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Abstract: Herein, we report a Pd4L2-type molecular cage (1) and catalyzed reactions of spiroepoxy
naphthalenone (2) in water, where selective formation of 2-(hydroxymethyl)naphthalene-1,4-dione (3)
via aerobic oxidation, or 1-hydroxy-2-naphthaldehyde (4) via photo-induced rearrangement under
N2 have been accomplished. Encapsulation of four molecules of guest 2 within cage 1, i.e., (2)4⊂1,
has been confirmed by NMR, and a final host-guest complex of 3⊂1 has also been determined by
single crystal X-Ray diffraction study. While the photo-induced ring-opening isomerization from 2 to
4 are known, appearance of charge-transfer absorption on the host-guest complex of (2)4⊂1 allows
low-power blue LEDs irradiation to promote this process.

Keywords: supramolecular catalysis; host-guest chemistry; aerobic oxidation; rearrangement

1. Introduction

Artificial supramolecular architectures constructed via self-assembly with metal ions
and organic ligands have attached tremendous attentions due to aesthetic structural di-
versity [1–12] and bio-mimic catalysis [13,14]. Among them, coordination molecular cages
have been extensively studied as artificial enzyme-mimics to promote various reactions of
the contained molecules within the confined space [15–19]. Cage catalyzed reactions can
be classified into three pathways [20]: (1) cage promoted reactions directly; (2) modified
cage to improve catalysis performance; (3) cooperation with other catalysts. For the cage
promoted reactions, it is generally accepted that enhanced effective concentration and the
pre-organization effect imposed to the guest molecules by the cage cavity contribute to
the accelerated reaction rate and the improved product selectivity. To date, cage promoted
cycloaddition [21,22], rearrangement [23,24], photocatalysis reactions [25–27], oxidation or
reduction [28–32], nucleophilic addition [33,34], elimination [35] and acid or base-catalyzed
addition [36–38] have been reported, and a part of works exhibit rate enhancement, amaz-
ing selectivity and wide substrate scope. Moreover, highly-charged molecular cages can
perform catalysis in water, like enzymes do in nature. Recently, we have developed a
redox-active coordination-assembled cage 1 (Scheme 1) based on bridged pyridinium
ligands, which has been employed as a water-soluble bio-mimic catalyst [39]. The large
hydrophobic cavity of cage 1 allows a variety of guests to be encapsulated, and the big
apertures on the cage favor the product turn-over during catalysis [40].

Spiroepoxy-cyclohexdienones, one type of vinyl epoxides [41,42], are important build-
ing blocks for organic synthesis due to their highly reactive nature toward self-coupling
Diels-Alder reactions [43]. We anticipate that new reaction pathways may be discovered if
spiroepoxy-cyclohexdienones are entrapped within molecular cages. Herein, we report
that cage 1 promoted aerobic oxidation and photo-induced isomerization reactions in water
from spiroepoxy naphthalenone 2. In the presence of cage 1, both naphthoquinone 3 and
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aldehyde 4 can be selectively obtained by regulating the reaction conditions. It is worth to
note that as a typical spiroepoxy-cyclohexdienones compound, reactivity of 2 has seldom
been studied, with only one type of acid mediated rearrangement reaction being reported
previously [44].
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2. Results and Discussion

Cage 1 and substrate 2 were synthesized according to the previous reports [40,44].
We started from the investigation of their host-guest chemistry. After excess amount
of guest 2 was added to cage 1 in D2O, the formation of a 1:4 host-guest complex was
indicated by 1H NMR spectra. Compared to the signals of free 2 (Figure 1a) and empty
cage 1 (Figure 1b), the host–guest complex shows significant changes. Obvious up-field
shifts for the aromatic signals on 2 from 8.1–5.9 ppm to 6.4–4.5 ppm, and the methylene
signals from 3.4–3.1 ppm to 2.0–2.2 ppm were observed in 1H NMR spectrum (Figure 1c),
which indicates the efficient guest encapsulation within the hydrophobic cavity of cage 1.
Moreover, integral ratio (Figure S3) confirms that four molecules of 2 could be encapsulated
by 1. Diffusion-ordered 1H NMR spectroscopy (1H DOSY, Figure S4) also confirmed the
formation of a single host-guest species with a diameter of 1.70 nm estimated from the
Stokes–Einstein equation. The optimized host-guest complex model indicates that four
molecules of 2 completely occupied the space of cavity within the cage 1 (Figure 2a).

Interestingly, after heating at 50 ◦C for 2 h, the color of the solution for the initial
(2)4⊂1 complex changed gradually from yellow to deep red, and the dramatic change
in 1H NMR spectrum (Figure 1d) suggests the formation of a new host-guest complex.
Characteristic signals for the encapsulated 2 (methylene signals) disappeared with the
evolution of a new set of guest signals. After extraction by CDCl3, the final product was
determined to be 2-(hydroxymethyl)naphthalene-1,4-dione (3) by NMR and GC-MS, with
an NMR yield of over 99% (Figure 1e and Figures S5–S7). A series of control experiments
were carried out to confirm the indispensable role of cage 1 during this reaction. First of all,
no such conversion was detected without cage 1, under N2, or with ligand L only (entry
2–4). With the Pd salt (TMEDA)Pd(NO3)2 as catalyst, product 3 could only be obtained
in a 39% yield (entry 5). Considering previous reported work [39,45–50], we propose that
redox-active nature of cage 1 plays a key role in this aerobic Wacker oxidation process.

To further confirm that efficient hydrophobic encapsulation is crucial for this conver-
sion, a tetraphenylboron anion (Ph4B-, sodium salt) was chosen as a competition inhibitor
which is known to strongly bind to cage 1 [40]. Although partial guest 2 can also enter
the cavity of cage 1 in the presence of an inhibitor (Figure S8), a lower yield of 36% was
observed under the same conditions (entry 6, Figure S9). More importantly, when excess
amount of guest 2 (100 equiv.) was added to the solution of cage 1 as a suspension, product
3 was formed in 95% yield after heating for 4 h, leading to a TON of 95 (entry 7).
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substrate 2 can undergo a photo-induced ring-opening rearrangement to form 1-hydroxy-
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Figure 1. 1H NMR (400 MHz, 298 K) spectra of (a) 2 in CDCl3; (b) cage 1 in D2O; (c) host-guest
complex of (2)4⊂1 in D2O and (d) (2)4⊂1 in D2O after heating at 50 ◦C for 2 h; (e) extracted 3 in
CDCl3; (f) (2)4⊂1 in D2O after blue LEDs irradiation under N2 atmosphere at r.t. for 8 h; (g) extracted
4 in CDCl3; (H: 2, �:3, •: cage 1, H: 4).
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DFT calculation indicated that the C2-O2 bond between the naphthalene ring and the
epoxy group was longer than the O2-C5 bond, suggesting that the epoxy group tended
to undergo ring-opening reaction (Figure 3a). In fact, a previous report [51] revealed that
substrate 2 can undergo a photo-induced ring-opening rearrangement to form 1-hydroxy-
2-naphthaldehyde 4 by purple LEDs irradiation. UV-vis spectra (Figure 3b) measurements
suggest that a new shoulder peak tailing up to visible region appeared for the (2)4⊂1
host-guest complex, assignable to host-guest charge transform (CT) absorption. Indeed,
under blue LEDs irradiation, cage 1 promoted isomerization reaction of 2 to 4 has been
observed in 90% yield after 8 h, which is a significant improvement comparing to that in
the absence of cage 1 under the same conditions (Table 1, entry 8 and 9). Considering that
conversion from 2 to 3 is a competition pathway under air in the presence of cage 1, this
photo-induced isomerization has to be carried out under N2 atmosphere. In this case, cage
1 not only plays as a phase transfer catalyst but also facilitates the visible light absorption
by the formation of host-guest CT complex.
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Entry Catalyst Conditions LEDs
Time

(h)
Solvent

Yield a

3 4

1 1 Air 50 ◦C - 2 h D2O >99% -
2 - Air 50 ◦C - 2 h H2O - -
3 1 N2 50 ◦C - 2 h D2O - -

4 b L Air 50 ◦C - 2 h H2O - -
5 c Pd Air 50 ◦C - 2 h H2O 39% -
6 Ph4B⊂1 Air 50 ◦C - 2 h D2O 36% -

7 d 1 Air 50 ◦C - 4 h D2O 95% -
8 1 N2 r.t. blue 8 h D2O - 90%
9 - Air r.t. blue 8 h H2O - 32%

* Unless otherwise stated, all experiments were carried out with 0.01 mmol of 2 and 25% mol of cage 1 in water.
The power of LEDs is ca. 6 W. a: Yields were determined from 1H NMR spectra using 1,3,5-trimethoxybenzene as
the inner standard. b: 10% mol of ligand was used as catalyst. c: 10% mol of Pd salt [(TMEDA)Pd(NO3)2] was
used as catalyst. d: 1% mol of cage 1 was used and reaction was carried under suspension condition.

To our delight, dark red crystals were obtained by slow evaporation of the final
reaction solution at room temperature over one week. The crystals were of sufficient
quality and X-ray crystallography finally established the structure of the new host–guest
complex, which contained product 3 and cage 1 (Appendix A). X-ray structure revealed
that there was only one molecule of 3 sitting inside in the inner cavity of the cage, along
with two molecules of 3 binding to the external panels of the cage (Figure 2b). The external
binding of the products explains product replacement of start material observed during
the above catalysis.

3. Conclusions

To conclude, we have revealed a condition-controlled supramolecular cage catalyzed
reaction for a spiroepoxy-naphthalenone guest molecule, where both quinone product 3
and aldehyde product 4 can be obtained selectively in good yields. Such coordination-cage-
promoted selective transformations from one starting material toward different products
is still rare in supramolecular catalysis. This approach promised a potential application
for cage catalyzed oxidation and photo-isomerization reactions. Further development of
catalytic reactions by using cage 1 as an artificial enzyme-mimic is still underway.
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4. Materials and Methods
4.1. General

Unless otherwise stated, all chemicals and solvents were purchased from commercial
companies (AdamasReagent Ltd., Shanghai, China; J&K Scientific Ltd., Beijing, China,
and Sigma-Aldrich LLC., Darmstadt, Germany. etc) and used without further purification.
1D and 2D-NMR were measured on a Bruker Biospin Avance III (400 MHz) spectrome-
ter or JEOL JNM-ECZ600R/S1 (600 MHz) spectrometer. 1H-NMR chemical shifts were
determined with tetramethylsilane (TMS) or respect to residual signals of the deuterated
solvents used (δ = 4.79 for D2O in 1H NMR). The photoreactors used in this research were
bought from Wuhan Geao Instruments Science and Technology Co., Ltd. (Wuhan, China)
(Purple LEDs, light intensity = 37.4 mw/cm2, λmax = 390 nm; Blue LEDs, λmax = 450 nm;
1 W for every light bulb; every Schlenk tube was irradiated by 6 light bulbs from the side).
Gas chromatography mass spectrometry (GC-MS) analyses were performed on a Shimadzu
GCMS-QP2010SE instrument. ESI-TOF-MS were recorded on Impact II UHR-TOF from
Bruker. Data analysis was conducted with the Bruker Data Analysis software (Version
4.3, Bruker Daltonik GmbH, Bremen, Germany) and simulations were performed with the
Bruker Isotope Pattern software. UV-vis adsorption spectra were recorded on UV-2700
UV-visible spectrophotometer from SHIMADZU Corporation.

4.2. Preparation and Catalysis Procedure

The general catalysis procedure and all the characterization data of the products as
well as the procedures to prepare are listed in the Supplementary Materials online. The
known compounds were recorded in the previous report.

4.3. Computational Methods

Molecular modeling of host-guest complex (2)4⊂1 was optimized by force-field calcu-
lation carried on Material Studio software by Quasi-Newton Methods which was based on
a previously reported cage 1 X-ray structure [39]. Structure optimization of guest 2 which
was carried at B3LYP/6-31G level by gaussian software [52].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11040484/s1. Figures S1–S21: synthesis procedure, catalysis procedure, NMR spectra,
ESI-TOF-MS, GC-MS and Single-Crystal information.
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writing—review and editing, Q.S.; P.C. performed most of the experiments and analyzed the data,
L.C., D.Y., L.Z. helped with synthesis/characterization and joined the discussion. All authors have
read and agreed to the published version of the manuscript.
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Data Availability Statement: All data generated or analyzed during this study are included in
this article.
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Appendix A

Crystallographic data for the structures of host-guest complex of product 3 and cage 1
have been deposited to the Cambridge Crystallographic Data Centre as supplementary
No.: CCDC-2065411.
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