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Abstract: Three new chiral Mn macrocycle catalysts containing 20 or 40 atoms in the macrocy-
cle were synthetized and tested in the enantioselective epoxidation of cis-β-ethyl-styrene and 1,2-
dihydronathalene. The effect of the presence of a binaphtol (BINOL) compound in the catalyst
backbone has been evaluated, including by Density Functional Theory (DFT) calculations.

Keywords: enantioselective; epoxidation; Mn catalyst; alkene; DFT

1. Introduction

Asymmetric epoxidation of unfunctionalized prochiral olefins catalyzed by chiral
(salen)Mn(III) complexes has proven to be one of the most useful reactions in organic
synthesis since it generates chiral epoxides containing two new stereocenters, which can
be easily transformed into a large variety of compounds useful in industrial, biological,
pharmaceutical and agricultural fields [1]. The origins of high enantioselectivity in this
reaction have been extensively studied [2] but, until now, not fully elucidated. A possible
electronic effect of the 5,5′-substituents in the salen ligand is invoked [3,4], but the most
common explanation is attributed to the directions of approach of the alkene to the man-
ganese active site (manganese-oxo) [5]. The side-on approach where the double bond of
the alkene is parallel to the salen ligand is generally accepted, but four main directions to
the Mn-oxo [6,7] moiety have been proposed in the literature (Figure 1).

Katsuki et al. hypothesized that the substrate approaches the catalyst along the Mn–N
bond (Figure 1, path A) [8–10]. In addition, Jacobsen assumed that (salen)Mn=O has a
planar conformation and steric bulk at the 3,3′- and 5,5′-positions, thus forcing the substrate
to approach over the ethylenediamine backbone (Figure 1, path B) [11–15]. Furthermore,
Katsuki also proposed an approach direction by pathway C, along the 5,5′-position [16,17].
It is generally accepted that the increase of steric bulkiness in the 3,3′-positions of the salen
ligand enhances enantioselectivity, suggesting that the alkene does not approach from this
direction to the metal center (Figure 1, path D) [18–26].

More recently, a new justification about the origin of enantioselectivity was proposed
by Corey et al. [14,15]. They asserted that none of these explanations seem to be plausible
when the mechanism is represented in three dimensions. They proposed that the pre-
transition state geometry could be stabilized by electrostatic interaction between a partial
positive charge localized in the benzylic carbon atom of alkene and the partial negative
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charge of phenoxy oxygen of the catalyst (Figure 2a). In this hypothesis, the transition state
assembly is slightly similar to a [3 + 2] cycloaddition.
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Figure 2. (a) Pre-transition state geometry invoked by Corey; (b) spatial arrangement of the
salen catalyst.

A geometric consequence of the canted arrangement of the salen rings due to the
configuration of the chiral diimine bridge is that the neighboring t-butyl groups in the ortho
position to the coordinated phenolic oxygens occupy spaces on opposite faces of the N–
Mn–O plane (Figure 2b). Considering Corey’s hypothesis, the orientation of substrates, in
particular of aromatic conjugate alkenes, in the (salen)Mn-oxo complex avoids unfavorable
steric repulsion with the t-butyl groups, taking advantage of stabilizing π-stacking of the
aromatic ring of the alkene and the aryloxy group of the catalyst (Figure 2a).

2. Results and Discussion

To better understand the importance of the approach direction as well as the impor-
tance of bulkiness in the 3,3′-positions, we report here three new chiral Mn macrocycle
catalysts based on the classic Jacobsen’s salen catalyst bearing an (R)-(+)-BINOL unit in
the 3,3′-position of the salen backbone (see Chart 1). These catalysts differ in the size of
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the macrocycle, having 20 members (in the case of Mn-M20) or 40 members (in the case of
Mn-M40-DiPh and Mn-M40-Cycl) in the macrocycle. In addition, their activity towards
epoxidation by using two alkene models (cis-β-methyl-styrene and 1,2-dihydronaphtalene)
was evaluated.
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Chart 1. Chemical structures of Mn macrocycle catalysts.

Mn catalysts reported in Chart 1 were obtained starting from the corresponding
macrocycle ligands (M20 and M40) [16,17] by complexation with manganese(III) acetate
in ethanol [18]. Compounds were collected by filtration and characterized by ESI–MS
(Electrospry Ionization-Mass Spectrometry) measurements. The chiral diimine bridge of
Mn-M20 and Mn-M40-DiPh is (1R,2R)-diphenyl-ethyl group, while Mn-M40-Cycl leads a
(1R-trans)-cyclohexyl group.

Table 1 shows epoxidation results in terms of conversions, epoxide yields and enan-
tiomeric excess (EE). The results clearly show a different epoxidation rate based on the
nature of the alkene: reactions with 1,2-dihydronathalene (Table 1, entries 7–12) are faster
than reactions with cis-β-methyl-styrene (Table 1, entries 1–6) [19–21]. Moreover, the
presence of PPNO (4-phenyl-pyridine N-oxide) as a coligand increases reaction rates,
conversions and enantiomeric excesses, suggesting a favorable electronic effect to the
manganese metal center [22].
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Table 1. Enantioselective epoxidation of alkenes with NaClO catalyzed by Mn macrocycle catalysts a.

Alkene Entry Catalyst Time (min) Conv. b (%) Yield b (%) EE b (%)

ci
s-
β

-m
et

hy
l-

st
yr

en
e 1 c Mn-M20 300 80 88 16

2 Mn-M20 240 90 88 27

3 c Mn-M40-DiPh 420 78 84 17

4 Mn-M40-DiPh 300 87 82 31

5 c Mn-M40-Cycl 420 77 85 12

6 Mn-M40-Cycl 300 89 84 30

1,
2-

di
hy

dr
o-

na
ph

th
al

en
e 7 c Mn-M20 60 92 93 23

8 Mn-M20 30 95 94 38

9 c Mn-M40-DiPh 90 90 91 25

10 Mn-M40-DiPh 30 88 89 35

11 c Mn-M40-Cycl 90 80 93 29

12 Mn-M40-Cycl 30 90 99 36

a In all the experiments, alkene = 0.14 M, catalyst = 0.007 M, coligand = 4-PPNO = 0.07 M, NaClO = 0.14 M, Na2HPO4 = 0.05 M, buffered
at pH = 11.2. In all the cases, configuration of epoxides is determined by measuring the optical rotation. b Determined by GC on chiral
columns. c No coligand added.

Although these macrocycle catalysts possess different chiral diimine bridges (diphenyl
or cyclohexyl) and, consequently, different steric hindrances to the Mn-oxo group along
approach directions A and B (reported in Figure 1), the enantiomeric excess values were
similar. These data suggest that steric restrictions closer to the active catalyst site do not
play a primary role in the determination of the enantioselectivity values. Furthermore,
the different size of the macrocycles and the different steric hindrance along pathway D
represented in Figure 1 did not lead to different EE values. The lower EE values obtained
with these macrocycles with respect to other Mn-salen catalysts should have been due to
the presence of the chiral (R)-(+)-BINOL compound that can reduce the efficiency of the
enantioselective oxygen transfer.

Theoretical Calculations

In order to rationalize the enantiomeric excess results, DFT studies were performed
on the simplest catalyst. First, our attention was focused on Mn-M20 that was optimized
and the obtained 3D plots together with the corresponding activated forms containing the
Mn=O species formed in the presence of NaClO are reported in Figure 3.

The catalyst and its activated form showed overlapping structures characterized by
the steric hindrances of BINOL groups.

In order to rationalize the enantioselectivity of the reaction, the two transition states
leading to the two possible enantiomeric epoxides were located by using DFT calcu-
lations [23–26]. The computational study was carried out on the epoxidation reaction
involving Mn-M20 in its activated form as a catalyst and cis-β-methyl-styrene, which
seems to be a good compromise between the size of the system and the accuracy of the
calculation.

The located transition state (TS) present the expected imaginary frequencies on the O
transfer (see Supporting Information). In Figure 4, the formation bond distances are shown.
The favored (2S,3R)-TS (Figure 4A) had the bond less formed (1.77 Å) than the (2R,3S)-TS
(Figure 4B) (1.74 Å).
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Calculations supported the enantiomeric excess experimental results. The calculated
activation energies were comparable in the two cases with values of about 7 and 8 kcal/mol
in vacuo for the transition states leading to the (2S,3R) epoxide and the (2R,3S) epoxide,
respectively (Figure 4). Considering the free energy values, the reaction was slower due to
energy barriers of about 21 and 22 kcal/mol for the transition states leading to the (2S,3R)
epoxide and the (2R,3S) epoxide, respectively. Thus, the transition state related to the
(2S,3R) epoxide was favored (1.18 kcal/mol), probably due to the π–π stacking interactions
between the aromatic ring of the alkene and the salicylaldehyde ring of the catalyst, as
well as the CH–π interaction with the BINOL compound (showed by green arrows in
Figure 4A). If the alkene attacks the Mn=O with the opposite face (Figure 4B) leading to
the (2R,3S) epoxide, these interactions cannot be found.

The ratio between the two enantiomers on the basis of the transition state energies
was 78:22 with a theoretical enantiomeric excess of 56% in vacuo. Considering methanol
as a solvent, the energy barriers resulted in 10.62 and 11.02 kcal/mol for the transition
states related to the (2S,3R) and (2R,3S) epoxides, respectively, with a ratio between the
two enantiomers of 66:34 and a theoretical EE value of 32%, which was in line with the
experimental one (Table 1, entry 2).

Taking into account these results and considerations, substituents in the 3,3′-positions
play a crucial role in the determination of the enantioselectivity values. Their fundamental
importance is probably ascribed to the stabilizing/destabilizing effect of the transition
state, as showed in Figures 2a and 4A.

3. Materials and Methods

GC analyses of the epoxidation reaction were performed with a GC-FID (Flame Ion-
ization Detector) instrument. The EE values were estimated and calculated by using a
proper chiral column DMePeBETACDX (25 m × 0.25 mm ID × 0.25 µm film) for 1,2-
dihydronaphthalene (isotherm 150 ◦C) and DMeTButiSililBETA (25 m × 0.25 mm ID
× 0.25 µm film) for cis-β-methyl-styrene (column conditions: 50 ◦C (0 min) to 120 ◦C
(1 min) at 2 ◦C/min). The injector and detector temperatures were maintained at 250 ◦C
for both columns. As an internal standard, n-decane was used throughout. ESI mass
spectra were obtained by employing an ES–MS equipped with an ion trap analyzer. The
absolute configurations of (1R,2S)-1,2-epoxy-1,2,3,4-tetrahydronaphthalene and of (1R,2S)-
1,2-epoxy-1-phenylpropane were determined by measuring the optical rotations with a
polarimeter. Commercial reagents were used as received without further purification. All
the calculations were performed using the Gaussian 16 program package [27]. Optimiza-
tions were done in the gas phase at the b3lyp/6-31g(d) level [28,29] for all atoms, while
the b3lyp/def2svp was used for Mn to correctly describe the electronic properties of the
systems. The solvent effects (CH3OH) were considered by single-point calculations at
the same level as above using the self-consistent reaction field (SCRF) method based on
the polarizable continuum solvent model (PCM) [30–32]. Vibrational frequencies were
computed at the same level of theory to verify that the optimized structures were minimal.
Thermodynamics at 298.15 K allowed the Gibbs free energies to be calculated.

3.1. Synthesis of Mn Macrocycle Catalysts

The absolute ethanol solution of the given macrocycle salen-ligand was stirred overnight
at room temperature with 1.5 equivalents of manganese(III) acetate in the case of M20 or
with three equivalents of manganese(III) acetate in the case of M40. When the starting
ligand was completely converted (checked by thin layer chromatography TLC analysis),
the solvent was removed under reduced pressure. Then, 5 mL CH2Cl2 was added to the
remaining crude solid to dissolve the Mn complex. The residual precipitate (not reacted
manganese (III) acetate) was removed and the CH2Cl2 solution was concentrated in vacuo
thus giving the corresponding catalyst with nearly quantitative yield.
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Mn-M20: ESI-MS: detected m/z, 895 [M]+ (expected, 895.3); analytically calculated
values for C58H52MnN2O4: C, 77.75; H, 5.85; Mn, 6.13; N, 3.13; O, 7.14; values as measured:
C, 77.71; Mn, 6.09; N, 3.10; O, 7.11.

Mn-M40-DiPh: ESI-MS: detected m/z, 895 [M]2+ (expected, 895.8); analytically calcu-
lated values for C116H104Mn2N4O8: C, 77.75; H, 5.85; Mn, 6.13; N, 3.13; O, 7.14; values as
measured: C, 77.68; Mn, 6.07; N, 3.12; O, 7.10.

Mn-M40-Cycl: ESI-MS: detected m/z, 797 [M]2+ (expected, 797.8); analytically calcu-
lated values for C100H100Mn2N4O8: C, 75.27; H, 6.32; Mn, 6.89; N, 3.51; O, 8.02; values as
measured: C, 75.17; Mn, 6.82; N, 3.48; O, 7.98.

3.2. General Procedure for Epoxidation Reactions

A dichloromethane solution of the substrate (0.35 mmol), chiral macrocycle catalyst
(5%) and 4-phenylpyridine N-oxide (4-PPNO, 50%), buffered at pH 11.2 with a phosphate
buffer, was stirred at 25 ◦C with bleach. The reaction was monitored using GC analysis
by using n-decane as an internal quantitative standard. When the starting material was
consumed, the organic phase was removed, dried with Na2SO4 and purified by preparative
layer chromatograpy (PLC) (SiO2, cyclohexane/EtOAc (15:1, v/v). Absolute configurations
were compared with literature data [33,34].

3.3. Computational Methods

Optimizations were done in the gas phase at the b3lyp/6-31g(d) level [28,29] for
all atoms, while the b3lyp/def2svp was used for Mn to correctly describe the electronic
properties of the systems. The solvent effects (CH3OH) were considered by single-point
calculations at the same level as above using the self-consistent reaction field (SCRF) method
based on the polarizable continuum solvent model (PCM) [30–32]. Vibrational frequencies
were computed at the same level of theory to verify that the optimized structures were
minimal. Thermodynamics at 298.15 K allowed the Gibbs free energies to be calculated. The
∆E values and the percentages of the TS were calculated applying the Boltzmann equation.
Using the obtained percentages, the EE values were calculated using the following equation:
EE% = [% major compound − % minor compound] / [% major compound + % minor
compound] × 100.

4. Conclusions

Three new chiral Mn macrocycle catalysts containing 20 or 40 atoms in the macrocycle
were synthetized and tested in the enantioselective epoxidation of cis-β-ethyl-styrene and
1,2-dihydronathalene. Reaction rates depend on the nature of the alkene and the presence
of a coligand (PPNO) increases reaction rates, conversions and enantiomeric excesses.
Despite the presence of a BINOL compound in the 3,3′ position of the catalyst scaffolds, the
enantioselectivities observed were, in general, low, probably due to the distance of these
substituent with respect to the metal center. DFT calculations support this hypothesis. In
particular, the calculated activation energies of the transition states related to the formation
of the enantiomeric epoxides confirm the enantiomeric excesses obtained by experimental
measurements.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11040465/s1.
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