@ZIF-67 nanocages assembled with nanosheets (B-Co3O4@ZIF-67) by
hydrothermal boronation of zeolitic imidazolate framework-67 (ZIF-67). During the preparation pro-
cess, two different kinds of borate anion sources were found to regulate the morphological structures
by tuning the etching rate between ZIF precursors and the borate anion. Moreover, borate anion
doping was also found to induce oxygen vacancy defects, which is beneficial for modulating the
electronic structure and accelerating electron transport. Meanwhile, the resultant B-Co3O4@ZIF-67
nanocages possess a large specific surface area, which is beneficial for the mass transfer of the elec-
trolyte and exposing more catalytic active sites. Benefiting from the advantages above, the resultant
B-Co3O4@ZIF-67 nanocages exhibit impressive OER performance with a small overpotential of
334 mV, a current density of 10 mA cm−2, a small Tafel slope of 73.88 mV dec−1, as well as long-term
durability in an alkaline electrolyte.

Keywords: Co3O4 nanocages; borate anion dopant; oxygen vacancies; oxygen evolution

1. Introduction

Hydrogen as a clean energy carrier with high energy density (282 kJ·mol−1) is con-
sidered most promising for replacing traditional fossil fuels to cope with the increasing
global energy demand and environmental issues [1–4]. Electrochemical water splitting
(2H2O→ 2H2 + O2), consisting of two half reactions of the oxygen evolution reaction (OER)
and the hydrogen evolution reaction (HER), provides a green technology for hydrogen
production through the use of renewable energy (such as wind energy, solar energy, tidal
energy, etc.) [5–7]. Relative to the HER, the OER is a four-electron proton coupled transfer
process, and possesses sluggish kinetics, severely limiting the efficiency of overall water
splitting [8–10]. To date, the state-of-the-art OER catalysts mainly focus on precious metal
catalysts (such as RuO2 and IrO2), but their scarcity and high cost limit their implemen-
tation in practical commercial applications [11,12]. Therefore, it is essential, yet remains
a huge challenge for development of cost effective and highly efficient oxygen evolution
reaction (OER) catalysts.

Recently, various transition-metal-based materials, including transition metal ox-
ides [13], phosphides [14,15], sulfides [16], borides [17], (oxy) hydroxides [18], and layered
double hydroxides (LDHs) [19,20], have been widely studied as a promising substitute to
precious metal OER catalysts. Particularly, Co3O4-based materials have received increasing
attention as promising alternatives due to their good OER catalytic activity in alkaline solu-
tion [21,22]. Nevertheless, the poor electronic conductivity of Co3O4 is the main bottleneck
hindering the improvement of its OER activity [23,24]. In this regard, the regulation in
morphologic and electronic structure has been reported as an effective way to improve
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the electrochemical performances of Co3O4-based materials [25–27]. On one hand, the
unique nanostructures, such as nanosheets and nanocages, usually possess large specific
surface area, which are beneficial to the mass transport and exposure of catalytically active
sites, and the release of the generated gas during the water splitting process [24,27–30].
On the other hand, recent studies have shown that the introduction of dopants can in-
duce the formation of a large number of oxygen vacancy defects, increasing electronic
conductivity and promoting the improvement of electrochemical OER performance [31,32].
For instance, the introduction of boron into transition metal compounds was reported to
induce vacancy defects and result in the generation of large numbers of catalytically active
sites, promoting the improvement of electrochemical performances [24,31,33]. Based on
the above considerations, it can be reasonable to conclude that high OER catalytic activity
can be expected for heteroatom-doped Co3O4-based materials with nanocages structures
composed of ultrathin nanosheets.

Metal–organic frameworks (MOFs), consisting of inorganic metal ions/clusters coor-
dinated with organic ligands, are distinctive organic–inorganic hybrid porous materials
with controllable porous structures, high specific surface areas and well-tunable struc-
tures [34,35]. Because of these unique structural merits, MOFs and their derivatives have
been widely applied in energy storage and conversion [36,37], gas adsorption and sepa-
ration [38,39] and other research fields. Generally, MOFs are used as sacrificial templates
for the fabrication of various nanostructured materials that inherit the advantages of their
precursors [8]. The large specific surface area of MOFs-derived nanostructured materi-
als is conducive to exposing more catalytically active sites and promoting charge and
mass transfer during the OER process [40]. Inspired by this, herein we propose an easy
and effective strategy for the synthesis of MOF-derived borate anion doped cobalt oxide
(B-Co3O4@ZIF-67) nanocages assembled with nanosheets by hydrothermal boronation.
Meanwhile, the type of boron source and solvent system were also optimized, and borate-
buffered methanol was found to be the optimal condition for the formation of unique
nanocage structures composed of nanosheets. The unique nanocage structures create the
large specific surface area (705.77 m2g−1), thus facilitating the exposure of catalytically ac-
tive sites and accelerating mass transfer and gas release during the OER process. Moreover,
borate anion doping is also conducive to the formation of oxygen vacancy defects, thus
modulating the electronic structure of atoms and promoting improvement in catalytic OER
activity. As expected, the resultant B-Co3O4@ZIF-67 exhibited superior OER activity in
alkaline solution.

2. Results and Discussion

The schematic illustration for the preparation of the B-Co3O4-2@ZIF-67 nanocages
is shown in Figure 1. Briefly, the uniform ZIF-67 nanocubes were first synthesized by
the reaction of Co(NO3)2·6H2O with 2-methylimidazole under the assistance of CTAB.
Subsequently, B-Co3O4-2@ZIF-67 nanocages were successfully obtained through the hy-
drothermal reaction of ZIF-67 with borate buffers solution (BBS). The pH value of the
BBS solution, containing a large amount of borate ion (B4O7

2−), was measured to be 9.5.
During the hydrothermal reaction process, hydroxyl ions (OH−) were produced through
the hydrolysis of B4O7

2−, which then replaced 2-methylimidazole within ZIF-67 precursor
to form Co(OH)2, which were finally transformed into B-doped Co3O4 under high tem-
peratures due to the existence of dissolved oxygen and a lot of borate ions (B4O7

2−) in the
reaction system [41].
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Figure 1. Schematic illustration of the preparation of B-Co3O4-2@ZIF-67 nanocages. 
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2a,b). TEM results demonstrated that the resultant B-Co3O4-2@ZIF-67 possesses hollow 
nanocages assembled from nanosheets with wrinkled edges (Figure 2c–e). Furthermore, 
there are no obvious lattice fringes from high-resolution HRTEM images and selective 
area electron diffraction (SAED) displays of the diffused rings (Figure 2f), both of which 
indicate the amorphous nature of the resultant B-Co3O4-2@ZIF-67 nanocages. Meanwhile, 
the EDX elemental mapping (Figure 2g) and the EDX spectra (Figure S3) reveal the uni-
form distributions of C, N, O, B, and Co in the resultant B-Co3O4-2@ZIF-67 nanocages. 
Interestingly, when we only used K2B4O7·4H2O as a boron source, nanosheets-assembled 
core-shell structured B-Co3O4-1@ZIF-67 can be obtained (Figure S4a,b), which could be 
further confirmed by TEM images (Figure S4c–e). Similarly, HRTEM images and SAED 
patterns also proved the amorphous nature of the resultant B-Co3O4-1@ZIF-67 (Figure 
S4f,g). In the contrast, CoBi/ZIF-67 is composed of the residual ZIF-67 and cobalt borate 
(Co–Bi) nanosheets in the presence of H3BO3 as a boron source (Figure S4h,i). We inferred 
that the formation of core–shell structure may be attributed to the incomplete etching pro-
cess due to the insufficient amount of B4O72− only in the presence of K2B4O7. Differently, 
boric acid used as a boron source can produce protons (H+) for the protonation of 2-me-
thylimidazole, resulting in the release of Co2+ and then reacting with the borate ions 
(B4O72−) to form cobalt borate (Co–Bi) nanosheets. In addition, the effect of the solvent in 
the reaction system on the morphology of the resultant catalysts was also investigated. 
Under the same reaction conditions, the introduction of water resulted in the complete 
destruction of morphology from the nanocubes into irregular structures (nanowires and 
nanoparticles) (Figure S5), which may be attributed to the fast etching rate. These results 
demonstrate that the morphologic structures of the resultant catalysts can be regulated 
through tuning the boron source and solvent during the preparation process. Besides, po-
tassium hydroxide was selected as a substitute of K2B4O7·4H2O to provide an alkaline en-
vironment. Only a small number of nanosheets were formed on the surface of ZIF-67 pre-
cursor, but the cubic morphology of ZIF-67 precursor was still well-retained (Figure S6). 
These results demonstrate that the presence of borate ion is essential for the formation of 
nanocages. 

Figure 1. Schematic illustration of the preparation of B-Co3O4-2@ZIF-67 nanocages.

The morphological structures of the resultant ZIF-67 precursors and their derivatives
were investigated by FESEM and TEM. As shown, uniform cubic morphology was observed
for the resultant ZIF-67 precursor with an average size of 1 µm (Figures S1 and S2), which is
in accordance with the previously reported results [42,43]. After the hydrothermal reaction
of ZIF-67 precursor with BBS in methanol, the resultant ZIF-67 nanocubes were transformed
into B-Co3O4-2@ZIF-67 nanocubes assembled with nanosheets (Figure 2a,b). TEM results
demonstrated that the resultant B-Co3O4-2@ZIF-67 possesses hollow nanocages assembled
from nanosheets with wrinkled edges (Figure 2c–e). Furthermore, there are no obvious
lattice fringes from high-resolution HRTEM images and selective area electron diffraction
(SAED) displays of the diffused rings (Figure 2f), both of which indicate the amorphous
nature of the resultant B-Co3O4-2@ZIF-67 nanocages. Meanwhile, the EDX elemental
mapping (Figure 2g) and the EDX spectra (Figure S3) reveal the uniform distributions of
C, N, O, B, and Co in the resultant B-Co3O4-2@ZIF-67 nanocages. Interestingly, when we
only used K2B4O7·4H2O as a boron source, nanosheets-assembled core-shell structured
B-Co3O4-1@ZIF-67 can be obtained (Figure S4a,b), which could be further confirmed by
TEM images (Figure S4c–e). Similarly, HRTEM images and SAED patterns also proved
the amorphous nature of the resultant B-Co3O4-1@ZIF-67 (Figure S4f,g). In the contrast,
CoBi/ZIF-67 is composed of the residual ZIF-67 and cobalt borate (Co–Bi) nanosheets in
the presence of H3BO3 as a boron source (Figure S4h,i). We inferred that the formation
of core–shell structure may be attributed to the incomplete etching process due to the
insufficient amount of B4O7

2− only in the presence of K2B4O7. Differently, boric acid used
as a boron source can produce protons (H+) for the protonation of 2-methylimidazole,
resulting in the release of Co2+ and then reacting with the borate ions (B4O7

2−) to form
cobalt borate (Co–Bi) nanosheets. In addition, the effect of the solvent in the reaction
system on the morphology of the resultant catalysts was also investigated. Under the
same reaction conditions, the introduction of water resulted in the complete destruction of
morphology from the nanocubes into irregular structures (nanowires and nanoparticles)
(Figure S5), which may be attributed to the fast etching rate. These results demonstrate that
the morphologic structures of the resultant catalysts can be regulated through tuning the
boron source and solvent during the preparation process. Besides, potassium hydroxide
was selected as a substitute of K2B4O7·4H2O to provide an alkaline environment. Only
a small number of nanosheets were formed on the surface of ZIF-67 precursor, but the
cubic morphology of ZIF-67 precursor was still well-retained (Figure S6). These results
demonstrate that the presence of borate ion is essential for the formation of nanocages.
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mappings of C, N, O, Co, B and P images of the resultant B-Co3O4-2@ZIF-67 electrocatalyst.

The phase composition and crystal structure of the resultant materials were character-
ized by XRD. As observed, there are residual ZIF-67 precursors in the resultant B-Co3O4-
2@ZIF-67, B-Co3O4-1@ZIF-67, and CoBi/ZIF-67 regardless of the type of boron source
(Figure S7), which could be clearly observed from TEM images (Figure S4). Nevertheless,
the diffraction peak intensity assigned to ZIF-67 obviously decreases for the resultant
B-Co3O4-2@ZIF-67, implying the more thorough etching of ZIF-67 precursor when reacting
with the BBS solution compared to K2B4O7 and H3BO3. Besides, there are not any crystal
diffraction peaks except for those assigned to ZIF-67, demonstrating the amorphous nature
of the newly formed nanosheets after reacting with different boron sources. Unexpect-
edly, all of the diffraction peaks assigned to ZIF-67 disappeared completely whereas new
diffraction peaks indexed to the Co3O4 (JCPDS No. 74-2120) could be observed after the
introduction of water in the reaction system (Figure S8a) [44]. Moreover, the diffraction
peak intensity increased as the addition of water increased, which may explain why there
is poor crystallinity for the resultant B-Co3O4-2@ZIF-67 nanocages despite the introduction
of a very small amount of water from K2B4O7·4H2O. It should be noted that no peaks
assigned to cobalt borate were detected for all of the above XRD patterns, indicating that
there was no formation of a new crystalline phase after the addition of a boron source.
Careful observation demonstrates the appearance of the diffraction peak assigned to the
(511) crystal plane of Co3O4 in the XRD patterns of the resultant B-Co3O4-1, B-Co3O4-2 and
B-Co3O4-2@ZIF-67 (Figure S8b), which all shifted the lower Bragg angle relative to standard
diffraction peak (59.35◦) of the (511) crystal plane of Co3O4. The negative shift of the Bragg
angle indicates the expansion of the crystal lattice at the same incident wavelength [45],
indicating that boron as dopant may be incorporated into the crystal structure Co3O4.
Based on the XRD results, we inferred that B-doped cobalt oxide (denoted as B-Co3O4) was
successfully formed by replacing oxygen ions (140 pm) in cobalt oxide with borate ions
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(191 pm) [2]. In order to further confirm the successful synthesis of B-Co3O4, the resultant
B-Co3O4-2@ZIF-67 samples were further annealed at 700 ◦C for 1 h in air atmosphere. As
shown in Figure S8c, eight diffraction peaks at 19.0◦, 31.3◦, 36.8◦, 38.5◦, 44.8◦, 56.6◦, 59.3◦,
and 65.2◦ can be assigned to the Co3O4 (JCPDS No. 74-2120). Meanwhile, it is worth noting
that four diffraction peaks at 19.8, 30.0◦, 31.6◦and 34.2◦ were also detected, which can be
indexed to the Co2B2O5 (JCPDS No. 98-09-6562) phase. Besides, the EDX element mapping
and the EDX spectra also verify the presence of B elements in the resultant B-Co3O4-1 and
B-Co3O4-2 (Figure S9 and Table S2), further confirming the successful doping of B into
the Co3O4.

FT-IR spectra were also performed to investigate the surface functional groups and
the skeleton changes of the resultant catalysts [46]. For ZIF-67 precursor, there is the
apparent stretching vibration at 425 cm−1 related to the characteristic peak of Co–N
(Figure S10), which confirms the bonding between the cobalt atom and the N atom in
the 2-methylimidazole linker in ZIF-67 [47]. The peaks in the region of 600–1500 cm−1

contribute to the bending and stretching modes of the imidazole ring in ZIF-67 [48]. The
characteristic peaks at 693 cm−1 and 756 cm−1 can be ascribed to the out-of-plane bending
vibration mode of the imidazole ring [49], while the in-plane bending vibration of the imi-
dazole ring can be observed at 900–1350 cm−1 [50]. Additionally, the obvious characteristic
peaks in the range 1350–1500 cm−1 can be attributed to the stretching vibration mode of
the ring [51]. The peak at 1580 cm−1 can be associated with the stretching vibration of
the C=N bond in 2-methylimidazole ligand [52]. Moreover, the peak at 2929 cm−1 and
3134 cm−1 are caused by the C-H stretching vibration of the aromatic ring and the aliphatic
methyl group in 2-methylimidazole, respectively [47]. The above results demonstrate the
successful synthesis of the ZIF-67 precursor. After the reaction of ZIF-67 precursor with
different boron sources, there is new peak vibration in the range 480–660 cm−1 correspond-
ing to the formation of a metal–oxygen bond (M–O) [53]. Meanwhile, the intensity of the
vibration peak assigned to the ZIF-67 precursor decreases with the amount of boron source
added, indicating the transformation of ZIF-67 into other components. Some character-
istic peaks related to ZIF-67 precursor almost disappear after the introduction of water
(Figure S11), indicating that the material skeleton on the surface of ZIF-67 collapsed [46].
Meanwhile, there are two sharp characteristic peaks at 575 cm−1 and 667 cm−1 in the spec-
tra, which contributed to the stretching vibration mode of octahedral coordinated Co3+–O
bonding and tetrahedral coordinated Co2+–O bonding in Co3O4, respectively [54,55]. The
broad absorption peak at 3440 cm−1 is due to the vibration of O–H from surface water
molecules [51,56]. These results demonstrate that the main component was Co3O4 after
the introduction of water, which is consistent with the XRD results. Combined with the
appearance of metal–oxygen bonds after the introduction of different boron sources, we
can infer that we successfully synthesized B-Co3O4.

In addition, UV-Vis absorption spectra were also carried out by dispersing the resultant
catalysts into ethanol with a constant concentration in the range of 400 to 700 nm. As
displayed in Figure S12, the ZIF-67 precursor has characteristic transitions of tetrahedral
Co2+ at 539 nm and 596 nm, respectively [47]. Moreover, the characteristic transition peak
can be well-retained after reaction with different boron sources and potassium hydroxide,
and the intensity of the B-Co3O4-2@ZIF-67 peak is much lower than that of the ZIF-67
precursor, indicating that there remain ZIF-67 residues in the resultant B-Co3O4-2@ZIF-67,
which is consistent with the above mentioned FESEM and TEM analysis results.

Nitrogen adsorption–desorption isotherms were performed to investigate the specific
surface area of the resultant B-Co3O4-1@ZIF-67 and B-Co3O4-2@ZIF-67 [57]. The specific
surface area of the resultant B-Co3O4-2@ZIF-67 as calculated to be 705.77 m2g−1, which is
higher than that of the resultant B-Co3O4-1@ZIF-67 (398.29 m2g−1) (Figure S3a). In addition,
a hysteresis loop with type-IV isotherm could be observed in the resultant B-Co3O4-2@ZIF-
67 and B-Co3O4-1@ZIF-67, indicating the existence of mesoporous structures [58]. The
pore size distribution results demonstrate (Figure 3b that the resultant B-Co3O4-2@ZIF-67
mainly contained micropores whereas the resultant B-Co3O4-1@ZIF-67 was dominated by
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mesopores, with their average pore diameters being 2.97 and 7.98 nm, respectively [59]. The
large specific surface area and microporous structure of the resultant B-Co3O4-2@ZIF-67
are beneficial for exposing more active sites and accelerating mass transfer, which can
improve the catalytic activity of OER [60].
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Figure 3. (a) N2 adsorption-desorption isotherms and (b) the corresponding pore size distribution of
the resultant B-Co3O4-1@ZIF-67 and B-Co3O4-2@ZIF-67.

The surface chemical composition and element valence states of the resultant catalysts
were further evaluated by XPS. The XPS survey spectra (Figure 4a and Figure S12a) revealed
the existence of C, N, O, B, and Co elements on the surface of the resultant B-Co3O4-1@ZIF-
67 and B-Co3O4-2@ZIF-67, which is consistent with the EDX element mapping results
(Figure 2g), while the resultant Co(OH)2@ZIF-67 contains C, N, O, and Co elements. In the
high-resolution Co XPS 2p spectra of Co(OH)2@ZIF-67 samples (Figure S12b), there are
two strong peaks at binding energies of 781.57 eV and 797.16 eV corresponding to Co2+

species whereas the other two peaks at 780.10 eV and 795.80 eV can be attributed to Co3+

species [8,56,61]. In addition, the other two peaks at 785.06 eV and 801.71 eV are shakeup
satellite peaks. Specifically, by calculating the integrated peak area, the atomic ratio of
Co3+/Co2+ is 1.13 in the resultant Co(OH)2@ZIF-67, implying the partial oxidization of Co2+

in alkaline solution during the hydrothermal process. Compared with Co(OH)2@ZIF-67,
the binding energy of Co2+ (781.89 eV) and Co3+ (780.48 eV) has a significant positive shift
in the resultant B-Co3O4-1@ZIF-67, demonstrating that doping with electron negativity
borate anions induced the formation of a higher oxidation state [33]. This phenomenon
may be attributed to the electron transfer from Co atoms to the borate anion dopant due
to the large electron negativity of the borate anion relative to that of the metal Co [62].
In addition, the integrated peak area ratio of Co3+/Co2+ was calculated to be 0.961 in
the resultant B-Co3O4-1@ZIF-67, which is lower than the theoretical value of Co3+/Co2+

(2:1) in Co3O4. It should be here noted that a certain amount of Co2+ in the resultant
B-Co3O4-1@ZIF-67 comes from the coordinated Co atoms of the ZIF-67 residues. Similarly,
the more positive shift in binding energy of Co2+ (782.20 eV) and Co3+ (780.80 eV) in the
resultant B-Co3O4-2@ZIF-67 was observed compared to the resultant B-Co3O4-1@ZIF-67
(Figure 4b), and the intensity of Co3+/Co2+ was 1.15. The obvious change in binding
energy may be attributed to the introduction of more borate anions when reacting the
ZIF-67 precursor with the BBS solution (Table S3), which can be further confirmed by the
high-resolution B 1s XPS spectra of B-Co3O4-2@ZIF-67 (Figure 4c). As shown, the peak at
192.3 eV, which is assigned to three-coordinated borate species (B–O), proved that boron
atoms in the form of borate were incorporated into the crystal structure of Co3O4 [63,64].
In this process, B4O7

2− partially replaced the oxygen anions (O2−) in the Co3O4 lattice,
thereby destroying the original crystalline structure and producing a large number of
oxygen vacancy defects [27,65]. Therefore, we used electron paramagnetic resonance (EPR)
spectra to analyze and detect the content of unpaired electronic species (oxygen vacancy
defects) in the resultant B-Co3O4-1@ZIF-67 and B-Co3O4-2@ZIF-67 [27]. As shown in
Figure S14, the resultant B-Co3O4-2@ZIF-67 produces more high-energy dangling bonds
than B-Co3O4-1@ZIF-67, indicating that the resultant B-Co3O4-2@ZIF-67 possesses higher
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concentrations of oxygen vacancy defects [32]. It has been reported that the introduction of
defects is beneficial for exposing more catalytically active sites.
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In the high-resolution C 1s spectra of B-Co3O4-2@ZIF-67 (Figure 4d), there are three
distinct characteristic peaks at 284.8, 285.9, and 289.0 eV, which are attributed to sp2 bonded
carbon (C–C), sp2 hybrid C–N bonds, and the bond between carbon and surface oxygen
(O–C=O), respectively [66,67]. The high-resolution N 1s XPS spectra (Figure 4e) can be
deconvoluted into three peaks corresponding to the pyridine-N (399.0 eV) and pyrrolic-
N (399.8 eV) [68]. As shown in Figure 4f, the high-resolution O 1s XPS spectra can be
divided into four characteristic peaks, where the binding energy at 530.9 contributes to
the lattice oxygen (M–O, OI), and the binding energy at 531.36 eV can be assigned to the
oxygen vacancy (Vo, OII) [31]. The resultant B-Co3O4-1@ZIF-67 and B-Co3O4-2@ZIF-67
both have vacant oxygen (Vo, OII) peaks whereas Co(OH)2@ZIF-67 only contains two
oxygen species of lattice oxygen (M–O, 530.74 eV) and adsorbed oxygen (OIII, 531.53 eV)
(Figure S12f), proving that the introduction of boron leads to the formation of oxygen
vacancy defects. The existence of oxygen vacancy defects has been reported to facilitate the
adsorption of water molecules and OH− anions during the OER process, thus promoting
the water oxidation process [69]. Additionally, the binding energy at 532.2 and 533.1 eV
were associated with the adsorbed oxygen species (OIII) and surface water molecules (OIV)
on the catalysts’ surface, respectively [70].

The electrocatalytic OER performances of the resultant catalysts were investigated in
a typical three-electrode system with a rotating disk electrode (RDE) at the rotating speed
of 1600 rpm in 1.0 MKOH. The catalyst loading amount was fixed at 0.5 mg/cm2, and all
electrochemical data has been corrected by iRs compensation to eliminate the influence
of ohmic voltage drop [71]. As shown in Figure 5a and Table S4, the resultant B-Co3O4-
2@ZIF-67 exhibits the best OER performance with the largest current density among the
investigated catalysts. Moreover, the overpotential at a current density of 10 mA cm−2

is 334 mV for the resultant B-Co3O4-2@ZIF-67, which is significantly lower than that of
B-Co3O4-1@ZIF-67 (349 mV) and CoBi/ZIF-67 (341 mV). Besides, the lower OER perfor-
mances of the resultant B-Co3O4-1 (351 mV) and B-Co3O4-2 (346 mV) prepared by the
introduction of water were observed compared to the B-Co3O4-2@ZIF-67 (Figure S15a
and Table S4). In addition, the OER performance of the resultant B-Co3O4-2@ZIF-67 was
also superior to that of the resultant Co(OH)2@ZIF-67 (343 mV) and ZIF-67 precursor (371
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mV) (Figure S16a and Table S4). The catalytic kinetics parameter is generally used to
evaluate the catalytic performances of the resultant catalysts. In order to get insight into
the OER kinetics, a Tafel plot was obtained from the polarization curve according to the
Tafel equation [59]: η = blogj + α, where η is the overpotential, j is the current density, b is
the Tafel slope, and α is the constant. The resultant B-Co3O4-2@ZIF-67 presents a smaller
Tafel slope (73.88 mVdec−1) than the resultant B-Co3O4-1@ZIF-67 (122.8 mVdec−1) and
B-Co3O4/ZIF-67 (99.28 mV dec−1) (Figure 5b and Table S4), indicating more favorable
OER catalytic kinetics for the resultant B-Co3O4-2@ZIF-67. The information of the rate
determination step during the OER process can be acquired from the Tafel slope [2,72].
When the Tafel slope is less than 40 mVdec−1 and greater than 120 mVdec−1, the formation
of * OOH (O * + OH− → * OOH + e−, where * represents the catalytic active site on the
catalysts surface) and * OH (* + OH−→ * OH + e−) are the rate-determining steps, whereas
the Tafel slope located between the above two values, the formation of O * (* OH + OH−

→ * O + H2O + e−) is the rate-determining step. Therefore, the formation of O * is the
rate-determining step during the OER process over the resultant B-Co3O4-2@ZIF-67.
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It is well known that a highly electrochemically active surface area (ECSA) is ben-
eficial for improving catalytic activity. Cyclic voltammetry (CV) was carried out at dif-
ferent scan rates in the non-faradaic potential region from 1.2 to 1.3 V vs. RHE due to
the proportional relationship between ECSA and electrochemical double-layer capaci-
tance (Cdl) [73]. As expected, the resultant B-Co3O4-2@ZIF-67 exhibited the high Cdl
value of 65.78 mFcm−2, which is much higher than that of the resultant B-Co3O4-1@ZIF-
67 (35.10 mFcm−2) and CoBi/ZIF-67 (48.20 mFcm−2), and the other resultant catalysts
(Figure 5c, Figures S17 and S18; Table S4). The large ECSA of the resultant B-Co3O4-2@ZIF-
67 may be due to its unique nanosheets-assembled nanocage structure, thus exposing more
catalytic active sites during the OER process [74]. Electrochemical impedance spectroscopy
(EIS) measurements were also performed to explore the interfacial charge transport prop-
erties of these catalyst modified electrodes [75]. Unexpectedly, the resultant B-Co3O4-
2@ZIF-67 exhibited a larger charge transfer resistance (Rct) than the resultant CoBi/ZIF-67,
B-Co3O4-1@ZIF-67 (Figure 5d). In addition, the resultant B-Co3O4-1 and B-Co3O4-2 also
exhibited a similar Rct with the resultant B-Co3O4-2@ZIF-67 (Figure S15d). However, the
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Rct of the resultant B-Co3O4-2@ZIF-67 was smaller than that of the resultant ZIF-67 pre-
cursor and Co(OH)2@ZIF-67 (Figure S16c). These results show that the Rct of the resultant
ZIF-67 can be significantly reduced by one-step hydrothermal boronation treatment, but it
is not the dominant factor affecting the catalytic performance of the resultant catalysts.

Long-term stability is another important parameter for evaluating the practical appli-
cations of the resultant catalyst [11]. In this regard, continuous CV cycles were conducted
over the resultant B-Co3O4-2@ZIF-67 in the potential range from 1.2 to 1.5 V at the scan
rate of 100 mVs−1 in 1.0 M KOH. No obvious decay in the current density was observed
after 2000 CV cycles over the resultant B-Co3O4-2@ZIF-67 (Figure 5e). Meanwhile, the
durability was also evaluated by chronopotentiometry at a current density of 10 mAcm−2

for 24 h, and chronoamperometry at the constant of potential corresponding to a current
density of 10 mAcm−2 for 15 h. No obvious changes in potential and current density
were observed after continuous operation (Figure 5f). These results suggest the excellent
long-term durability of the resultant B-Co3O4-2@ZIF-67 in alkaline media. We also found
that the morphologic structure of the resultant B-Co3O4-2@ZIF-67 can be well-retained
after a long-term OER durability test (Figure S19). The composition and chemical state of
the resultant B-Co3O4-2@ZIF-67 was further investigated by XPS after the long-term OER
durability test (Figure S20). High-resolution Co 2p XPS spectra revealed that the intensity
of the Co3+ (795.22 eV) peak is significantly higher than that of Co2+ (780.12 eV), and the
ratio of Co3+/Co2+ increased from 1.15 to 1.22, indicating that the low-valence Co2+ is
irreversibly oxidized to the high-valence Co3+ during the OER process (Figure S20a and
Table S3). Differently, B 1’s signal peak completely disappeared after the OER (Figure S20b),
which may be due to the fact that the B element on the catalyst surface dissolved into the
electrolyte during the OER process under the high potential [31]. As shown in Figure S20d,
the peaks of the metal-oxygen bond (M–O, 929.10 eV, vacant oxygen (Vo, 531.15 eV), and
adsorbed oxygen (532.49 and 535.45 eV) are clearly observed after the OER. The above
results demonstrate that the oxygen vacancies caused by borate doping play an important
role in the improvement of OER catalytic activity.

3. Experimental Section
3.1. Materials

Cobalt nitrate hexahydrate (Co (NO3)2·6H2O, AR), 2-methylimidazole (C5H8N2, AR),
hexadecyl trimethyl ammonium bromide (CTAB, 99%), potassium tetraborate tetrahydrate
(K2B4O7·4H2O, AR), boric acid (H3BO3, AR), methanol (AR), and potassium hydroxide
(KOH, AR) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China
). All chemicals were used without further purification.

3.2. Materials Synthesis

ZIF-67 cubes were firstly prepared according to the previously reported method with
slight modification [42]. 0.87 g of Co(NO3)2·6H2O was dissolved in 30 mL of 0.5 mg mL−1

CTAB solution under the assistance of bath ultrasonication (550 W, 40 KHz, KunShan
Ultrasonic Instruments, KQ 3200E, Kunshan, China) at room temperature to form solution
A, and 13.62 g of 2-methylimidazole was dissolved in 30 mL of deionized water under
magnetic stirring to form solution B. After that, the solution A was rapidly introduced
into the solution B under vigorous stirring for 6 h at room temperature. The resultant
purple precipitate was collected by centrifugation (2000 rpm for 8 min, Maikeer, VL-
65B, Changsha, China), washed by ethanol six times, and dried at 70◦C overnight for
further use.

B-Co3O4@ZIF-67 nanocages were synthesized by hydrothermal reaction. Typically,
1.5 mmol K2B4O7·4H2O and 4.5 mmol H3BO3 were dissolved in 30 mL of methanol under
bath ultrasonication at room temperature for 40 min (550 W, 40 KHz), and 120 mg of
the resultant ZIF-67 was quickly added into the above solution under vigorous magnetic
stirring and then stirred for 20 min. Subsequently, the mixed solution was transferred into
a 50 mL Teflon-lined stainless-steel autoclave (PAILAN, Shanghai, China), and was sealed
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and maintained at 150 ◦C for 10 h in an electric oven. After being naturally cooled to room
temperature, the product was collected via centrifugation (5000 rpm for 5 min), washed
with ethanol three times, and finally dried for 30 h at −60 ◦C in a freeze dryer (SCIENTZ,
SCIENCE-10N,Ningbo, China) for further use, which was denoted as B-Co3O4-2@ZIF-67
(2 represents the number of boron sources). As comparisons, CoBi/ZIF-67 and B-Co3O4-
1@ZIF-67 were also prepared through the same method except for the use of different
boron sources: H3BO3 and K2B4O7·4H2O, respectively. B-Co3O4 was also prepared using
30 mL of deionized water and the mixture of water and methanol (v/v = 1:1) instead of
methanol, and the resultant products were denoted B-Co3O4-1 and B-Co3O4-2, respectively.
Meanwhile, Co(OH)2@ZIF-67 was also prepared replacing K2B4O7·4H2O with KOH.

3.3. Physicochemical Characterization

Powder X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance
X-ray diffractometer (Karlsruhe, Germany) with Cu-Kα radiation (λ = 1.5406 Å; scan
rate: 5◦/min). The morphologic structures were characterized by field-emission scan-
ning electron microscopy (FESEM) on a MIRA3 TESCAN scanning electron microscope
operating at 15.0 kV with transmission electron microscopy (TEM, FEI Tecnai G2 F20,
Hillsboro, OR, USA) and equipped with an OXFORD X-max 80T energy-dispersive X-ray
(EDX) system. Chemical valence and element analysis were conducted by X-ray photoelec-
tron spectroscopy (XPS) on a Thermo Scientific K-Alpha+ instrument (Waltham, MA, USA)
operating at 12 kV. All spectra took the C1’s peak at binding energy of 284.80 eV as the
energy standard. Fourier transform infrared spectroscopy (FT-IR) spectra (4000–400 cm−1)
were measured using KBr as the reference sample on a Thermo Scientific Nicolet iS10 FTIR
spectrophotometer (Waltham, MA, USA). UV–Vis absorption spectra were recorded on a
UV–Vis spectrophotometer (YOKE INSTRUMENT T2600, Shanghai, China) with a certain
concentration (0.5 mg/mL) of catalyst samples in ethanol solution. The specific surface
area and pore volume were measured using an AUTOSORB IQ analyzer and analyzed
via nitrogen adsorption–desorption isotherm. The pore-size distributions were calculated
from the nitrogen desorption isotherms via the Horvaih-Kawazoe (HK) and Barrett-Joyner-
Halenda (BJH) methods. The electron paramagnetic resonance (EPR) spectra were recorded
on a Bruker EMXplus spectrometer (Karlsruhe, Germany) operated at X-band 9.5 GHz at
room temperature.

3.4. Electrochemical Measurements

The electrochemical performances were investigated using a CHI 760E electrochemical
workstation (CH Instruments, Inc., Shanghai, China) in a typical three-electrode system
at room temperature. The catalyst-modified glassy carbon electrode (GCE, diameter:
5 mm) was used as a working electrode, and the GCE was polished with alumina slurry
followed by cleaning in water and ethanol successively with ultrasonication prior to
use. A carbon rod (Yueci Electronics, Shanghai) and an Ag/AgCl with saturated KCl
solution electrode (Pine Research Instrumentation, Durham, NC, USA) were used as the
counter electrode and reference electrode, respectively. The catalyst inks were prepared
through dispersing 5 mg of the resultant catalyst into a mixture of 980 µL ethanol and
20 µL Nafion (5 wt.%, DuPont, Shenzhen, China) under ultrasonication for 40 min. Then
20 µL of the obtained ink was dropped on the surface of the polished GCE and dried
in ambient conditions to form a uniform thin catalyst layer (we calculated the amount
of catalyst loading to be 0.50 mg cm−2). For the durability test, the electrode was also
fabricated using carbon paper (CP, 1 cm2 in area, Comston Technology, Shenzhen, China).
All the measured potentials were converted to the reversible hydrogen electrode (RHE)
according the equation: ERHE = EAg/AgCl + 0.215 + 0.059 pH. The 1.0 M KOH aqueous
solution was used as the electrolyte for OER performance measurements. The rotation
speed of the rotating disk electrode (RDE) was fixed at 1600 rpm for all the measurements.
Prior to the linear sweep voltammetry (LSV) test, the working electrode was activated
by applying continuous cyclic voltammetry (CV) several times between 1.2 and 1.5 V in
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1.0 M KOH with a scan rate of 100 mVs−1 until the stable CV curves were obtained. The
LSV curves were measured by sweeping the potential from 1.2 to 1.8 V vs. RHE with a
scan rate of 5 mVs−1. The electrochemical impedance spectroscopy (EIS) measurements
were carried out in a frequency range from 100 KHz to 0.01 Hz at 1.5 V by applying
an alternating current (AC) voltage with 5 mV amplitude. The electrochemical double
layer capacitance (Cdl) of different catalysts were measured using cyclic voltammetry in a
non-faradaic region from 1.2 to 1.3 V vs. RHE with different scan rates of 5, 10, 15, 20, and
25 mVs−1. The durability of the catalyst was evaluated according to the following methods:
a polarization curve after 2000 CV cycles, chronopotentiometry at the fixed current density
of 10 mAcm−2, and chronoamperometry at the fixed potential corresponding to the current
density of 10 mAcm−2. All electrochemical potentials were corrected by iRs compensation
except for the chronopotential curve. The equivalent circuit of electrochemical impedance
spectroscopy (EIS) was fitted by ZView software (Southern Pines, NC, USA).

4. Conclusions

In summary, B-Co3O4@ZIF-67 nanocages composed of nanosheets have been success-
fully prepared by hydrothermal boronation, and investigated as OER catalysts. The optimal
B-Co3O4@ZIF-67 nanocages exhibited superior OER activity with a small overpotential of
330 mV at the current density of 10 mAcm−2 and excellent long-term durability in 1.0 M
KOH. The excellent OER performance of B-Co3O4@ZIF-67 can be attributed to the two
following qualities: (1) large specific surface area from unique its nanocages structure as-
sembled with nanosheets, which is helpful in promoting mass transfer and exposing more
catalytically active sites; (2) the formation of oxygen vacancy defects induced by borate
anion doping, which is beneficial for modulating the electronic structure and improving
the conductivity of the catalyst.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11060659/s1, Figure S1: FESEM images of the resultant ZIF-67 precursor, Figure S2:
XRD pattern of the resultant ZIF-67 precursor and the simulated ZIF-67, Figure S3: EDX spectra of
the resultant B-Co3O4-2@ZIF-67, Figure S4: (a and b) FESEM images, (c–e) TEM images, (f) HRTEM
image, and (g) SAED pattern of the resultant B-Co3O4-1@ZIF-67; (h and i) FESEM images of the
resultant CoBi/ZIF-67, Figure S5: FESEM images of the resultant B-Co3O4-1 (a,b) and B-Co3O4-2
(c,d), Figure S6: FESEM images of the resultant Co(OH)2@ZIF-67, Figure S7: XRD patterns of the
resultant B-Co3O4-1@ZIF-67, B-Co3O4-2@ZIF-67, and B-Co3O4/ZIF-67, Figure S8: (a) XRD patterns
of the resultant B-Co3O4-1, B-Co3O4-2 and B-Co3O4-2@ZIF-67; (b) the expanded XRD patterns of
the area in figure a; (c) XRD patterns of the annealed B-Co3O4-2@ZIF-67; (d) XRD patterns of the
resultant Co(OH)2@ZIF-67, Figure S9: EDX element mapping of C, O, B, and Co images of the
resultant B-Co3O4-1 (a) and B-Co3O4-2 (b), Figure S10: FT-IR spectra of the resultant ZIF-67 precursor,
B-Co3O4-1@ZIF-67, B-Co3O4-2@ZIF-67, and Co-Bi/ZIF-67, Figure S11: FT-IR spectra of the resultant
ZIF-67 precursor, B-Co3O4-1, and B-Co3O4-2, Figure S12: UV-Visible spectra of the as-prepared
ZIF-67 precursor and its derivatives: B-Co3O4-1, B-Co3O4-2, CoBi/ZIF-67, Co(OH)2@ZIF-67, B-
Co3O4-1@ZIF-67 and B-Co3O4-2@ZIF-67, Figure S13: (a) The XPS survey spectra, (b) high-resolution
Co 2p spectra, (d) high-resolution C 1s spectra, (e) high-resolution N 1s spectra, (f) high-resolution
O 1s spectra of the resultant Co(OH)2@ZIF-67 and B-Co3O4-1@ZIF-67; (c) high-resolution B 1s
spectra of the resultant B-Co3O4-1@ZIF-67, Figure S14: EPR spectra of the resultant B-Co3O4-1@ZIF-
67 and B-Co3O4-2@ZIF-67, Figure S15: Electrochemical performances of the resultant B-Co3O4-1,
B-Co3O4-2, and B-Co3O4-2@ZIF-67 in 1.0 M KOH: (a) polarization curves with iR compensation,
(b) Tafel slope plots, (c) current density as a function of scan rate derived from the CV curves at
different scan rates and (d) Nyquist plots, Figure S16: Electrochemical performances of the resultant
ZIF-67, Co(OH)2@ZIF-67, and B-Co3O4-2@ZIF-67 in 1.0 M KOH: (a) polarization curves with iR
compensation, (b) Tafel slope plots, and (c) Nyquist plots, Figure S17: (a,c,e) CV curves at different
scan rates (5, 10, 15, 20 and 25 mV s−1) and (b,d,f) current density as a function of scan rate derived
from the CV curves at different scan rates for the resultant B-Co3O4-1@ZIF-67 (a,b), B-Co3O4-2@ZIF-
67 (c,d), and CoBi/ZIF-67 (e,f) in 1.0 M KOH, Figure S18: (a,c,e,g) CV curves at different scan rates (5,
10, 15, 20 and 25 mV s−1) and (b,d,f,h) current density as a function of scan rate derived from the CV
curves at different scan rates for the resultant B-Co3O4-1 (a,b), B-Co3O4-2 (c,d), Co(OH)2 (e,f) and ZIF-
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67 (g,h) in 1.0 M KOH solution, Figure S19: Low-magnification (a) and high-magnification (b) FESEM
images of the resultant B-Co3O4-2@ZIF-67 after OER durability test, Figure S20: High-resolution XPS
Co 2p spectra (a), B 1s spectra (b), C 1s spectra (c), O 1s spectra (d) of the resultant B-Co3O4-2@ZIF-67
before and after the stability test, Table S1: Summary of nitrogen adsorption-desorption isotherm
data of the resultant B-Co3O4-1@ZIF-67 and B-Co3O4-2@ZIF-67, Table S2: The EDX results of the
resultant B-Co3O4-1 and B-Co3O4-2. (The element content is atomic percentage), Table S3: The XPS
element atomic content percentage and Co3+/Co2+ ratio of the test samples, Table S4: Summary
of the electrochemical data of all the samples for OER in 1.0 M KOH solution, Table S5: The EDX
results of the B-Co3O4-2@ZIF-67 catalyst before and after OER test. (The element content is atomic
percentage), Table S6: Comparison of OER catalystic activity between B-Co3O4-2@ZIF-67 sample and
other electrocatalysts in alkaline solution.
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