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Abstract: Nickel-Fe3O4 nanoparticles supported on multi-walled carbon nanotubes (Ni-Fe3O4/MW-
CNTs) were synthesized by mechanical grinding of a sample of nickel salt, Fe3O4 and MWCNTs using
a ball-mill mixer. The preparation method allows for bulk production of Ni-Fe3O4 nanoparticles
at room temperature without the necessity of any solvent or chemical reagent. The nanoparticles
prepared by this method exhibit small particles size of 5–8 nm with uniform dispersion of nickel
nanoparticles on the surface of multi-walled carbon nanotubes. The Ni-Fe3O4/MWCNTs demon-
strated remarkable catalytic activity for Suzuki cross coupling reactions of functionalized aryl halides
and phenylboronic acids with excellent turnover number and turnover frequency (e.g., 76,000 h−1)
using Monowave 50 conventional heating reactor at 120 ◦C within a very short reaction time of 15 min.
The catalyst is air-stable and exhibits easy removal from the reaction mixture due to its magnetic
properties, recyclability with no loss of activity, and significantly better performance than the other
well-known commercial nickel catalyst. The Ni-Fe3O4/MWCNTs nanoparticles were fully charac-
terized by a variety of spectroscopic techniques including X-ray Diffraction (XRD), Transmission
Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). Since nickel offers similar
properties to other more expensive transition metals including the most widely used palladium
counterpart in cross coupling catalysis, this work demonstrates a promising lower-cost, air-moisture
stable and efficient alternative catalyst based on nickel nanoparticles for cross coupling reactions.

Keywords: nickel; nickel-Fe3O4 nanoparticles; magnetic nanoparticles; Suzuki cross coupling reac-
tions; multiwalled carbon nanotubes

1. Introduction

The versatility of the metal catalysis in organic synthesis has been demonstrated in a
variety of systems over many years [1]. Among them, the transition metal catalyzed cross
coupling reactions between organic electrophiles and organometallic compounds are one
of the most versatile synthetic methods to construct carbon-carbon bonds [2–5]. The devel-
opment of cross-coupling reactions represents one of the most significant advancements
in contemporary organic synthesis. This area of chemistry has increased accessibility to
the molecules of greater chemical complexity, particularly in the area of pharmaceutical
drug discovery and development. In 2010 Richard Heck, Ei-Ichi Negishi and Akira Suzuki
received the Nobel Prize in Chemistry for their groundbreaking work in cross coupling
catalysis. While palladium complexes are the most commonly used catalyst in variety of
cross coupling reactions such as Suzuki, Heck, Sonogashira, Negishi and Kumada coupling
reactions [6–8], more attention has been taken recently to employ less expensive and more
abundant transition metals in these reactions. In this regard, nickel is considered as one of
the potential alternatives to palladium due to its similar electronic structure and the ability
to undergo oxidative addition, high bonding affinity and flexibility in forming multiple
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oxidation states [9,10]. Even though a variety of nickel complexes have been developed
as efficient new homogeneous systems for C–C bonds [11–13], the use of these catalysts
under homogeneous conditions has limited their commercial viability due to product
contamination as a direct result of inability to effectively separate the catalyst from the
reaction product [14–17]. The issue of product contamination is of particular importance
in pharmaceutical applications where this chemistry is practiced extensively. In addition,
the reaction under homogeneous conditions requires ligands to solubilize the catalyst
and broaden its window of reactivity [18,19]. Ligand free heterogeneous transition metal
nanocatalysts present a promising option to address this problem by easy removal from
the reaction mixture, recyclability and perhaps significantly better performance [20,21]. In
this approach, the metal usually in the form of nanoparticles is fixed on solid supports such
as zeolites, polymers, mesoporous silica, inorganic oxides and activated carbon, graphene
and carbon nanotubes (CNTs) [22–32].

Among these support systems, CNTs [33–38], including single-walled carbon nan-
otubes (SWCNT) and MWCNT, have emerged significant attention because of intriguing
electrochemical, mechanical and thermal properties mainly associated with large surface
to volume ratio and their hollow structures. The presence of sp2 carbon atoms within
the hexagonal structure of these nanomaterials with several nanometers in diameters and
many microns in length provides ideal platform for electronic conductivity as well as
superior electrochemical and chemical stability in different solutions [33–35]. These types
of materials not only efficiently catalyze the reaction, but also leverage the reactivity and
stability of these materials along with the potential advantage of separation and reusability
in subsequent reactions with minimum amount of metal contamination. Furthermore, the
high surface area associated with carbon nanotubes (2600 m2 g−1) and extended Π-system
provide unique properties and remarkable tunability in supporting a variety of metallic and
bi-metallic systems in heterogeneous catalysis [39–43]. We recently reported the extraor-
dinary cross-coupling catalytic activity of MWCNTs supported palladium nanoparticles
(Pd/MWCNTs) which were prepared using straightforward mechanochemical mixing of
palladium salt and MWCNTs under ball-mill mixing [43–45]. This catalyst system demon-
strated extremely high reaction rates and product yields for Suzuki coupling reactions [45].
The preparation method allows for simple, rapid and uniform deposition of metal nanopar-
ticles on the surface of CNTs without the use of any chemical reducing agent or solvent
and high reaction temperature. In addition, this effective solventless method to enchant
metal nanoparticles supported on CNTs can be readily scaled up to multi-gram quantities.
Due to particularly attractive properties of the nickel and its unique reactivity in variety of
chemical processes including hydrogenation, cycloaddition and coupling reactions and
extremely lower price compared to palladium, we were determined to explore the prepara-
tion of nickel nanoparticles supported MWCNTs by direct ball-milling of an appropriate
nickel salt and MWCNTs at ambient temperature. Moreover, the addition of Fe3O4 to
this mixture provides a platform for preparation of a bimetallic magnetic system consists
of nickel and Fe3O4 supported on multiwalled carbon nanotubes (Ni-Fe3O4/MWCNTs).
The enhanced magnetic properties imparted by Fe3O4 facilitate the easy separation of the
catalyst from the reaction mixture by using a strong external magnet, thus increasing the
economic value of the catalyst.

Herein, we report a simple, one-step method for the preparation Ni-Fe3O4 bimetallic
nanoparticles supported on multi-walled carbon nanotubes (Ni-Fe3O4/MWCNTs) under
mechanical shaking in a ball-mill. Both transition metals used for making these nanocom-
posites are inexpensive and highly abundant. The preparation method is very fast and
straightforward which does not require any chemicals, solvents, or additional ligands. The
as-prepared nanoparticles demonstrated remarkable catalytic activities in Suzuki cross
coupling reactions of the functionalized aryl halides and phenyl boronic acids with high
turnover number and turnover frequency in a single catalytic reaction using Monowave
50 heating reactor. This reactor provided conductive heating of the sealed glass vessel
under monitored temperature and pressure with continuous magnetic stirring allowing
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for a more efficient and rapid reaction. Notably, all Suzuki cross coupling reactions were
completed in Monowave 50 at 120 ◦C in a short reaction time of 15 min affording high
yield of the coupling products. In addition, the solid supported nanoparticles can be
easily removed from the reaction by applying an external magnet and recycled for several
times without significantly losing their catalytic activities in Suzuki coupling reactions.
The preparation method provides a convenient, inexpensive and scalable synthesis of
nickel-iron oxide nanomaterials for catalytic applications with the goal of developing more
efficient, affordable and environmentally benign CNT-based nanomaterials for industrial
and pharmaceutical applications in future.

2. Results and Discussion

The preparation of (Ni-Fe3O4/MWCNTs) nanoparticles was achieved using our previ-
ously reported synthetic method of mechanochemical ball-mill technique. In this method, a
sample of Ni(OAc)2·4H2O, Fe3O4 and MWCNTs in appropriate ratios were mixed together
and subjected to ball-milling at room temperature using a zirconium vial. The method
is very simple and straight forward and provide an easy access to multigram of the Ni-
Fe3O4/MWCNTs catalyst at once. The as-prepared catalyst was characterized by XRD,
TEM and XPS to elucidate further insight into the structure of these nanoparticles.

Figure 1 display the XRD pattern of Ni-Fe3O4/MWCNTs nanoparticles as well as the
XRD patterns of the original samples of Ni(OAc)2.4H2O, Fe3O4 and MWCNTs.
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Figure 1. X-ray Diffraction (XRD) patterns of Nickel-Fe3O4 nanoparticles supported on multi-walled
carbon nanotubes (Ni-Fe3O4/MWCNTs) nanoparticles and the original samples.

The XRD pattern of Ni-Fe3O4/MWCNTs demonstrates a strong reflection indicating
the crystalline structure of these nanoparticles. The corresponding peaks at 18.3◦, 30.2◦,
35.5◦, 43.2◦, 53.7◦, 57.1◦ and 62.8◦ related to the (111), (220), (311), (400), (422), (511) and
(440) planes are characteristic peaks for the spinal Fe3O4 phase [46,47]. In addition, the
XRD pattern of the residual Ni(OAc)2.4H2O is noticeable in the product indicating that
the mechanical energy of the ball-mill may not be sufficient to completely decompose the
metal salts. Nevertheless, the presence of peaks at 37.1◦, 43.1◦, 62.6◦, 75.1◦ and 79.2◦ could
be attributed to the corresponding (111), (200), (220), (311) and (222) planes for nickel oxide
nanoparticles suggesting that under the ball-mall energy some of the Ni salts have been
converted to NiO nanoparticles [48–52]. The broad shoulder at 45◦ can be identified as
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small amount of Ni (111) phase. The small and broad peak at 26.3◦ is the characteristic
diffraction of MWCNTs.

Figure 2 represents the TEM images of Ni-Fe3O4/MWCNTs nanoparticles. As shown,
both nickel and iron nanoparticles are uniformly mixed on the surface of multi-walled
carbon nanotubes. The average particle size of nickel nanoparticles calculated from several
images indicate an average size of 5–10 nm for nickel in most area on MWCNTs with
a consistent and uniform distribution pattern (see EDS and additional TEM images in
Supplementary Material). The average particle size of Fe3O4 is determined between
15–25 nm with high dispersion among the Ni nanoparticles on the surface of nanotubes
which imply the effect of mixing the metal salts during the mechanical shaking in the
ball-mill to produce ultrafine mixture of Ni-Fe3O4 magnetic materials.
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Figure 2. Transmission Electron Microscopy (TEM) images of Ni-Fe3O4/MWCNTs, (a) 50 nm of
magnification; (b) 20 nm of magnification; (c) Elemental mapping C/Ni; (d) Elemental mapping
Fe/Ni.

The composition of the nickel and iron nanoparticles on the surface was investigated
using XPS analysis. Figure 3a shows the survey spectra of Ni-Fe3O4/MWCNTs nanopar-
ticles including the presence of nickel, iron, carbon and oxygen. As shown in Figure 3b,
the observed peaks at 709.2 eV and 723.07 eV correspond to the typical 2p3/2 and 2p1/2
binding energies for Fe in Fe3O4, respectively [53]. The broad characteristic of 2p3/2 peak
at 709.2 eV attributes to the presence of both Fe(II) and Fe(III) in the catalyst. Figure 3c
displays the measured binding energies of Ni 2p3/2 and Ni 2p1/2 at 856.5 eV and 874.3 eV,
respectively, consistent with the dominant presence of Ni (II) in these nanoparticles [49–53].
The significant broadness of the peak at lower binding energy of around 852 eV for metallic
Ni 2p3/2 indicates the formation of small amount Ni (0) during the ball mill process due to
a partial reduction of the nickel salt [48–50].
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2.1. Application in Suzuki Cross Coupling Reactions

The catalytic activity of Ni-Fe3O4/MWCNTs was investigated in Suzuki cross coupling
reaction of iodobenzene and phenyl boronic acid using Anton-Paar Monowave 50 heating
reactor as shown in Table 1. This apparatus allows for direct heating of the reaction mixture
under solvent pressure in a sealed tube using a conductive heating of a stainless-steel
heating jacket [54]. The great advantages of this nonclassical heating method for various
synthetic applications have been thoroughly investigated in both academic and industrial
applications [55–57]. The rapid heating and cooling of the reaction mixture along with
continuous stirring and temperature and pressure control are characteristic features of this
conventionally heating technique. The reaction was completed to a quantitative formation
of biphenyl product in only 15 min at 120 ◦C using 3 mol% of Ni-Fe3O4/MWCNTs in a
mixture of H2O:EtOH (1:1) and K2CO3 as the base (entry 7). The conversion was very low
when DMF was used as the solvent in the presence of NEt3 indicating that H2O:EtOH
combination with K2CO3 is the best possible solvents and base for this reaction. Lower
reaction temperature of 100 oC produced a lower conversion of 85% (entry 6). Notably, this
reaction can successfully afford a high yield of the Suzuki product (95%) with a very low
concentration of the catalyst (0.005 mol%) at 120 ◦C in 15 min using Monowave 50 heating
reactor (entry 12). These results imply a remarkable turnover number (TON) of 19,000 and
turnover frequency (TOF) of 76,000 h−1 which reveal the efficiency of Ni-Fe3O4/MWCNTs
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nanoparticles in catalyzing Suzuki cross coupling under the applied reaction conditions.
No reactivity was observed in the absence of the catalyst, or when Fe3O4 or MWCNTs were
used as the catalyst without any nickel nanoparticles (entries 13–15).

Table 1. Effect of solvent and base in Suzuki Cross Coupling Reactions a.
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by Gas Chromatography-Mass Spectroscopy (GC-MS). c No catalyst was used. d Only MWCNTs was used. e Fe3O4/MWCNTs was used as
the catalyst.

2.2. Recycling of Ni-Fe3O4/MWCNTs

One of the greatest features of the Ni-Fe3O4/MWCNTs nanoparticles is the ease of
their removal from the reaction mixture due to the superior magnetic properties. Table 2
demonstrates the remarkable recyclability of Ni-Fe3O4/MWCNTs nanoparticles in Suzuki
cross coupling reaction of iodobenzene and phenyl boronic acid at 120 ◦C for 15 min
using Monowave 50 heating reactor. As shown, the magnetic Ni-Fe3O4/MWCNTs can
be successfully recycled in multiple reactions without losing any catalytic activity. This
procedure was used for nine consecutive reactions achieving a high yield of the product
in each run. The catalyst was effectively removed after each recycling reaction from the
reaction mixture by applying an external magnet, washed with a mixture of ethanol and
water and reused in the subsequent reaction.

2.3. Diversity of Substrates in Suzuki Cross Coupling Reactions

The scope and diversity of substrates in Suzuki cross coupling reactions were further
investigated using a broad range of functionalized aryl halides and phenyl boronic acids as
shown in Table 3. These reactions were carried out using 1 mol % of Ni-Fe3O4/MWCNTs
at 120 ◦C for 15 min under Monowave 50 heating reactor with H2O:EtOH as the solvent.
The reactions were successfully achieved the relevant biphenyl products in high yields.
A diverse array of functionalizes substrates in para and meta positions such as aldehyde
(1a), ether (1d), nitrile (1e) can be effectively introduced into the Suzuki products by
using appropriate aryl substituted iodide. In addition, heterocyclic structures such as
iodopyrazine (1c) can be employed as the coupling reagent in these reactions using Ni-
Fe3O4/MWCNTs nanoparticles. Alternatively, the aryl substituted boronic acids bearing
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different functionality such as dimethylamino (1b), 1,3-benzodioxol (1d) and electron donor
methoxy group (1f) all serve as excellent coupling partners in this process and afford a
great yield of corresponding products. Notably, the bromo-substituted arenes can also be
applied in these coupling reactions providing a good isolated yield of the Suzuki products
(1g, 1h). Interestingly, electron rich aryl bromide, 4-bromoanisole (1i) and electron deficient
phenyl boronic acid such as 4-formylphenylbroronic acid (1j) can be successfully employed
in these catalytic reactions.

Table 2. Recyclability of Ni-Fe3O4/MWCNTs in Suzuki cross coupling reaction a.

Run Conversion % b

1 100
2 100
3 100
4 100
5 100
6 100
7 95
8 95
9 95

a Iodobenzene (50 mg, 0.25 mmol, 1 eq.) and phenyl boronic acid (35.9 mg, 0.3 mmol, 1.2 eq.), potassium carbonate
(101.4 mg, 0.75 mmol, 3 eq.) and Ni-Fe3O4/MWCNTs (3.59 mg, 7.35 µmol, 3 mol%) nanoparticles as indicated
were heated using Monowave 50 heating reactor. b Conversion were determined by GC-MS.

Table 3. Diversity of the Suzuki coupling reactions using Ni-Fe3O4/MWCNTs a.
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a Aryl halides (0.25 mmol, 1 eq.), phenyl boronic acid (0.3 mmol, 1.2 eq.), potassium carbonate (0.75 mmol, 3 eq.) 
and Ni-Fe3O4/MWCNTs nanoparticles (1.20 mg, 2.45 µmol, 1 mol%) in a mixture of 4 mL H2O:EtOH (1:1) was 
heated at 120 oC for 15 min using Monowave 50 heating reactor. b Isolated yield. 

3. Experimental 
3.1. General Methods 

MWCNTs 50–85 nm was purchased from Graphene Supermarket. Nickel (II) acetate 
tetrahydrate and iron (II,III) oxide were obtained from Sigma-Aldrich (St. Louis, MO, 
USA). Aryl iodides and bromides, phenylboronic acid and other substituted boronic acids 
were purchased from Sigma-Aldrich (St. Louis, MO, USA), Alfa Aesar (Ward Hill, MA, 
USA) and ACROS Organics (USA) and used as received. A mixture of ethanol-deionized 
water was used as the solvent system for all the reactions. Transmission Electron Micros-
copy was performed on ThermoFisher Talos F200X G2, a 200 kV FEG (Field Emission Gun, 
Analytical Scanning Transmission Electron Microscope (S/TEM)). XRD was completed on 
Rigaku MiniFlex 600 X-ray Diffractometer. Gas Chromatography-Mass Spectroscopy 
(GC-MS) of organic products was analyzed using a Shimadzu GC-MS QP2010 SE. 1H and 
13C NMR spectra were acquired on a JEOL 400 MHz spectrometer equipped with au-
tosampler. All cross-coupling reactions were performed using Anton-Paar Monowave 50 
heating reactor. 

3.2. Synthesis of Ni-Fe3O4/MWCNTs Nanoparticles 
Nickel acetate tetrahydrate 153 mg (12% Ni content), Fe3O4 117 mg (28% Fe content) 

and MWCNTs (60%, 180 mg) were mixed together in a 20 mL volume zirconium ceramic 
vial (SPEX CertiPrep). After adding two zirconium balls, the vial was subjected to me-
chanical shaking using SPEX 8000M ball-mill mixer for 45 min to afford the final product 
of (Ni-Fe3O4/MWCNTs). The mixer provides 1060 cycles per minutes with 5.9 cm back and 
forth and 2.5 cm side to side mechanical movements.  

3.3. Procedure for Recycling the Catalyst 
Iodobenzene (50 mg, 0.245 mmol) and phenyl boronic acid (35.9 mg, 0.29 mmol) were 

dissolved in a mixture of 4 mL H2O:EtOH (1:1) and placed in a 10 mL vial. Potassium 
carbonate (101.4 mg, 0.735 mmol) and (Ni-Fe3O4/MWCNTs) nanoparticles (3.59 mg, 7.35 
µmol, 3 mol%) were added to this mixture and the vial was sealed. The sealed vial was 
heated at 120 °C for 15 min using Monowave 50 heating reactor. After the reaction was 
completed, the mixture was diluted with 10 mL of ethanol and centrifuged for 3 min at 
3000 RPM. The solvent above the solid catalyst was completely decanted. The ethanol 
washing was repeated for two additional times to ensure the removal of the organic com-
pounds from the surface of the catalyst. The Ni-Fe3O4/MWCNTs nanoparticles were re-
moved by an external magnet, washed with ethanol, and transferred to another 
Monowave 50 vial where fresh reagents were introduced and heated to the above-men-
tioned temperature. This procedure was repeated for the duration of the recycling exper-
iments. The formation of the product in each run was determined by GC-MS analysis of 
the aliquot of the reaction mixture. 
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3. Experimental

3.1. General Methods

MWCNTs 50–85 nm was purchased from Graphene Supermarket. Nickel (II) acetate
tetrahydrate and iron (II,III) oxide were obtained from Sigma-Aldrich (St. Louis, MO, USA).
Aryl iodides and bromides, phenylboronic acid and other substituted boronic acids were
purchased from Sigma-Aldrich (St. Louis, MO, USA), Alfa Aesar (Ward Hill, MA, USA)
and ACROS Organics (USA) and used as received. A mixture of ethanol-deionized water
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was used as the solvent system for all the reactions. Transmission Electron Microscopy was
performed on ThermoFisher Talos F200X G2, a 200 kV FEG (Field Emission Gun, Analytical
Scanning Transmission Electron Microscope (S/TEM)). XRD was completed on Rigaku
MiniFlex 600 X-ray Diffractometer. Gas Chromatography-Mass Spectroscopy (GC-MS) of
organic products was analyzed using a Shimadzu GC-MS QP2010 SE. 1H and 13C NMR
spectra were acquired on a JEOL 400 MHz spectrometer equipped with autosampler. All
cross-coupling reactions were performed using Anton-Paar Monowave 50 heating reactor.

3.2. Synthesis of Ni-Fe3O4/MWCNTs Nanoparticles

Nickel acetate tetrahydrate 153 mg (12% Ni content), Fe3O4 117 mg (28% Fe content)
and MWCNTs (60%, 180 mg) were mixed together in a 20 mL volume zirconium ceramic
vial (SPEX CertiPrep). After adding two zirconium balls, the vial was subjected to mechan-
ical shaking using SPEX 8000M ball-mill mixer for 45 min to afford the final product of
(Ni-Fe3O4/MWCNTs). The mixer provides 1060 cycles per minutes with 5.9 cm back and
forth and 2.5 cm side to side mechanical movements.

3.3. Procedure for Recycling the Catalyst

Iodobenzene (50 mg, 0.245 mmol) and phenyl boronic acid (35.9 mg, 0.29 mmol)
were dissolved in a mixture of 4 mL H2O:EtOH (1:1) and placed in a 10 mL vial. Potas-
sium carbonate (101.4 mg, 0.735 mmol) and (Ni-Fe3O4/MWCNTs) nanoparticles (3.59 mg,
7.35 µmol, 3 mol%) were added to this mixture and the vial was sealed. The sealed vial
was heated at 120 ◦C for 15 min using Monowave 50 heating reactor. After the reaction was
completed, the mixture was diluted with 10 mL of ethanol and centrifuged for 3 min at
3000 RPM. The solvent above the solid catalyst was completely decanted. The ethanol wash-
ing was repeated for two additional times to ensure the removal of the organic compounds
from the surface of the catalyst. The Ni-Fe3O4/MWCNTs nanoparticles were removed by
an external magnet, washed with ethanol, and transferred to another Monowave 50 vial
where fresh reagents were introduced and heated to the above-mentioned temperature.
This procedure was repeated for the duration of the recycling experiments. The forma-
tion of the product in each run was determined by GC-MS analysis of the aliquot of the
reaction mixture.

3.4. Procedure for Suzuki Cross-Coupling Reactions

The corresponding substituted aryl iodide and bromide (0.25 mmol, 1 eq.) and sub-
stituted phenyl boronic acid (0.3 mmol, 1.2 eq.) were dissolved in a mixture of 4 mL
H2O:EtOH (1:1) and placed in a 10 mL Monowave 50 vial. To this was added potassium
carbonate (0.75 mmol, 3 eq.) and (Ni-Fe3O4/MWCNTs) nanoparticles (3.59 mg, 7.35 µmol,
3 mol%) and the mixture was heated at 120 ◦C for 15 min using Monowave 50 heat-
ing reactor. Upon the completion of the reaction time, the mixture was extracted with
dichloromethane (3 × 10 mL). The organic layers were combined, dried over MgSO4 and
filtered. The solvent was removed in vacuo to afford the solid product which was further
purified by flash chromatography using hexane-ethylacetate as eluent.

4. Conclusions

In summary, Ni-Fe3O4/MWCNTs was developed using a scalable and efficient method
of mechanical shaking in ball-mill. Both nickel and iron transition metals used for making
these nanoparticles are inexpensive and highly abundant, and the preparation method is
very straightforward and convenient in which no additional chemical reagents or solvent
is required. The as-prepared nanoparticles demonstrated remarkable catalytic activity in
Suzuki cross coupling reactions of various functionalized substrates with high turnover
number (TON) of 19,000 and turnover frequency (TOF) of 76,000 h−1 using Monowave
50 heating reactor at 120 ◦C within a short reaction time of 15 min. This rapid and uniform
heating method has significant impact on the efficiency of the Suzuki reactions in the
presence of Ni-Fe3O4/MWCNTs by increasing the reaction rates due to providing a clean,
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direct and consistent energy for the cross-coupling reactions. In addition, the magnetic
properties imparted by Ni-Fe3O4 nanoparticles facilitates the catalyst to be easily isolated
and recycled for several times without losing its catalytic activity, thus greatly simplifying
the ability to purify the reaction product and increasing the economic value of the catalyst.
The use of this great catalytic system for other types of cross coupling reactions is currently
underway in our laboratory.

Supplementary Materials: General Methods, Characterization Data, 1H and 13C NMR Spectra, and
other supporting materials are available online at https://www.mdpi.com/article/10.3390/catal110
40495/s1.
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