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Abstract: Efficient four- and five-step routes to access functionalized bicyclo[3.2.1]oct-2-ene and
bicyclo[3.3.1]nonadiene via indium-mediated cycloisomerization of 1,6-enynes has been developed.
This atom-economical catalytic process was optimized and relied on the efficiency of InCl3 leading to
the preparation of functionalized bicyclic adducts in up to 99% isolated yield. The cyclization occurred
on two different processes (5-exo versus 6-endo pathway) and were influenced by the substitution
of the alkynyl moiety. The exo process was favored for non-substituted alkynes whereas the endo
pathway was generally observed for substituted alkynes. Then, the presence of electron-withdrawing
groups on the aryl substituted alkyne increased the ratio of the exo isomer. DFT calculations were
performed on stability of intermediates and corroborated the intervention of InCl3.
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1. Introduction

Indium was discovered in 1863 by Reich and Richter of the Freiberg School of Mines
in Germany [1]. It is a fairly rare metal, its presence in the earth’s crust is estimated at about
0.05 parts per million. Indium comes mainly from by-products of zinc mining (95%), and
to a lesser extent, from tin, lead and copper ores. Used from the 1950s in the preparation
of semiconductors, it is then used in the form of indium phosphite in the development of
light-emitting diodes (LEDs). In the 21st century, its application in the form of indium oxide
in high-tech industries such as liquid crystal displays (LCDs) has led to a sustained growth
in world demand for indium. Its use in organic synthesis in the form of salts (halides or acid
derivatives) has been growing for three decades and the pronounced Lewis acid character
of indium has pushed organic chemists to study its reactivity with an additional financial
interest since its price is attractive compared to other noble salts [2–6]. The first examples
of indium-catalyzed intramolecular hydroarylation reactions of alkynes were reported by
Fürstner’s group from o-alkyne biaryl derivatives leading to halophenanthrene derivatives
in yields ranging from 59% to 95% (Scheme 1, (1)) [7]. Chatani’s group studied in 2006 the
rearrangement of 1,6-enynes in the presence of indium trichloride as catalyst leading to
the formation of 1-vinylcyclo-alkene derivatives (1,3-diene) or 1-allylcyclo-alkene deriva-
tives (diene-1,4) depending on the substitution of the alkyne (Scheme 1, (2)) [8]. These
pioneered works were followed by other studies such as the one from Gandon’s team on
the intramolecular hydroarylation cyclization reactions ofω-alkynyl-arenes derivatives [9]
and from Corey’s group on the cascade synthesis of complex polycyclic molecules from
the polyenyne derivative [10]. The high reactivity of indium salts could also generate a
double activation as shown by Nakamura’s group in the case of the β-ketoester substrate
containing the acetylene function [11–13]. We have also investigated the use of indium
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trichloride in alkyne activation for carbocyclization reactions by describing an efficient
synthesis of exo-methylene α-disubstituted cyclopentane derivatives [14–16] and follow-
ing our continuous work on gold catalysis [17–21], we wondered if we could promote
cycloisomerization processes on cyclohexenylalkynes [22] in the presence of indium salts.
These bicyclic derivatives are key building blocks and represent privileged scaffolds for
biologically active molecules and natural products [23–28]. We wish therefore to describe
our results in the presence of InCl3 catalyst and a critical comparison with our previous
results with gold complexes.
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Scheme 1. In-catalyzed hydroarylation and cycloisomerization reactions.

2. Results

At the outset of our study, we prepared several functionalized 1,6-enynes, start-
ing from ethyl 4-cyclohexanone-carboxylate according to a straightforward three-step
route implying a triflate formation, a Suzuki–Miyaura coupling and a propargylation
(Scheme 2). We prepared non-substituted alkynes 1a–d as well as substituted ones such
as Me-substituted 1e, and Ar-substituted 1f–1p, the latter being obtained via classical
Sonogashira cross-coupling reactions on 1a [22].

Based on our gold-catalyzed experience, we have recently studied the cycloisomer-
ization reactions of the known ethyl 4-oxocyclohexane carboxylate 1a and showed that
the use of gold catalysts allowed the formation of bicyclo[3.2.1]oct-2-ene 2a as well as the
isomerized 3a in various ratio depending on the gold catalyst (Table 1, entries 1–3) [22].
The reaction allowed the formation of 2a in 81% conversion after 1 h with 2 mol % catalyst,
but 3a was observed in high ratio (Entry 1). In toluene, the reaction was similar and led
to 2a:3a in 53:47 ratio (Entry 2). The use of a NHC-type gold catalyst IPrAuNTf2 gave
selectively the desired cycloisomerized adduct 2a in 90% yield with a lower catalyst loading
(Entry 3). Disappointingly, the same reaction conditions in the presence of commercially
available InCl3 salt did not promote the cyclization (Entry 4). Increasing the temperature
and the catalyst loading to 5 mol %, according to Chatani’s work [8], was very positive
as the desired adduct 2a was isolated in 90% yield and in an excellent 99:1 ratio (Entry 5).
Noteworthy that no conversion was observed at room temperature in the presence of
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5 mol % indium. When the reaction was conducted in DCE at 40 ◦C, a lower yield was
observed, because of some degradation (Entry 6). Moreover the isomerization process was
competitive and the 3a:2a ratio increased to 15:85.
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(Conv) (%)

1 (PPh3)AuNTf2 (2) DCM rt 1 45:55 60 (81)
2 (PPh3)AuNTf2 (2) toluene rt 0.5 53:47 50 (100)
3 IPrAuNTf2 (1) toluene rt 0.75 99:1 90 (100)
4 InCl3 (1) toluene rt 2 / / (0)
5 InCl3 (5) toluene 40 1 99:1 90 (96)
6 InCl3 (5) DCE 40 0.33 85:15 60 (100)
7 Bi(OTf)3 (5) toluene 40 1 80:20 35 (40)

1 Determined on 1H NMR of crude mixture. 2 Isolated yield.

Comparatively, the use of another similar Lewis acid such as bismuth [29] led to
the desired bicyclo[3.2.1]oct-2-ene but in a lower yield and selectivity compared to the
results with indium (Entry 7 versus entry 5). We anticipated that Bi(OTf)3 would promote
the isomerization of the exo-double bond, which was demonstrated by submitting 2a to
5 mol % of Bi(OTf)3. Indeed when bismuth triflate was added to the exo derivative 2a,
the isomerization of the double bond was observed very quickly, in 30 min. The ratio of exo
derivative 2a to exo isomerized derivative 2b is 40/60 and was observed similarly in both
solvents, DCE and toluene (Entries 6, 7) [30]. The isomerization of the exo-double bond
may therefore be explained by a Brönsted acid catalyzed process (TfOH or HCl) as already
observed in the literature for other polycyclic structures [31–33]. The origin of such acids
would come from partial hydrolysis of the catalyst InCl3 and Bi(OTf)3 in the presence of
traces of water.

We selected the optimized conditions employing InCl3 in toluene at 40 ◦C, and studied
the scope and limitations with a wide range of functionalized enynes (Scheme 3). In the
case of propargyl enyne derivatives 1a–d, complete conversions were observed in 2 h
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up to 15 h with temperatures of 40 ◦C and 80 ◦C. The cycloisomerization reaction was
particularly efficient with the derivatives possessing the 4-methoxy-phenyl 1a, the phenyl
1b and the 4-n-propylphenyl 1c groups (75–90% yields). Excellent 5-exo isomer selectivity
was also observed. With the chlorinated derivative 1d, the reaction led to the products
2d and 3d in a lower yield of 60% at 50 ◦C and a 65:35 mixture of the exo isomer and its
exo isomerized counterpart. A higher temperature (80 ◦C) resulted in a worse yield of
42%, due to degradation. The isomerization of the double bond was also observed in a
higher proportion.
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In the case of substituted alkynes 1e–p (Scheme 4), the reactions were more sluggish
and we had to increase the temperature to 110 ◦C and the catalyst loading to 7 mol %. The
reaction outcomes allowed the formation of 2 isomers, 2 and 4, resulting from 5-exo and
6-endo cyclization processes respectively. In most cases, the endo derivative was determined
as the major isomer, but the competition with the formation of the exo adduct could be
important in some cases. The cycloisomerization reaction of the methyl-substituted enyne
1e led to the endo derivative 4e as the major adduct in 87% isolated yield (Scheme 4, (1)).
The endo/exo ratio was still high for 4-MeO- and 4-F-fucntionalized derivatives 4g and 4i
respectively, but slowly decreased for phenyl, 4-Cl- as well as 3-F- or 2-F-functionalized
adducts (Scheme 4, (2)). In the case of enynes bearing electron-withdrawing groups such as
1l-n, the preference towards a cyclization mode was reduced and the endo/exo ratios were
closed to 50:50. The reactions were nevertheless very efficient as the mixture of endo/exo
isomers were isolated in good to excellent yields (89–99%). In contrast, for the heterocyclic
derivatives 1o–p, the yields were much lower, 44% for the 2-thiophenyl derivative 4p and
only 5% for the 2-furanyl 4o (Scheme 4, (3)). Additional tests were performed, decreasing
the reaction temperature to 40 ◦C and 80 ◦C but without significant improvement. Degra-
dation products, which could not be identified were isolated at 110 ◦C in the case of the
2-thiophenyl.
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Scheme 4. In-catalyzed cycloisomerization of substituted derivatives 1e–p (Ar = 4-MeOC6H4).

The selectivity towards “5-exo” and “6-endo” cyclized product was then compared
between the indium and gold catalytic systems. In the case of 1e, 1f, 1g as well as for the
F-substituted enynes 1i–k or the heterocyclic adducts 1o–p, similar results were observed
having endo:exo ratio equal or very similar. A significant difference in percentage was
observed in the case of the 3-NO2-substituted derivative as the use of IPrAuNTf2 allowed
the formation of 4n in 70% selectivity (2n:4n = 30:70). As 2n and 4n were easily separated,
the interest of indium salt was thus to allow the formation of the exo derivative in a better
ratio. The case of 1l and 1m also showed significant difference in selectivity. According to
the same trend, the percentage of the exo isomers were significantly increased with indium
catalyst, as 2l and 2m were isolated in a 85:15 (2l:4l) and 65:35 (2m:4m) respectively in the
presence of gold.

These unexpected results on the selectivity induced by In or Au prompted us to
perform DFT calculations with the Gaussian 16 suite of programs (Revision A.03) [34] on
the intermediates related to endo and exo isomer and we chose the 3-NO2 adduct for this
study. Mechanistically [35–37], the π activation of the alkyne, would lead to intermediate B
and then the nucleophilic addition of alkenyl group would proceed according to a 5-exo
or 6-endo pathway (Scheme 5). The resulting vinyl metal intermediates C and D would
then give 2n or 4n by protodemetallation. The difference between indium and gold may be
evaluated by considering the stability of intermediates C and D.

Following the seminal work from Gandon [9] and Yu [38–40] with indium and gallium
salts, In and Au intermediates C and D were optimized with the dispersion corrected
B3LYP-D3 exchange-correlation functional [41–45] and the results are collected in Table 2.
The effective-core potential of Hay and Wadt with a double-ξ valence basis set (LANL2DZ)
was used to describe In and Au [46] and the other atoms were described by the 6–31g(d,p)
basis set. We used the PCM implicit solvation model to take into account the solvation
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effects of toluene. Computing vibrational frequencies and summing electronic and thermal
free energies led to the reported Gibbs free energies. Indium was considered as InCl3 or
InCl2 as previously advocated [9,35–37].
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agreement with the exper-imental analysis of the reactivity of 1n. The reaction of 1n led to
an endo:exo mixture in a 54:46 ratio (Scheme 4, (2)). The InCl2 intermediates did not allow
any relevant correlation with the experimental results (Table 2, entry 2). We also analyzed
the stability of the vinyl gold complexes, and the exo intermediate was also found to be the
more stable one (Table 2, entry 3), in a higher ratio, experimentally and theoretically. This
difference between indium and gold could be explained considering the higher Lewis acid
properties of gold compared to indium, inducing a higher polarization of the triple bond.
We verified this statement on our substrate by comparing the partial charges (using the
MKUFF method for Au and in alkyne complexes, see Supporting Information) between
B-In and B-Au intermediates. In the case of π–gold complex, the polarization of alkynyl
carbons was fond to be 0.175 and −0.305 (0.48 difference), whereas the carbons were
found to be charged −0.209 and −0.056 (0.153 difference), which therefore explains the
difference in selectivity. Therefore the experimental values were in agreements with the
theoretical data.

In conclusion, we have extended the methodology of the indium-catalyzed reac-
tions by studying the cycloisomerization of cyclohexenylalkynes leading to functional-
ized bicyclo[3.2.1]oct-2-ene and bicyclo[3.3.1]nonadiene. The scope and limitations study
showed that the cyclizations occurred according to an exo process in the case of non-
substituted alkynes whereas the endo isomers were generally obtained for substituted
alkynes. The presence of electron-donating and electron-withdrawing groups on the aryl
substituted alkyne influenced the cyclization outcome, increasing the ratio of the exo isomer
for electron-deficient groups. DFT calculations confirmed the prevalence of InCl3-based
intermediates and showed good correlations with the experimental data. This methodology
is therefore complementary to the one developed in the presence of gold. Further studies
will focus on potential asymmetric versions of this atom economical process and on the
applications of such skeletons.
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