
catalysts

Communication

Base-Free Synthesis of Furfurylamines from Biomass Furans
Using Ru Pincer Complexes

Danielle Lobo Justo Pinheiro and Martin Nielsen *

����������
�������

Citation: Pinheiro, D.L.J.; Nielsen, M.

Base-Free Synthesis of

Furfurylamines from Biomass Furans

Using Ru Pincer Complexes. Catalysts

2021, 11, 558. https://doi.org/

10.3390/catal11050558

Academic Editors:

Raffaele Cucciniello, Daniele Cespi

and Tommaso Tabanelli

Received: 30 March 2021

Accepted: 26 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; dane@kemi.dtu.dk
* Correspondence: marnie@kemi.dtu.dk; Tel.: +45-24651045

Abstract: We report the first example of employing homogeneous organometal-catalyzed transfer
hydrogenation for the selective reductive amination of furfurals to furfurylamines. An efficient,
chemoselective, and base-free method is described using Ru-MACHO-BH as catalyst and iPrOH as
H donor. The method tolerates a range of substituents affording moderate to excellent yields.
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1. Introduction

The development of sustainable techniques to transform biomass into useful com-
pounds is one of the biggest challenges of modern chemistry [1]. The introduction of
nitrogen in biomass-derived compounds adds value and expands their industry applicabil-
ity [2]. Furfurals are aldehydes derived from biomass and are identified as one of the key
chemicals produced by the lignocellulosic biorefineries. Around 280 kTon are produced
globally per year [3]. Furfurylamines (amines derived from furfurals) present diverse
applications in the industry, including the preparation of pharmaceutical compounds such
as Furesomide, Furtrethonium, an anti-hepatitis-B, and Barmastine (Figure 1), as well as
polymers, antiseptic agents, agrochemicals, pesticides, and synthetic resins [1,2,4].
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1. Introduction 
The development of sustainable techniques to transform biomass into useful com-

pounds is one of the biggest challenges of modern chemistry [1]. The introduction of ni-
trogen in biomass-derived compounds adds value and expands their industry applicabil-
ity [2]. Furfurals are aldehydes derived from biomass and are identified as one of the key 
chemicals produced by the lignocellulosic biorefineries. Around 280 kTon are produced 
globally per year [3]. Furfurylamines (amines derived from furfurals) present diverse ap-
plications in the industry, including the preparation of pharmaceutical compounds such 
as Furesomide, Furtrethonium, an anti-hepatitis-B, and Barmastine (Figure 1), as well as 
polymers, antiseptic agents, agrochemicals, pesticides, and synthetic resins [1,2,4]. 
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Figure 1. Pharmaceutical compounds containing furfurylamines. 

The synthesis of furfurylamines from furfurals by reductive amination has been in-
vestigated using diverse reducing agents and catalysts. Studies involving hydrogen gas, 
silanes, borohydrides, and formic acid as reductants have been reported in the literature. 
Hydrogen gas as reductant is an interesting green tool; however, the method needs to 
operate under pressure of a highly flammable gas, increasing the operating cost. Never-
theless, there are many examples in the literature using H2 as reductant for reductive ami-
nation with noble and non-noble metal catalysts such as Ru, Au, Ir, Pt, Ni, Co and Fe [5–
11]. Although silane is obtained from waste residues of the silicon industry, their use is 
still in stoichiometric amounts, generating excessive amounts of waste [12–14]. The use of 
formic acid as H donor for the reductive amination of furfural was demonstrated as well. 
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Figure 1. Pharmaceutical compounds containing furfurylamines.

The synthesis of furfurylamines from furfurals by reductive amination has been in-
vestigated using diverse reducing agents and catalysts. Studies involving hydrogen gas,
silanes, borohydrides, and formic acid as reductants have been reported in the literature.
Hydrogen gas as reductant is an interesting green tool; however, the method needs to oper-
ate under pressure of a highly flammable gas, increasing the operating cost. Nevertheless,
there are many examples in the literature using H2 as reductant for reductive amination
with noble and non-noble metal catalysts such as Ru, Au, Ir, Pt, Ni, Co and Fe [5–11].
Although silane is obtained from waste residues of the silicon industry, their use is still in
stoichiometric amounts, generating excessive amounts of waste [12–14]. The use of formic
acid as H donor for the reductive amination of furfural was demonstrated as well. Cao and
co-workers synthesized N-(furan-2-ylmethyl)aniline in 93% yield from nitrobenzene and
furfural using Au/TiO2-R as catalyst at 80 ◦C for 4 h [15]. Smith Jr and co-workers also
employed formic acid as H donor, but used formamide as N source [16]. To the best of our
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knowledge, the only work involving an alcohol as H donor (iPrOH) for the synthesis of
furfurylamines from furfural was reported by Yus [17]. In this work, the reaction between
furfural and heptylamine using 20 mol% of NiNPs at 76 ◦C for 48 h afforded 30% yield of
the furfurylamine.

One of the most powerful and robust methods for effective C–N bond formation of
amines is the reductive amination of carbonyl compounds. [4,18–30]. This transformation
features compelling advantages, such as simple operating setups, mild reaction conditions,
direct use of available substrates, and inexpensive reagents [31]. The reductive amination
using transfer hydrogenation for the synthesis of furfurylamines from furfurals is limited,
even though this transformation as a synthetic tool is non-toxic, environmentally friendly,
does not require flammable gasses, and employs a stable, easy to handle, and inexpensive
source of hydrogen [4,32–37]. However, transfer hydrogenation catalysts typically require
strong bases to be active, which can be detrimental for substrates that are base-sensitive [38].
Therefore, studies applying base-free conditions must be developed to avoid this drawback.

The use of homogenous metal catalysis has demonstrated great reactivity for trans-
fer hydrogenation of carbonyl compounds and has been proven to hold many advan-
tages [38–41]. In 2018, De Vries reported a base-free transfer hydrogenation of α,β-
unsaturated ketones and aldehydes using the PNP pincer complex carbonylhydrido
(tetrahydroborato)[bis(2-diphenylphosphinoethyl)amino]ruthenium(II) (Ru-MACHO-BH)
as catalyst, in the presence of EtOH or iPrOH as H source and showed high activity and
selectivity [42]. The amino-based Ru-PNP complexes are also very efficient catalysts for
hydrogenation [43–49] and dehydrogenation [50–57] reactions. The high activity of these
Ru PNP complexes in hydrogenations is often attributed to the presence of the Ru–H unit
and N–H group [58].

Inspired by these works, we investigated the use of Ru-MACHO [59] (carbonylhydrido
(tetrahydroborato)[bis(2-diphenylphosphinoethyl)amino]ruthenium(II)) and Ru-MACHO-
BH complexes as potential catalysts for the transfer hydrogenation of the reductive amina-
tion in this work.

2. Results and Discussion

Our studies commenced with testing Ru-MACHO (1 mol%) as the catalyst for the
transfer hydrogenation of the aldimine 1a (Figure S1) in the presence of iPrOH (0.2 M
of 1a) as hydrogen source and KOtBu (20 mol%) as additive at 90 ◦Cfor 3 h (Scheme 1).
To our delight, the reaction afforded >99% conversion to furfurylamine 2a. We then set
out to evaluate the transfer hydrogenation of 1a using varying catalyst loading, additives,
temperatures, and reaction times with the aim of developing a mild protocol for this
reaction.
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Scheme 1. (a) Ru-PNP catalysts used in this work. (b) Transfer hydrogenation of aldimine using
Ru-MACHO. [a] Measured by 1H NMR spectroscopy analysis of the crude reaction mixture.

Reducing the reaction time to 15 min, the catalyst loading of Ru-MACHO to 0.5 mol%,
and the KOtBu loading to 10 mol% still led to full conversion (Table 1, Entry 3). In fact,
after 5 min, 51% was already converted (Entry 4). Changing the additive to NaOH had



Catalysts 2021, 11, 558 3 of 10

a detrimental effect, and only 18% conversion was observed. Likewise, lowering the
catalyst loading to 0.1 mol% afforded less than 5% conversion. Changing the catalyst to
Ru-MACHO-BH showed very low activity within 15 min, both with and without additive
(Entries 6 and 7, respectively).

Table 1. Transfer hydrogenation of aldimines: Initial studies.

Entry a Catalyst (mol%) Additive b Time Conv. c (%)

1 Ru-MACHO (0.5) KOtBu 1 h >99
2 Ru-MACHO (0.5) KOtBu 30 min >99
3 Ru-MACHO (0.5) KOtBu 15 min >99
4 Ru-MACHO (0.5) KOtBu 5 min 51
5 Ru-MACHO (0.5) NaOH 15 min 18
6 Ru-MACHO (0.1) KOtBu 15 min <5
7 Ru-MACHO-BH (0.5) - 15 min <5

a Reactions were carried out using 1.3 mmol of furfural and aniline in 7 mL iPrOH at 90 ◦C. b 10 mol% additive
used. c Measured by 1H NMR spectroscopy analysis of the crude reaction mixture.

Motivated by these initial positive results, the reductive amination of furfural with
aniline was further investigated. Thus, in the presence of 10 mol% KOtBu, 0.5 mol% of
Ru-MACHO afforded >99% conversion after 18 h at 90 ◦C. However, the furfuryl alcohol
(FA, 3) appeared as a significant side product in a proportion of 7:3 (2a/3) (Scheme 2).
Fortunately, introducing MgSO4 as drying agent led to >99% conversion selectively to
the desired product in 3 h (Table 2, Entry 2). Reducing the reaction time to 1 h decreased
the selectivity to 93:7. Using Ru-MACHO-BH (0.5 mol%) and MgSO4 but without the
basic additive still resulted in 93% conversion after 1 h and with 2a as the sole product by
1H NMR analysis (Entry 3). Increasing the amount of aniline from 1.0 to 1.2 equivalent
afforded >99% 2a under otherwise identical conditions (Entry 5). Unfortunately, it was
not possible to further reduce the reaction time without compromising the conversion and
selectivity (Entries 6–8). Decreasing the amount of Ru-MACHO-BH to 0.25 mol% also
led to a low conversion of 11% (Entry 9). Lowering the temperature to 70 ◦C resulted
in practically no conversion (<5%, Entry 10). However, by increasing the temperature
to 120 ◦C, it was possible to achieve exclusively 2a with >99% conversion within 30 min
(Entry 11).

A number of drying agents were then tested. Using Na2SO4 at 90 ◦C afforded >99%
conversion in 1 h. However, the selectivity decreased to 97:3 (2a/3) (Entry 12). Decreasing
the time further to 15 min maintained the full conversion but led to even lower selectivity,
down to 57:42 (2a/3) (Entries 13–15). These observations suggest that the formation of 3 is
highly reversible, and that 1a is regenerated from 3 throughout the course of the reaction.
Moreover, decreasing the reaction temperature to 70 ◦C led to merely 17% conversion
(Entry 16). Molecular sieves (4 Å) were also evaluated and showed full conversion after
1 h, albeit with slightly lower selectivity (94:6 2a/3) (Entry 17). Decreasing the time further
to 15 min maintained the full conversion but also led to lower selectivity, (71:29 2a/3)
(Entry 18). The temperature was evaluated, and carrying out the reaction at 70 ◦C led to
71% conversion and 96:4 (2a/3) of selectivity (Entry 19).
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Table 2. One-pot synthesis of furfurylamines: Optimization.

Entry a Catalyst (mol%) Additive b Temperature (◦C) Time Conversion c (%) 2a c (%) 3 c (%)

1 Ru-MACHO (0.5) KOtBu 90 18 h >99 70 30
2 Ru-MACHO (0.5) KOtBu + MgSO4 90 3 h >99 >99 -
3 Ru-MACHO (0.5) KOtBu + MgSO4 90 1 h >99 93 7
4 Ru-MACHO-BH (0.5) MgSO4 90 1 h 93 >99 -

5 d Ru-MACHO-BH (0.5) MgSO4 90 1 h >99 >99 -
6 d Ru-MACHO-BH (0.5) MgSO4 90 45 min 75 86 14
7 d Ru-MACHO-BH (0.5) MgSO4 90 30 min 30 73 27
8 d Ru-MACHO-BH (0.5) - 90 30 min 15 52 48
9 d Ru-MACHO-BH (0.25) MgSO4 90 1 h 11 - >99

10 d Ru-MACHO-BH (0.5) MgSO4 70 1 h <5 - -
11 d Ru-MACHO-BH (0.5) MgSO4 120 30 min >99 >99 -
12 d Ru-MACHO-BH (0.5) Na2SO4 90 1 h >99 97 3
13 d Ru-MACHO-BH (0.5) Na2SO4 90 45 min >99 90 10
14 d Ru-MACHO-BH (0.5) Na2SO4 90 30 min >99 76 24
15 d Ru-MACHO-BH (0.5) Na2SO4 90 15 min >99 57 42
16 d Ru-MACHO-BH (0.5) Na2SO4 70 1 h 17 72 28
17 d Ru-MACHO-BH (0.5) MS 4 Å 90 1 h >99 94 6
18 d Ru-MACHO-BH (0.5) MS 4 Å 90 15 min >99 71 29
19 d Ru-MACHO-BH (0.5) MS 4 Å 70 1 h 71 96 4

a Reactions were carried out using 1.3 mmol of furfural, aniline, and 1.3 mmol of drying agent in 7 mL iPrOH. b 10 mol% of KOtBu used.
c Measured by 1H NMR spectroscopy analysis of the crude reaction mixture. d Reactions were carried out using 1.2 equivalent of aniline.
MS = Molecular sieves.

As seen in Figure 2, the levels of 1–3 differed significantly throughout the course of
the reaction, depending on whether Na2SO4 or MgSO4 was employed. Within 15 min,
almost all 1a had disappeared and 60% of 2a had already been generated when using
Na2SO4. Surprisingly, 35% of 3 was observed at this point. Hereafter, the reaction slowed
significantly, and after 30 min, merely 70% of 2a had been produced and 3 had only dropped
to 22%. By contrast, with MgSO4 the level of 3 did not exceed 15% throughout the entire
course of the reaction, and after 30 min, it was 12%. At this time, there was still an ample
amount of 1a (45%) to undergo hydrogenation, and 43% of 2a had been produced. This
difference in amount of 1a present during the course of the reaction might explain the
superiority of MgSO4 as drying agent after 60 min.
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Figure 2. Monitoring the reaction of furfural with aniline using either MgSO4 as drying agent (a) or
Na2SO4 as drying agent (b). Reactions were carried out using 1.3 mmol of furfural, 1.2 equivalent
aniline, and 1.3 mmol of drying agent in 7 mL iPrOH.

Therefore, although Na2SO4 and molecular sieves demonstrate higher conversion
rates than MgSO4, the latter drying agent was chosen due to the higher yield provided
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after 1 h of reaction time. Therefore, the conditions described in the Entry 5 in Table 2 were
defined as standard conditions for the scope.

To assess the general applicability of the Ru-MACHO-BH as a catalyst for the one-pot
synthesis of furfurylamines from furfurals and amines, various anilines were evaluated
using the standard conditions (Scheme 3). Generally, moderate to excellent yields were
obtained. The parent aniline afforded an excellent 93% of isolated product. Comparing the
anilines containing either electron-donating or -withdrawing substituents, the latter group
showed superior yield. As such, 4-F-C6H4NH2, 4-CF3-C6H4NH2, and 4-aminopyridine
generated the best yields of the substituted anilines with 74-95% of isolated products 2h–j.
The product 2j is analogous to the anti-hepatitis-B compound shown in Figure 1, which
demonstrates the direct applicability of the method for the synthesis of pharmacological
activity compounds. On the other hand, a donating group (4-CH3-C6H4NH2) afforded
lower yield of 61% of 2d. This observation can perhaps be explained by the increased
electronic deficiency of the imines when employing 4-CF3-C6H4NH2 as reagent [1]. Various
halogens were tested as well and showed moderate to good yields (2b, 2e, 2h). Compounds
with substituent in different positions, such as 3-Cl-C6H4NH2 and 2-F-C6H4NH2, showed
good tolerance, yielding 60% and 56% of 2c and 2f, respectively. The method was also
tested with the secondary amine N-methylaniline, which afforded the tertiary amine 2g
in high yield (89%). Unfortunately, no products were observed when employing various
primary and secondary alkyl amines (tBuNH2, nHepNH2, Me2NH, morpholine).
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5-(hydroxymethyl)furfural (HMF) and 5-methylfurfural are other important biomass-
derived furans with industrial applications [60,61]. The furfurylamines derived from
HMF are used in the synthesis of biopolymers (polyamides) and pharmaceuticals [4].
The N-(5-methylfurfuryl)aniline is a very important compound used in the synthesis of
epoxyisonindoles and bioactive compounds such as anti-bacterial, anti-tuberculosis, anti-
tumor, and anti-inflammatory entities [62–70]. Therefore, the method is an interesting
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alternative for the production of these valuable compounds. Hence, we also evaluated this
compound as a potential substrate (Scheme 4). The reactions afforded a high yield of 4
(87%) and a moderate yield of 5 (54%).
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3. Materials and Methods
3.1. Materials

Most chemicals were purchased from commercial suppliers and used without further
purification unless otherwise stated. Hydroxymethylfurfural (HMF, 99%) (Sigma-Aldrich,
St. Louis, MO, USA), furfural (99%) (Sigma-Aldrich, St. Louis, MO, USA), 5-methylfurfural
(99%, Sigma-Aldrich, St. Louis, MO, USA), KOtBu (99%, Sigma-Aldrich, St. Louis, MO,
USA), iPrOH (anhydrous, 99.5%, Sigma-Aldrich, St. Louis, MO, USA), Ru-MACHO (Sigma-
Aldrich, St. Louis, MO, USA), and Ru-MACHO-BH (Strem Chemicals, Newburyport, MA,
USA) are commercially available and were used without further purification. All reactions
dealing with air or moisture-sensitive compounds were performed using standard Schlenk
techniques or in an argon-filled glovebox. The 1H and 13C NMR spectra were recorded
on a Bruker Avance III 400 MHz spectrometer (Bruker, Billerica, MA, USA) and were
referenced to the solvent peak. The software MestReNova version 11.0.0-17609 (Mestrelab,
Escondido, CA, USA, 2016) was used for NMR analysis. The software OriginPro 2019
9.6.0.172 (Academic) (OriginLab, Northampton, MA, USA, 2019) was used for graphic
plot. All the products are literature known compounds, and the experimental data (1H and
13C{1H} NMR spectra) fit those reported.

3.2. Methods
3.2.1. Preparation of Aldimine 1a

A mixture of furfural (54 mmol), aniline (54 mmol) and methanol (0.5 M) in the
presence of MS (4 Å) was stirred at room temperature for 3 h. After completion of the
reaction, the crude mixture was filtered off and evaporated under reduced pressure. The
product 1a was obtained as a brown oil, 7.83 g, 85%.

3.2.2. General Procedure for Transfer Hydrogenation of Aldimine 1a Catalyzed by
Ru-PNP Complexes

A Schlenk pressure vessel containing catalyst, additive and magnetic bar was sealed
and flushed with argon (three times). The solvent and H-donor (i-PrOH) was introduced
by a needle and stirred at 90 ◦C. After 10 min, the aldimine 1a was added to the solution.
After a certain reaction time (5–18 h), the reaction was stopped, and the crude was analyzed.
The conversion was determined by spectroscopy 1H NMR.
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3.2.3. General Procedure for One-Pot Reductive Amination of Furfural

In a Schlenk pressure vessel containing Ru-MACHO-BH (0.5 mol %) and MgSO4
(1.3 mmol), a magnetic stirring bar was added and the vessel was sealed and flushed with
argon (three times). During argon flow, 4.5 mL of iPrOH was introduced by a needle and the
solution was heated at 90 ◦C and stirred for 10 min. In a flame-dried screw-cap vial, aniline
(1.56 mmol) and furfural (1.3 mmol) were mixed with 2.5 mL of iPrOH (to provide a solution
with furfural concentration of 0.18 M) under argon flow. The atmosphere was replaced with
argon and the solution was introduced to the Schlenk pressure vessel. The reaction mixture
was kept at 90 ◦C for 1 h. The crude reaction mixture was evaporated under reduced
pressure, and the product was obtained after purification through chromatography column
(Ethyl acetate/pentane, 90:10). For the optimization process, the method of employing
relative conversions as measured by NMR was confirmed with respect to absolute values
by a single duplicate test reaction using mesitylene as internal standard.

4. Conclusions

In conclusion, we report the first example of an efficient base free one-pot transfer hy-
drogenative reductive amination of furfural for the synthesis of furfurylamines under mild
conditions, employing low amounts of the commercially available catalyst Ru-MACHO-BH
and iPrOH as H donor. The general applicability of the method is demonstrated by the use
of furfural and various anilines with different substituents, which afforded yields that var-
ied from moderate to excellent (56–93%). Furthermore, this chemoselective methodology
established a high yield (83%) in the synthesis of the furfurylamine derived from HMF and
a moderate yield (54%) from N-(5-methylfurfuryl)aniline.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11050558/s1, Table S1: Monitoring the reaction of furfural and aniline using MgSO4
as drying agent. Table S2: Monitoring the reaction of furfural and aniline using Na2SO4 as drying
agent. Figure S1: 1H NMR spectrum of 1a (400 MHz, CDCl3), Figure S2: 13C NMR spectrum of 1a
(100 MHz, CDCl3), Figure S3: 1H NMR spectrum of 2a (400 MHz, CDCl3), Figure S4: 13C NMR
spectrum of 2a (100 MHz, CDCl3), Figure S5: 1H NMR spectrum of 2b (400 MHz, CDCl3), Figure S6:
13C NMR spectrum of 2b (100 MHz, CDCl3), Figure S7: 1H NMR spectrum of 2c (400 MHz, CDCl3),
Figure S8: 13C NMR spectrum of 2c (100 MHz, CDCl3), Figure S9: 1H NMR spectrum of 2d (400 MHz,
CDCl3), Figure S10: 13C NMR spectrum of 2d (100 MHz, CDCl3), Figure S11: 1H NMR spectrum of
2e (400 MHz, CDCl3), Figure S12: 13C NMR spectrum of 2e (100 MHz, CDCl3), Figure S13: 1H NMR
spectrum of 2f (400 MHz, CDCl3), Figure S14: 13C NMR spectrum of 2f (100 MHz, CDCl3), Figure S15:
1H NMR spectrum of 2g (400 MHz, CDCl3), Figure S16: 13C NMR spectrum of 2g (100 MHz, CDCl3),
Figure S17: 1H NMR spectrum of 2h (400 MHz, CD3OD), Figure S18: 13C NMR spectrum of 2h
(100 MHz, CDCl3), Figure S19: 1H NMR spectrum of 2i (400 MHz, CDCl3), Figure S20: 13C NMR
spectrum of 2i (100 MHz, CDCl3), Figure S21: 1H NMR spectrum of 2j (400 MHz, CDCl3), Figure S22:
13C NMR spectrum of 2j (100 MHz, CDCl3), Figure S23: 1H NMR spectrum of 4 (400 MHz, CDCl3),
Figure S24: 13C NMR spectrum of 4 (100 MHz, CDCl3), Figure S25: 1H NMR spectrum of 5 (400 MHz,
CDCl3), Figure S26: 13C NMR spectrum of 5 (100 MHz, CDCl3).
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