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Abstract: Here, a simple method was developed to prepare an MgF2-modified hydrotalcite-derived
composite, which was used as support for the Pt-In catalyst for isobutane direct dehydrogenation.
The catalysts, composites, and their precursors were characterized by numerous characterization
techniques. The results provided evidence for the MgF2 promoter effect on the physical–chemical
properties and dehydrogenation performance of the supported Pt-In catalysts. The catalyst with
MgF2 shows exceptional isobutene selectivity that can be stabilized at 95%, and the conversion
increases from 50% to 58% during the reaction process. Moreover, the existence of MgF2 plays an
important role in the resistance to coke formation and Pt sintering by improving the Pt dispersion,
inhibiting the reduction of the In3+ species, and adjusting the acidity of the catalyst.

Keywords: isobutane dehydrogenation; MgF2 promoter; hydrotalcite-derived composites; supported
Pt-In catalysts

1. Introduction

In recent years, the sharp increase in the global demand for olefins is driven by the
rapid growth in the demand for downstream products in the world [1]. Additionally,
isobutene, as a raw material of butyl rubber [2], polyisobutene, and other downstream
products, has attracted a lot of attention. At present, the direct dehydrogenation of isobu-
tane represents an environmentally friendly and cost-effective preparation method [3,4].

It is well known that Pt is the most effective active metal for dehydrogenation of light
alkanes, but it is easy to sinter and has relatively poor stability [5,6]. Some metallic pro-
moters, such as Sn [7–9], In [10–13], Cu [14], Zn [15,16], Ga [17,18], K [19,20], or Ge [21,22],
are usually used to enhance the interaction with Pt from the electronic and geometric
aspects so as to resist coke deposition, suppress Pt sintering, and improve the catalytic
performance. In addition, the non-metallic promoters, involving element B [23], F [24,25],
Cl [26], and P [27], are usually applied to adjust the acid sites and promote the dispersion of
active sites on the surface of catalysts. In general, these promoters can not only modify the
surrounding environment of the Pt active sites of catalyst, but also adjust some properties
of the supports.

The support materials can also influence the catalytic performance, and a lot of stud-
ies have been conducted on the support materials, such as Al2O3 [9,28,29], MgO [30],
SiO2 [27,31], ZrO2 [15,23,32], and spinel ZnAl2O4 [7,33,34], for isobutane dehydrogenation
catalysts. Now, the focus has been switched to calcined hydrotalcite or hydrotalcite-
like (HT) composites, which have been used in direct dehydrogenation of propane and
have good performance compared to other supports [10–12]. Calcined hydrotalcite or
hydrotalcite-like (HT) materials are the typical composite metal oxides [35–37]. These have
suitable surface acidic characteristics and high specific surface area, which is conducive to
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the adsorption of alkanes and the desorption of alkenes and enhances Pt particle disper-
sion. Among recent studies, some have reported that PtIn catalysts with calcined MgAl
hydrotalcite-like as supports compared to spinel as supports exhibited high activity and
better selectivity in propane dehydrogenation reaction processes [12]; others reported that
Pt-based catalysts substituting Al with In cation on calcined hydrotalcite-like supports also
displayed excellent performance of alkanes dehydrogenation [38]. In particular, as far as
we know, no report discusses the catalytic performance of Pt-In catalysts supported on
MgF2-modified calcined hydrotalcite-like carriers in isobutane direct dehydrogenation.

In our work, we successfully synthesized the MgF2-modified HT-derived compos-
ite supported Pt-In catalyst, which exhibited great catalytic performance. The synthesis
process includes hydrothermal, alkali-etching, calcination, and impregnation of Pt and In
precursors, together with calcination and reduction pretreatment. To discuss the relation-
ships of the isobutane dehydrogenation performance of catalysts with the physicochemical
properties, numerous characterization techniques were employed for the as-prepared and
spent catalysts.

2. Results and Discussion
2.1. Characterization of Composite Supports and Catalysts
2.1.1. The X-Ray Diffraction (XRD)

Figure 1A,B shows the X-ray diffraction (XRD) patterns of the support composites
and corresponding supported Pt-In catalysts with calcining and reducing treatment. The
characteristic peaks of HT phase (JCPDS file No. 51-1525) are observed in the composites
(Figure 1A). Obviously, the HT phase is the only crystalline phase for the reference HT
composite. At the same time, an additional MgF2 phase (JCPDS file No. 41-1443) can
be detected in the HT-MgF2 composite, followed by the decrease in HT diffraction peak
intensity. After calcination and reduction (see Figure 1B), the diffraction peaks of the
periclase MgO phase (JCPDS file No. 45-0946) appear. However, the diffraction peaks of
the Pt and In species cannot be found. This arises from their small particle size and/or
low concentration below XRD detection limit, indicating that Pt and In particles are well
dispersed on the supports.
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Figure 1. X-ray diffraction (XRD) patterns of (A) the support composites and (B) the calcined and reduced catalysts.

2.1.2. N2-Adsorption–Desorption Isotherms

The textural properties of the catalysts were characterized by a low-temperature N2
adsorption–desorption technique, and the results are depicted in Figure 2A,B. As shown in
Figure 2A, the isotherms exhibit the type IV curves with the H2 hysteresis loops indicating
the characteristics of the hierarchical mesoporous structure. The corresponding pore
size distributions are broad and mainly concentrated in the range of 3–30 nm, further
confirming the hierarchical mesoporous feature. Compared with the textural properties of
PtInHTC, PtInHTC-MgF2 exhibits an increase in SBET of 216 m2·g−1, Dp of 4.9 and 12.3 nm
and Vp. Additionally, the SBET of PtInHTC-MgF2 is higher than that of the previous
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dehydrogenation catalysts [13,38,39]. This means that the pore channel of PtInHTC-MgF2
can provide more surface and space for adsorption and reaction of isobutane.
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(Dp), and total pore volume (Vp).

2.1.3. The Scanning Electron Microscopy (SEM) and the Transmission Electron
Microscopy (TEM)

The morphologies of calcined catalysts are described by SEM images in Figure 3.
Overall, the typical mesoporous morphology can be found for these composites. The
calcined sample PtInHTC without MgF2 mainly presents the large block mass particles [11].
The catalyst PtInHTC-MgF2 shows that the abundant well-defined triangular pore channels
are constructed by intersecting nanosheets. This means that the MgF2 plays a key role
in tuning the morphology and pore structure of catalysts. The main reason is that the
presence of F- anions can activate the substrates to liberate more metal ions for nucleation
and growth to obtain interconnected nanosheets in the synthesis process [40]. Figure 3C–F
gives TEM images and particle size distribution (PSD) of the reduced catalysts. Their PSD
are narrow, and the Pt (111) plan from Pt particles can be found on the reduced catalysts
according to the lattice spacing of 0.226 nm, although there is no peak of metal Pt in the
XRD phase (Figure 1B). These indicate the metal particles are well dispersed on these
catalysts. It is important to point out that the average particle size decreases from 1.3 nm of
PtInHTR to 1.2 nm of PtInHTR-MgF2, with a simultaneous narrowing of PSD. This can be
attributed to the additional dispersion effect of MgF2 on active metals. The small size of
active metals is more favorable for the dehydrogenation reaction because the small active
metals are less active for cracking reaction and deep dehydrogenation [41].
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2.1.4. The Temperature-Programmed Reduction (H2-TPR)

The H2-TPR results in Figure 4 show the reducibility of catalysts PtInHTC and
PtInHTC-MgF2. It can be clearly seen that the catalyst PtInHTC exhibits a wide reduction
peak with the maximum value at 466 ◦C (peak I) and shoulder peak at 560 ◦C (peak II),
while the three relative separated peaks are mainly at 460 ◦C (peak I), 550◦C (peak II), and
634 ◦C (peak III) for catalyst PtInHTC-MgF2. According to the previous literature [12,42,43],
peak I is attributed to the reduction of PtO2, and peak II can be related to the co-reduction
of the Pt and In species. The formation of the peak III may be due to the removal of a
small amount of surface hydroxyl. In addition, it can be found that the lower reduction
temperature of peak I and peak II can be obtained for the catalyst PtInHTC-MgF2. This
indicates that the formation of MgF2 can reduce the reduction temperature of the Pt species
to a certain extent. In other words, the weaker interaction between the Pt species and
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supports can be achieved when the MgF2 species modified the supports. Additionally, it
can be seen that the Pt species can be reduced before 600 ◦C for two catalysts.
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2.1.5. X-Ray Photoelectron Spectroscopy (XPS)

The surface elemental compositions and chemical states of In, Mg, and F elements on
the reduced catalysts were analyzed using X-ray photoelectron spectroscopy (XPS), and
the XPS spectra of whole survey, In 3d, Mg 1s, and F 1s regions are shown in Figure 5, with
a summary of the binding energy (BE) and ratio of In3+/In0 for the samples in Table 1.
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Table 1. XPS results of the In 3d regions for the reduced catalysts.

Samples

Binding Energy (eV)
In3+/In0 a

In 3d5/2 In 3d3/2

In0 In3+ In0 In3+

PtInHTR 444.5 445.2 452.2 452.7 3.5
PtInHTR-MgF2 444.5 445.2 452.2 452.7 4.2

a Calculated from the corresponding fitting peak area.

In Figure 5A, it can be seen that the F element is exactly detectable in PtInHTR-MgF2,
compared with the sample PtInHTR. According to the results of XRD above, this further
demonstrates the existence of MgF2 on PtInHTR-MgF2. To explore the metal–support
interaction in depth, the XPS spectra are mainly focused on the In 3d regions instead of the
Pt 4f regions owing to the overlapping of the Pt 4f and Al 2p region peaks [44]. As shown
in Figure 5B, the broad In 3d peak in the range of 440–460 eV can be deconvoluted into four
peaks, which refer to two In species on the surface of PtInHTR-MgF2. The low BE value is
attributed to the zero-valent In (In0), and the high BE is ascribed to the oxidation state of
the surface In species (In3+). As listed in Table 1, the ratio of In3+/In0 of PtInHTR-MgF2 is
higher than that of PtInHTR, indicating that the presence of MgF2 can inhibit the reduction
of In3+ ions on the surface to avoid the formation of a PtIn alloy. Compared with PtInHTR
and PtInHTR-MgF2, the same BE values for the different In species indicate that there is
no electron transfer between the In species and MgF2. Accordingly, it can be deduced
that the smaller amount of In0 species should be due to the coverage of MgF2 resulting
in the difficult reduction of In3+ species. Usually, it is proposed that the In3+ species are
favorable to dehydrogenation reaction, in view of the blockage of the active Pt sites by the
In0 species [10,13,45].

Then, Figure 5C illustrates the Mg 1s XPS spectra of the samples, and it can be
observed that Mg species present in two chemical sates. The peaks appearing at BE
of 1304.1 eV and 1305.2 eV can be attributed to MgO and MgF2 species in the reduced
catalysts, respectively [46]. Moreover, according to the deconvolution of the spectra of F 1s
(in Figure 5D), we can see two relevant fitted peaks, representing two different coordination
states of the F species. The peak of F 1s at 686.0 eV comes from the saturated MgF2,
and the peak with BE of 685.4 eV is attributed to F bound to under-coordinated Mg,
namely, four- and five-fold coordinated, which is responsible for the Lewis acid sites [47].
Usually, the small MgF2 particles are deemed to be the reason of the formation of the
under-coordinated Mg and even weak acid sites [47]. However, the weak acid sites are
favorable for coking-resistance in the dehydrogenation reaction. Therefore, it is reasonable
to conclude that the formation of MgF2, especially the under-coordinated Mg species in
MgF2, significantly affects the acidity and stability of catalysts and facilitates the resistance
to coking and sintering.

2.2. Catalytic Dehydrogenation Performance of Catalysts

Figure 6 depicts the isobutane conversion, isobutene yield, and selectivity of isobutene
and by-product methane over the reduced catalysts in the isobutane dehydrogenation
reaction for 9 h. As can be seen from Figure 6A, the catalysts PtInHTR and PtInHTR-MgF2
exhibit a rapid loss in conversion during the first 30 min and then attain a period of stable
conversion throughout the dehydrogenation test. In detail, the catalyst PtInHTR gives
the lowest conversion, while the conversion of PtInHTR-MgF2 increases from 50% to 58%
within 9 h. That is to say, the formation of MgF2 really enhances the activity of the catalysts.
It can be assigned to the special pore channels and surface features. From Figure 6B, it can
be found that the isobutene selectivity of the catalyst PtInHTR-MgF2 can be stabilized at
95% during the reaction process. Correspondingly, the catalyst PtInHTR exhibits declining
isobutene selectivity. In addition, the selectivity of by-product methane is less than 5%
and much lower than the corresponding isobutene selectivity. In particular, for catalyst
PtInHTR-MgF2 the by-product methane is almost completely inhibited during the reaction.
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This indicates that the MgF2-modification can inhibit the cracking reaction and improve
the selectivity and stability of catalysts. Additionally, it is clear that the isobutene yield
of PtInHTR-MgF2 is no less than 55% and is much higher than that of PtInHTR. The
excellent catalytic dehydrogenation performance is closely related to the properties of the
active species, promoters, and supports. The small size of Pt particles [48], stable In2O3
state [10,45], and suitable acidic properties of the supports [49] on catalysts can greatly
improve the activity and selectivity of the catalyst. According to the TEM and XPS analysis
above, PtInHTR-MgF2 has a small active metal particle size, a stable chemical state of the
In3+ species, and abundant weak acid sites, which are responsible for resistance to coking
and sintering. Therefore, PtInHTR-MgF2 exhibited high activity and stable selectivity.
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In view of the superior dehydrogenation performance of PtInHTR-MgF2, the detailed
information compared with previously reported catalysts is collected in Table 2. In terms
of conversion and selectivity, it demonstrates that the investigation of the catalyst PtInHTR-
MgF2 is meaningful.

Table 2. Comparison of catalytic performance of various catalysts in isobutane dehydrogenation a.

Catalysts Pt Contents
(wt%)

WHSV
(h−1)

Isobutane
Conversion

(%) b

Isobutene
Selectivity

(%) b
References

PtInHTR-MgF2 0.5 3 50–58 96–95 Present work
InPtSn/ZnAl2O4 0.4 4 54–38 94–96 [33]
PtNi/LaFeO3/SiO2 0.3 3 39–39 84–91 [39]
PtSnKMg/Al2O3 0.5 2 34–29 80–95 [50]
PtSnKZn/Al2O3 0.5 2 36–32 96–96 [51]
PtSnNa/ZSM-5 0.5 2.5 52–52 84–84 [52]

a From the considered articles, only the best catalytic performance is indexed. b Two data are recorded from the
initial and the end stage, respectively.

2.3. Characterization of the Spent Catalysts
2.3.1. Thermogravimetric Analysis (TG-DTA) and the X-ray Diffraction (XRD)

According to the TG curves in Figure 7A, the total mass losses of PtInHTU and
PtInHTU-MgF2 are 60% and 17%, respectively. As expected, the coke deposition can be
suppressed by forming MgF2 micro-crystals. The positive anti-coking ability is mainly
related to the small active metals particles and weak acid sites supplied by MgF2 nanopar-
ticles over PtInHTR-MgF2. From the differential thermal analysis(DTA) peaks of the spent
PtInHTU, it can be determined that there are two successive coke combustion regions,
representing two different coke deposits. The small DTA peak at the low temperature
range is assigned to the amorphous coke, while the big peak at a high temperature of
570 ◦C corresponds to the formation of serious graphitized coke [53]. Interestingly, only
a small DTA peak, resulting from the combustion of amorphous coke, can be detected
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for PtInHTU-MgF2. This suggests that it is more difficult for the active metal sites on
PtInHTU-MgF2 to be fully covered by the coke deposits and easier to be regenerated than
those on PtInHTU. Additionally, from the XRD patterns shown in Figure 7B, the diffraction
peaks of carbon at 2θ of 26◦ can be detected for the PtInHTU catalyst, but it is not detected
on the PtInHTU-MgF2 catalyst. This explains that there is a large amount of carbon on the
catalyst PtInHTU catalyst, which is also consistent with the TG results.
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2.3.2. SEM and TEM

The formation of coke deposits also can be confirmed by the SEM and TEM images of
the spent catalysts (see Figure 8). Firstly, typical flake mesoporous materials can be kept for
each spent catalyst, suggesting that there is no significant texture change for these catalysts
after reaction. Additionally, more graphibtized coke can be seen on the surface of PtInHTU.
As expected, only the granular amorphous coke deposits can be seen on PtInHTU-MgF2,
which is consistent with the TG results. By analyzing the particle size distribution of the
spent catalysts, it can be found that the average diameters of PtInHTU and PtInHTU-MgF2
has a slight increase from 1.3 to 2.7 nm and 1.2 to 2.1 nm, respectively. This demonstrates
that the anti-sintering ability can be enhanced by introducing the MgF2 species.
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3. Materials and Methods
3.1. Materials Used

Mg(NO3)2·6H2O (Analytical grade chemicals, Fuchen Chemical Regents Factory, Tian-
jin, China), Al(NO3)3·9H2O (Analytical grade chemicals, Fuchen Chemical Regents Factory,
Tianjin, China), urea (Analytical grade chemicals, Fuchen Chemical Regents Factory, Tianjin,
China), SiO2 (>98%, TANSAIL Advanced Materials Co. Ltd., Nanjing, China), KF (Analyt-
ical grade chemicals, Aladdin Industrial Corporation, Shanghai, China), H2PtCl6·6H2O
(Analytical grade chemicals, Mascot Chemical Co. Ltd., Tianjin, China), In(NO3)3·xH2O
(Analytical grade chemicals, Aladdin Industrial Corporation, Shanghai, China).

3.2. Synthesis of Composites and Precursors

The HT-MgF2 precursors were prepared by using the hydrothermal and alkali-etching
method. Firstly, 0.2 g SiO2, 0.02 mol KF, 2.31 g Mg(NO3)2·6H2O, 1.69 g Al(NO3)3·9H2O,
and 2.7 g urea were dissolved into 65 mL deionized water and stirred vigorously for 30 min.
Then, the mixed solution was poured in a 100 mL Teflon autoclave and maintained at
100 ◦C for 20 h. The as-prepared product was filtered, washed with deionized water to
neutrality, and dried in air at 100 ◦C overnight. Finally, 1 g the dried sample was put into 50
mL NaOH solution (1 mol·L−1) and stirred for 10 h. The resulting suspension was washed
with deionized water to pH = 7, and the solid product was dried overnight at 100 ◦C. The
obtained precursor was labeled as HT-MgF2.

The HT samples were prepared under same conditions, except without adding
0.02 mol KF into the initial solution. The corresponding precursor was named as HT.

3.3. Synthesis of Catalysts

The calcined products were acquired by calcining at 600 ◦C for 4 h with a heating rate
of 2 ◦C·min−1.The corresponding PtInHTC-MgF2 catalyst was obtained via the stepwise
incipient wetness impregnation method. Firstly, the In-based precursor was obtained by
impregnating calcined HT-MgF2 with In(NO3)3·xH2O aqueous solution at room tempera-
ture for 6 h and dried at 120 ◦C for 12 h. After that, the solid was calcined at 550 ◦C for
4 h. At the same time, the same procedure as In impregnation was conducted to introduce
the Pt species using H2PtCl6·H2O as a precursor, except for an impregnation time of 2 h.
The loading amount of Pt and In was 0.5 wt% and 1.4 wt%, respectively. After drying and
calcination, the resulting solids were defined as PtInHTC-MgF2. PtInHTC was prepared in
a same manner.

The calcined catalysts were reduced by 5 vol% H2/N2 at a flow rate of 30 mL·min−1

and 600 ◦C for 2 h with a heating rate of 5 ◦C·min−1 to obtain the corresponding reduced
catalysts, which were labeled as PtInHTR and PtInHTR-MgF2.

After the reaction of isobutane dehydrogenation to isobutene, the spent catalysts were
marked as PtInHTU and PtInHTU-MgF2.

3.4. Precursors, Composites and Catalysts Characterization

The XRD patterns of samples were collected on a Bruker D8-Focus X-ray diffractometer
(Germany) equipped with a Cu Kα radiation (λ = 0.15418 nm).

Low-temperature N2 adsorption¬–desorption tests were carried on a TriStar 3000 mi-
cromeritics apparatus (Micromeritics, Norcross, GA, USA).

The scanning electron microscopy (SEM) images were obtained using a MAIA3 TESAN.
The transmission electron microscopy (TEM) morphologies were observed on a JEM-

2100F field-emission transmission electron microscope.
The temperature-programmed reduction (H2-TPR) was carried out by automatic

multi-purpose adsorption apparatus (tp 5080 XQINSTRUMENT CO., Tianjin, China).
The X-ray photoelectron spectra (XPS) of catalysts were tested on a Thermo ESCALAB

250Xi (US) using Al Kα radiation.
Thermogravimetric analysis (TG-DTA) was carried out on a DTG-50/50H (PerkinElmer,

Waltham, MA, USA).
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3.5. Catalytic Dehydrogenation Performance Test

The isobutane dehydrogenation to isobutene reactions were performed in a fixed-bed
continuous-flow reactor at 600 ◦C under atmospheric pressure. The calcined catalyst (0.5 g,
40–60 mesh) was placed into the reactor and reduced at 600 ◦C for 2 h with a heating rate
of 5 ◦C·min−1 in 5 vol% H2/N2. After reduction, the isobutane and hydrogen (the molar
ratio of iC4H10:H2 = 1:1) were introduced into the reactor, in which the weight hourly space
velocity (WHSV) of isobutane was 3 h−1.The reactions were performed at 600 ◦C, and an
online gas chromatograph (GC) equipped with a flame ionization detector (Al2O3 packed
column) was employed to analyze the gaseous products.

4. Conclusions

In summary, the MgF2-modified hydrotalcite-derived composites supported Pt-In
catalyst PtInHTR-MgF2 can be synthesized by a combination of the hydrothermal method,
alkali-etching, and impregnation strategy. The formation of MgF2 can not only construct
the special texture and morphology of catalyst, but also disperse the active metals, inhibit
the reduction of the In3+ species, and adjust the acidity of the catalyst. These features can
improve the activity and selectivity of isobutane direct dehydrogenation and make the
catalyst obtain a high durability and excellent resistance to coking and sintering.
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