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Abstract: Crystalline porous materials (CPM)-200-In and CPM-200-In/Mg metal-organic frameworks
(MOFs) were synthesized by a solvothermal method and were characterized by using powder X-ray
diffraction (PXRD), FT-IR, Brunauer–Emmett–Teller (BET), temperature programmed desorption
(TPD), TGA, XPS, and SEM-EDS. They were used as heterogeneous catalysts for the cycloaddition of
CO2 with epoxides and found to be highly efficient toward the cycloaddition reaction at moderate
reaction conditions under solvent-free conditions. The catalyst was easily separated by a simple
filtration and can be reused up to five consecutive times without any considerable decrease of its
initial activity. CPM-200-In/Mg showed excellent catalytic performance in the cycloaddition reaction
due to the synergistic role of the acidic sites and basic sites. A plausible reaction mechanism for
the CPM-200-In/Mg MOF catalyzed cycloaddition reaction is proposed based on the experimental
results and our previously reported DFT (Density Functional Theory) studies.

Keywords: CPM-200-In/Mg; cycloaddition; CO2; epoxide; cyclic carbonate

1. Introduction

The conversion of carbon dioxide to value-added chemical products has attracted sci-
entists to develop efficient technologies for the reduction of CO2 emission, which is a main
cause of global warming [1–9]. The production of cyclic carbonates has been considered
as a promising way to convert CO2. Cyclic carbonates have a wide range of applications
such as solvents, electrolytes, and intermediates for the synthesis of other monomers and
pharmaceuticals [10–17]. Since CO2 is a thermally and chemically stable molecule, various
homogeneous (e.g., quaternary ammonium and phosphonium salts, Schiff bases, ionic
liquids, alkali metal salts, and other organocatalysts) [18–23] and heterogeneous (e.g.,
metal oxides, functional polymers, and immobilized ionic liquids) [24–30] catalysts have
been developed in the synthesis of cyclic carbonates. The heterogeneous catalysts have
higher catalytic performance, easier separation, and higher reusability than homogeneous
ones [27,28]. It is well reported that heterogeneous catalysts based on metal-organic frame-
works (MOFs) can efficiently proceed the topic reaction (Scheme 1) [31–50]. Porous MOFs
composed of metal ions and ligands have been widely used as catalysts for many chemical
reactions due to their crystalline nature, tunable structure, highly specific surface area,
good thermal stability, and easier mass transfer of reactants [45,51–53].

Recent studies on MOF-based materials for CO2 mitigation are focused on the de-
velopment of MOFs having high adsorption capacity and high catalytic performance at
the same time [8]. Metal organic frameworks (MOFs), based on transition metals, are
predominant over those based on main-group elements. However, it is reported that the
MOF-74-Mg exhibited the highest CO2 uptake capacity over its transition metal analogues
such as MOF-74-Co and MOF-74-Ni [54]. The application of MOF-74-Mg as a catalyst
for the cycloaddition of CO2 and epoxides has also been reported previously [55,56]. Re-
cently, bimetallic MOFs (Ni-Co and Co-Zn MOF) have been developed as catalysts in
the cycloaddition reaction [57–59]. They have shown synergistic effects in promoting the
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catalytic activity by increasing the number of acidic and basic sites. We also reported the
synergistic role of Cu-Zr bimetallic MOF, which enhanced the number of basic sites for the
cycloaddition reaction [59]. Zhai et al. [60] reported successful preparation of heterometallic
MOFs, denoted as crystalline porous materials (CPM-200s) with systematic combinations
of trivalent and divalent metals, and their high CO2 adsorption capacity.
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In this work, therefore, we selected indium (In) as a second metal to Mg containing 
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for the first time in the cycloaddition reaction under solvent-free conditions. The bimetal-
lic CPM-200-In/Mg showed better catalytic performance than CPM-200-In since the In-Mg 
bimetallic MOF exhibited higher CO2 adsorption capacity, higher number of acidic and 
basic sites, and higher thermal stability. The CPM-200-In/Mg MOF catalyst can be reused 
up to five consecutive times without a considerable loss of its activity. A reaction mecha-
nism is also proposed based on the experimental results and our previously reported DFT 
studies on the reaction steps, including reaction intermediates and transition states. 

2. Results
2.1. Characterization of Catalysts 

The powder X-ray diffraction (PXRD) patterns of the prepared CPM-200 catalysts
were compared with the simulated single crystal pattern (Figure 1). The main character-
istic peak corresponding to (200) face of CPM-200 catalysts in PXRD matched well with
the simulated pattern of the Cambridge Crystallographic Data Center (CCDC) data, con-
firming the crystalline structure of the prepared catalysts. 

Figure 2 show SEM-EDS images of the synthesized CPM-200-In and CPM-200-In/Mg 
samples. The SEM image reveal that both CPM-200s have cubic like structures. As a result 
of EDS mapping, only In metal was observed in CPM-200-In, while In and Mg metals are 
well distributed in CPM-200-In/Mg. 

The FT-IR spectra of the catalysts are shown in Figure 3. The broad peaks in the range 
of 3400–3450 cm−1 are assigned to the O-H stretching frequency of coordinated water. The 
big peaks at 1635 and 1430 cm−1 correspond to the symmetric and asymmetric stretching 
vibration modes of the COOH group. The symmetric stretching vibration of the In-O and 
Mg-O bond at 419 cm−1 and 548 cm−1 verifies the coordination of metals with the ligands 
[61,62]. 

Scheme 1. Synthesis of cyclic carbonate from epoxide and CO2.

In this work, therefore, we selected indium (In) as a second metal to Mg containing
MOF and tried to suggest the promotional effect of the bimetallic In-Mg MOF in the
cycloaddition reaction. We synthesized CPM-200-In/Mg MOF, and it was used as a
catalyst for the first time in the cycloaddition reaction under solvent-free conditions. The
bimetallic CPM-200-In/Mg showed better catalytic performance than CPM-200-In since
the In-Mg bimetallic MOF exhibited higher CO2 adsorption capacity, higher number of
acidic and basic sites, and higher thermal stability. The CPM-200-In/Mg MOF catalyst can
be reused up to five consecutive times without a considerable loss of its activity. A reaction
mechanism is also proposed based on the experimental results and our previously reported
DFT studies on the reaction steps, including reaction intermediates and transition states.

2. Results
2.1. Characterization of Catalysts

The powder X-ray diffraction (PXRD) patterns of the prepared CPM-200 catalysts
were compared with the simulated single crystal pattern (Figure 1). The main characteristic
peak corresponding to (200) face of CPM-200 catalysts in PXRD matched well with the
simulated pattern of the Cambridge Crystallographic Data Center (CCDC) data, confirming
the crystalline structure of the prepared catalysts.
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Figure 2 show SEM-EDS images of the synthesized CPM-200-In and CPM-200-In/Mg
samples. The SEM images reveal that both CPM-200s have cubic like structures. As a result
of EDS mapping, only In metal was observed in CPM-200-In, while In and Mg metals are
well distributed in CPM-200-In/Mg.

The FT-IR spectra of the catalysts are shown in Figure 3. The broad peaks in the range
of 3400–3450 cm−1 are assigned to the O-H stretching frequency of coordinated water. The
big peaks at 1635 and 1430 cm−1 correspond to the symmetric and asymmetric stretching
vibration modes of the COOH group. The symmetric stretching vibration of the In-O
and Mg-O bond at 419 cm−1 and 548 cm−1 verifies the coordination of metals with the
ligands [61,62].
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TGA results of CPM-200-In and CPM-200-In/Mg (Figure 4) showed an initial weight
loss of solvent inside their pores around 130 ◦C and 200 ◦C. Even after the initial weight
loss, CPM-200-In/Mg exhibited better thermal stability than CPM-200-In, probably due
to the better crystallinity from the synergy effect of two metals during CPM-200-In/M
crystallization process [60] and/or to the smaller micropore diameter for CPM-200-In/M
compared to CPM-200-In.
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Figure 4. TGA curve of CPM-200-In and CPM-200-In/Mg.

To verify the elemental composition of both catalysts, elemental analysis (EA) and
inductively coupled plasma–optical emission spectrometry (ICP-OES) were conducted,
and the results in wt% are given in Table 1.

Table 1. Elemental analysis (EA) and inductively coupled plasma (ICP) results of CPM-200-In and
CPM-200-In/Mg.

Catalyst Elemental Composition (wt%)

In Mg C H O N

CPM-200-In 35.84 - 30.05 1.86 26.69 4.81
CPM-200-In/Mg 13.13 8.20 36.89 2.96 31.68 7.26

X-ray photoelectron spectroscopy (XPS) was also performed (Figure 5) to verify the
presence of bimetal in CPM-200-In/Mg. In 3d5 and Mg 1s peaks located at binding energies
of 445.26 eV and 1304.30 eV show the presence of indium and magnesium metals in the
MOF [63–65]. CPM-200-In also exhibits In 3d5 peak at the binding energy of 445.12 eV,
demonstrating the presence of the indium atom.

The porosity and surface area of both CPMs were studied by the physical adsorption
of N2 at 77 K, and the type I adsorption isotherms revealed the existence of micropores
(Figure 6). Brunauer–Emmett–Teller (BET) surface areas of 1231 m2g−1 and 756 m2g−1,
and pore volume of 0.50 cm3g−1 and 0.44 cm3g−1, were calculated from N2 adsorption
isotherms for CPM-200-In/Mg and CPM-200-In, respectively. The pore size distribution
curves confirm the presence of micropores in both catalysts, and the smaller micropore
diameter of CPM-200-In/Mg than CPM-200-In. The presence of mesopores is known to
be beneficial for promoting mass transfer [51–53]; however, no meaningful evidence of
mesopore was observed in both CPM-200 catalysts.
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Temperature-programmed desorption (TPD) of NH3 and CO2 analysis was performed
to investigate acid-base nature of the catalysts. As shown in Table 2, CPM-200-In/Mg
shows a higher number of basic sites, which is necessary for CO2 adsorption, than CPM-
200-In. NH3 adsorption properties of CPM-200 catalyst was studied to explain the presence
of acidic sites; these sites are necessary catalytic centers for the activation of epoxide
molecules and also for the coordination with CO2 molecules [8]. The number of acidic sites
was almost the same in both catalysts.

Table 2. Number of acidic and basic sites in the catalysts.

Catalyst Acidic Sites
NH3-TPD (mmol/g)

Basic Sites
CO2-TPD (mmol/g)

CPM-200-In 23.9 6.7
CPM-200-In/Mg 24.2 12.9
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The CO2 adsorption experiment at 298 K (Figure 7) showed that CPM-200-In/Mg
reached a CO2 uptake capacity of 89.5 cm3g−1, much higher than CPM-200-In, 49.3 cm3g−1

at 298 K, respectively. The increase in the basic sites in CPM-200-In/Mg is responsible to
the increase of CO2 uptake capacity, favoring the attraction between CO2 and the catalyst.
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2.2. Cycloaddition of CO2 with Epichlorohydrin

The catalytic ability of CPM-200-In/Mg was tested in the cycloaddition of CO2 and
epichlorohydrin (ECH). Without catalyst, the reaction did not give any ECH conversion
(Table 3, entry 1). CPM-200-In/Mg and CPM-200-In alone without a co-catalyst showed
very low ECH conversion at the standard condition (6 h of reaction, 38.3 mmol of ECH,
1.2 MPa of CO2 pressure, 80 ◦C). They showed an appreciable conversion at high tem-
perature and long reaction time (110 ◦C and 12 h). The homogeneous catalyst precursors
exhibited much lower ECH conversion (Table 3, entries 2–5). In order to promote the
cycloaddition reaction, tetrabutylammonium halides (TBAX, X = Cl−, Br−, I−) were used
as co-catalysts (Table 3, entries 10, 13, 14). CPM-200-In/Mg catalyst with tetrabutylam-
monium bromide (TBAB) co-catalyst exhibited very high ECH conversion (90.3%) with
>99% (chloromethyl)ethylene carbonate selectivity (Table 3, entry 10). Br− ions showed
higher ECH conversion than iodide and chloride ions. Due to the bulky nature of iodide
anion, CPM-200-In/Mg with tetrabutylammonium iodide (TBAI) exhibited lower ECH
conversion (85.8%) than with TBAB because of mass transfer limitation. The catalytic per-
formance of the CPM-200-In/Mg/TBAB system increased with the increase in temperature
from 60 ◦C to 80 ◦C (Table 3, entries 10 and 12).

Various reaction parameters such as reaction time, temperature, catalyst amount, and
CO2 pressure are optimized for the catalytic activity of CPM-200-In/Mg/TBAB system.
As illustrated in Figure 8, with increasing temperature from 40 to 80 ◦C, ECH conversion
increased steadily; however, a small increase in ECH conversion was shown with increasing
reaction time from 8 to 10 h. A maximum in ECH conversion occurred at 1.5 MPa CO2
pressure, since excessive pressure decreased the concentration of ECH, disturbing the
interaction between CPM-200-In/Mg/TBAB and the ECH [25,43]. The optimized reaction
parameters were determined at 80 ◦C, CO2 pressure of 1.2 MPa, after 6 h, and with 0.6 mol%
of CPM-200-In/Mg with TBAB co-catalyst.



Catalysts 2021, 11, 430 8 of 15

Table 3. Catalytic activity comparison of catalysts for the cycloaddition reaction of ECH and CO2.

Entry Catalyst Conversion c (%) Selectivity c (%)

1 None - -
2 Indium salt 3 96
3 Magnesium salt 4 96
4 CPM-200-In 3 98
5 CPM-200-In/Mg 5 98
6 CPM-200-In a 14 99
7 CPM-200-In/Mg a 17 99
8 TBAB 43.5 >99
9 CPM-200-In/TBAB 81.7 >99
10 CPM-200-In/Mg/TBAB 90.3 >99
11 CPM-200-In/TBAB b 42.2 >99
12 CPM-200-In/Mg/TBAB b 52.4 >99
13 CPM-200-In/Mg/TBAC 78.6 >99
14 CPM-200-In/Mg/TBAI 85.8 >99

Reaction Conditions: Epichlorohydrin (ECH) = 38.3 mmol, Catalyst = 0.6 mol%, TBAB = 0.6 mol%,
Pressure = 1.2 MPa CO2, Temperature = 80 ◦C, Time = 6 h, semi-batch reaction. a T = 110 ◦C, t = 12 h. b T = 60 ◦C.
c Determined by GC.
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2.3. Cycloaddition of CO2 with Different Epoxides

We tested various aliphatic and aromatic epoxides to investigate the versatility of the
CPM-200-In/Mg catalyst. As shown in Table 4, the CPM-200-In/Mg/TBAB system was
efficient with regard to various epoxides in the corresponding cyclic carbonates, except
for cyclohexene oxide. High conversion of propylene oxide (87.3%), epichlorohydrin
(90.3%), and allylglycidyl ether (82.1%) might be ascribed from the effective size of the
epoxides, facilitating their access to the active sites. Very low conversion (14.3%) was
obtained for cyclohexene oxide since the sterically hindered cyclohexene ring may prevent
its approach to the Lewis acidic site [32,37,66]. In addition, it is well known that CO2-based
polycarbonate is easily formed from the reaction of cyclohexene oxide and CO2 [67].

Table 4. Synthesis of cyclic carbonates from various epoxides.

Entry Reactant Product Yield a (%)

1
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2.4. Reusability of Catalyst

After easy separation using a centrifuge, the recyclability studies of CPM-200-In/Mg/
TBAB catalyst were carried out under optimal reaction conditions (80 ◦C, 6 h, 0.6 mol%
catalyst, and 1.2 MPa of CO2 pressure). As shown in Figure 9, CPM-200-In/Mg/TBAB
system can be recycled five times, without considerable loss in its initial activity. The
reused CPM-200-In/Mg catalyst was analyzed by FT-IR, PXRD, and TGA to investigate its
chemical and thermal stability. PXRD patterns and FT-IR spectra of the fresh and reused
CPM-200-In/Mg are identical (Figures S1 and S2). The TGA of the recycled CPM-200-
In/Mg catalyst showed no destruction of the original structure of the fresh one (Figure S3).
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2.5. Comparison with Other MOFs

Table 5 shows the catalytic performance of CPM-200-In/Mg together with some other
reported MOF catalysts. Compared to Mg or In containing single metal MOFs (Table 5,
entries 1, 8-11), CPM-200-In/Mg exhibited similar or higher cyclic carbonate TOF at lower
CO2 pressure and shorter reaction time. Other metal containing MOFs (Table 5, entries 2-5)
in the cycloaddition of ECH and CO2 are also compared with CPM-200-In/Mg (Table 5,
entry 6). It also confirms superior performance of the present work.

Table 5. Comparison of the catalytic potential of the CPM-200-In/Mg with previously reported MOFs.

No MOF Epoxide T (◦C) PCO2
(MPa)

Time
(h)

Catalyst Amount
(mol%)

Yield
(%)

TOF
(h−1) Ref.

1 Mg-MOF-74 a SO 100 2.0 4 3.33 95 7.1 [55]
2 ZnMOF-1-NH2

b ECH 80 0.8 8 1.0 89 11.1 [68]
3 {[Zn(CHDC)(L)]·H2O}n ECH 80 1.0 18 1.8 91 2.8 [69]
4 NH2-MIL-125 ECH 100 2.0 6 1.6 84 8.8 [70]
5 rho-ZMOF c ECH 40 1.0 3 25 mg 97 - [71]
6 CPM-200-In/Mg ECH 80 1.2 6 0.6 90 25.0 This work
7 CPM-200-In/Mg PO 80 1.2 6 0.6 89 24.7 This work
8 (Me2NH2)[In(SBA)2] PO 80 2.0 24 0.15 85 23.6 [72]
9 (Me2NH2)[In(SBA)(BDC) PO 80 2.0 24 0.15 89 24.7 [72]
10 (Me2NH2) [In(SBA)(BDC NH2)] PO 80 2.0 24 0.15 92 25.6 [72]
11 (NH4)3[In3Cl2(BPDC)5] PO 80 2.0 24 0.15 95 26.4 [72]

a Chlorobenzene was used as solvent. b ECH (20 mmol), TBAB (2.5 mol%) were used. c ECH (34.5 mmol), rho-ZMOF (25 mg), TBAB
(200 mg) were used.
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2.6. Cycloaddition Reaction Mechanism

A plausible reaction mechanism based on the experimental results and our previous
DFT studies [31,33,37] is proposed, for the cycloaddition of epoxide and CO2 catalyzed by
CPM-200-In/Mg and co-catalyst (Scheme 2). In the first step, Lewis acidic metal centers
interact with the O atom of the epoxide ring. Then, the Br− ion of the co-catalyst attacks
the least hindered C atoms of epoxide, resulting in the ring opening of epoxide. Thereafter,
the generated partial positive charge on the carbon atom of epoxide polarizes the CO2
molecule. Finally, the cyclic carbonate is generated by the ring closure with the elimination
of the bromide ion. The synergistic role of acidic sites (Lewis acidic In and Mg metal sites)
and basic sites (Lewis basic motif inside MOF pores) seems essential for the improved
catalytic performance of CPM-200-In/Mg.
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3. Materials and Methods
3.1. Chemicals

In(NO3)3·xH2O (99.9%), InCl3 (98%), Mg(OAc)2·4H2O (≥99%, ReagentPlus), N,N-
dimethylacetamide (DMA. 99%, ReagentPlus), acetonitrile (can, 98%, anhydrous), HNO3
(65%, GR grade), HCl (37%, AR grade), ECH (≥99%, purum), and dichloromethane(≥99.9%,
ACS reagent) were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA)
and used as received without further purification. 3,3′,5,5′-azobenzenetetracarboxylic acid
(H4ABTC) was prepared according to the methods previously reported [73].

3.2. Preparation of Catalyst
3.2.1. Preparation of CPM-200-In

CPM-200-In was prepared according to the reported method [60]. In a 20 mL glass
vial, 22.0 mg of In(NO3)3·xH2O and 16.0 mg of H4ABTC were dissolved in a mixture of
2.0 g of DMA and 1.0 g of ACN. After addition of 120.0 mg HNO3, the vial was sealed and
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placed in a 90 ◦C oven for 3 days. After cooling to room temperature, pure yellow cubic
crystals were obtained.

3.2.2. Preparation of CPM-200-In/Mg

For the preparation of CPM-200-In/Mg in a 20 mL glass vial, 22.1 mg of InCl3, 86.0 mg
of Mg(OAc)2, 35.6 mg of H4ABTC were dissolved in a mixture of 4.0 g of DMA and 0.8 g of
H2O. After addition of 120.0 mg HCl, the vial was sealed and placed in a 90 ◦C oven for
2 days. Pure yellow cubic crystals were obtained.

3.3. Cycloaddition of CO2 and Epoxide

The cycloaddition reactions were carried out in a semi-batch reactor according to our
previously reported method [43]. The detailed procedure is described in the Supplementary
Materials. The products were analyzed by using a gas chromatograph (GC, Agilent
technologies, HP 7890 A) with a flame ionization detector. Dichloromethane was used as
an internal standard.

4. Conclusions

In this work, CPM-200-In and CPM-200-In/Mg MOF were successfully prepared
by a solvothermal method and were characterized by using PXRD, SEM-EDS, FT-IR,
TGA, XPS, BET, CO2, and NH3 TPD analysis. Both MOFs were used as catalysts for
the CO2 fixation with various epoxides, and they were shown to be highly active (TOF
of 25.0/h for ECH conversion) for the cycloaddition reaction under moderate operating
conditions and solvent-less conditions. Especially, CPM-200-In/Mg revealed superior
catalytic performance to CPM-200-In in the cycloaddition process due to higher surface
area, higher CO2 adsorption capacity, and higher number of basic sites. CPM-200-In/Mg
catalyst could be recycled five times, without considerable loss in its initial activity. Based
on the experimental data and our previous DFT studies, a plausible reaction mechanism,
including the synergistic role of the acidic sites and basic sites for the bimetallic catalyzed
epoxide-CO2 cycloaddition reaction, was also suggested.
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