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Abstract: The release of azo dye contaminants from textile industries into the environment is an issue
of major concern. Nanoscale zerovalent iron (nZVI) has been extensively studied in the degradation
of azo dye pollutants such as methyl orange (MO). In this study, iron was coupled with copper
and silver to make trimetallic Fe/Cu/Ag nanoparticles, in order to enhance the degradation of MO
and increase reactivity of the catalyst by delaying the rate of oxidation of iron. The synthesis of
the trimetallic nanoparticles (Fe/Cu/Ag) was carried out using the sodium borohydride reduction
method. The characterization of the particles was performed using XRD, XPS, EDX, and TEM.
The analyses confirmed the successful synthesis of the nanoparticles; the TEM images also showed
the desired structures and geometry of the nanoscale zerovalent iron particles. The assessment of the
nanoparticles in the degradation of methyl orange showed a notable degradation within few minutes
into the reaction. The effect of parameters such as nanoparticle dosage, initial MO concentration,
and the solution pH on the degradation of MO using the nanoparticles was investigated. Methyl
orange degradation efficiency reached 100% within 1 min into the reaction at a low pH, with lower
initial MO concentration and higher nanoparticle dosage. The degradation rate of MO using the
nanoparticles followed pseudo first-order kinetics and was greatly influenced by the studied parame-
ters. Additionally, LC-MS technique confirmed the degradation of MO within 1 min and that the
degradation occurs through the splitting of the azo bond. The Fe/Cu/Ag trimetallic nanoparticles
have proven to be an appropriate and efficient alternative for the treatment of dye wastewater.

Keywords: trimetallic catalysts; methyl orange; nanoscale zerovalent iron; Fe/Cu/Ag nanoparticles

1. Introduction

The deterioration in the quality of water is one of the key factors of water risks and this
has drawn researchers’ attention to alleviating the issue [1,2]. The discharge of untreated
effluent from industries such as leather, textile, ink, cosmetics, and paper into the water
streams turns out to be a serious threat to living beings [3,4]. As such, dyeing industries
are regarded as one of the world’s largest water polluters as their effluent is made up of
toxic compounds; dyes are carcinogenic in nature and refractory to biodegradation [2].
Among the 10,000 distinctive dyes and colorants used in the textile industry, above 50% are
azo dyes [5]. Azo dyes are distinguished by the presence of the azo bond (–N=N–) which
in turn influences the bright color of their aqueous solutions [6]. Due to their qualities,
such as being water soluble, possessing a complicated structure, and being of synthetic
origin; removal of azo dyes is generally challenging [7,8].

In order to remove dyes from wastewater; physical, chemical, and biological methods
such as adsorption, chlorination, coagulation, ozonation, and membrane filtration have
been used [5,7]. However, some of these techniques do not lead to the degradation of
the dye, but simply physically remove the dye component from the effluent, thereby
maintaining the waste removal issue [5]. Moreover, other techniques lead to secondary
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pollution, elevating the problem of pollution [5]. Much consideration has been given into
developing new treatment approaches to eliminate dyes from the environment. Nanoscale
zerovalent iron (nZVI) has since materialized as an effective solution for the remediation
of dye wastewater because of its low-cost, great reduction capabilities and the capacity to
degrade pollutants [2,9–11]. In the degradation of toxic dye molecules, nZVI particles are
oxidized, thereby donating two electrons to the dye molecule leading to its reduction [2,12].
Nonetheless, the use of nZVI for the elimination of pollutants has some inherent constraints
such as the progressive decline in reactivity owing to surface passivation induced by the
corrosion of nZVI [13,14]. To overcome the aforementioned drawback of nZVI technology,
numerous solutions have been created; and the one that has gained momentum over the
years is depositing a second metal which serves as a catalyst on the iron surface [15].

The benefits of bimetallic nanoparticles are: greater surface area and density of re-
active sites and hindrance of the corrosion products from accumulating on ZVI reactive
surface sites [16]. Essentially, partial coverage of nZVI by metals such as Pd [17], Pt [18],
Ni [16], Cu [19], or Ag [20] leads to increased effectiveness of nZVI in multiple applica-
tions. The aforementioned catalytic metals reinforce the production of atomic hydrogen
or hydride on the surface in all iron-based bimetallic systems and alter the electronic
characteristics of nZVI, the electron donor and reducing agent [16]. Moreover, bimetallic
particle reduction rates are considerably quicker than those for nZVI alone, and they have
greater stability for degradation and avoidance, or lessening of the creation and build-up
of toxic by-products [21]. Due to the creation of an iron hydroxide layer which may delay
interaction of the reactant with the catalyst, the effectiveness of the catalyst used in the
bimetallic nanoparticle scheme decreases over time [22]. Consequently, although bimetallic
particles show increased reduction rates, trimetallic materials were studied accordingly
and showed better efficiency than bimetallic materials [14].

The aim of this research study was to synthesize and characterize Fe/Cu/Ag trimetal-
lic nanoparticles for the degradation of methyl orange dye in wastewater. While some metal
catalysts (i.e., Pt, Pd and Au) have satisfactory outcomes in laboratory-scale research for the
Fe-based bimetals [17] and trimetals [23], these are overly expensive to use in wastewater
remediation applications. Hence the need to attain a cost-effective and greatly reactive
nZVI-based trimetallic system with minimal mass loading and low-cost metal catalysts.

2. Results and Discussion
2.1. Material Characterization

The X-ray diffraction (XRD) patterns of nZVI (Fe0), Fe/Ag (5:0.1), Fe/Cu (5:1) and
Fe/Cu/Ag (5:1:0.2) nanoparticles and standard reference patterns of the metals and ox-
ides are summarized in Figure 1. The presence of zero-valent iron (Fe0) in all the XRD
spectra is marked by the reflections appearing at 2θ values of 46–47◦ representing the
body centered cubic (bcc) lattice plane (110). The massive presence of Fe2O3 peaks in the
spectra suggests that iron is extremely prone to oxidation [24]. The Fe/Ag diffractogram
shows a diffraction peak largely associated with the cubic Ag at 39.5◦ corresponding to
the (111) lattice plane. On the other hand, the Fe/Cu pattern has a minor peak at the 2θ
value of 53.5◦, corresponding to the (200) crystalline plane; which is assigned to a cubic
phase of Cu. The trimetallic particles Fe/Cu/Ag diffraction pattern is indexed mainly to
Fe0, similar to the other patterns; with the additional peaks of both Cu and Ag as observed
in the bimetallic nanoparticles’ XRD patterns. Copper is also readily oxidized, however no
significant peaks of CuO were observed in any copper-containing particles. The average
crystallite sizes for the nZVI, Fe/Ag, Fe/Cu, and Fe/Cu/Ag nanoparticles, as determined
using the Scherrer equation from the most intense common peak (36◦ 2θ), are 18.9, 27.3,
14.7, and 11.4 nm, respectively. The trimetallic crystallite sizes are smaller than the nZVI
and the bimetallic nanoparticles, suggesting a decrease in the average crystallite diameters
of Ag and Cu in the trimetallic system [25]. The study carried out by Mahmoud et al. [26]
established that the nZVI crystallite sizes were greater than those of the bimetallic Fe/Cu
because the magnetic forces between nZVI particles lead to the creation of larger nan-
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oclusters. On the other hand, the copper on the bimetallic Fe/Cu nanoparticles impedes
magnetic forces between nZVI nanoparticles, thereby leading to smaller nanoclusters [26];
hence, the smaller crystallite sizes observed for the bimetallic and trimetallic nanoparticles
in comparison to the nZVI as reported herein. Moreover, Al-Namil et al. [27] have shown
that smaller crystallite sizes have greater catalytic activity for the reduction studies.
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Figure 1. XRD patterns of nZVI, Fe/Ag (5:0.1), Fe/Cu (5:1) and Fe/Cu/Ag (5:1:0.2) nanoparticles
and the relevant standard reference patterns. (* Peaks of Fe0, α Peaks of metallic Cu and • Peaks of
metallic Ag).

Figure 2 presents the EDX data analysis of the nZVI (Fe0) and Fe/Cu/Ag nanopar-
ticles. The EDX spectrum of nZVI (Fe0) shows a peak for Fe at 6–7 keV and O at 0.6 keV
which is due to the formation of iron oxide as observed in the XRD pattern. The EDX
spectrum of Fe/Cu/Ag specifies the presence of metallic Fe, Ag, and Cu at 6–7, 2.5–3,
and 1 keV, respectively. The presence of the oxygen peak in the EDX spectra substantiated
the oxidation of Fe into corresponding oxides as shown in the XRD pattern. Additionally,
the carbon is due to the surfactant, PVP, while the nickel comes from nickel grids.

Additional characterization of the nanoparticles was conducted using XPS analysis,
which is an effective surface-sensitive analytical technique used to determine elemental
composition. The XPS survey and high-resolution spectra of each sample were measured
and the latter was used for thorough chemical analysis, these are shown in Figure 3 while
the XPS survey spectra are also detailed in the Appendix A (Figure A1). The nZVI (Fe0)
survey spectrum shows the presence of C, O, and Fe. The C is attributed to the surfactant
used (i.e., PVP) and the O emanates from Fe2O3 that was observed in the XRD results.
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All the survey spectra show C and O while Fe/Ag and Fe/Cu show Fe, Ag, and Cu.
The atomic composition of each element present is summarized in Table 1. In all samples,
there is a high percentage of C and O. The C as previously stated, is attributed to the PVP
surfactant used in the synthesis. The O is attributed to Fe2O3 and this is consistent with
the XRD data. All samples also show the presence of Fe, which was also observed in the
XRD spectra. The Fe/Ag and Fe/Cu samples show a higher atomic % of Fe as compared
to Ag and Cu. This is consistent with the ratios used. In Fe/Cu/Ag, the amount of Cu is
slightly higher than that of Fe, which is somewhat unexpected.
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Figure 2. The EDX spectra of (a) nZVI (Fe0) nanoparticles and (b) Fe/Cu/Ag (5:1:0.2).

Table 1. Atomic composition extracted from the XPS of nZVI (Fe0), Fe/Ag (5:0.1), Fe/Cu (5:1) and Fe/Cu/Ag (5:1:0.2) nanoparticles.

Sample Element Peak Binding Energy (eV) Atomic %

nZVI (Fe0)
C 288.4 41.75
O 529.6 53.59
Fe 713.9 3.47

Fe/Ag

C 287.9 40.96
O 528.6 51.42
Fe 713.6 6.20
Ag 371.07 1.42

Fe/Cu

C 288.4 41.99
O 533.6 59.96
Fe 713.9 3.32
Cu 940.9 2.73

Fe/Cu/Ag

C 283.6 50.5
O 533.6 45.58
Fe 713.6 1.68
Ag 376.3 0.22
Cu 936.3 2.02

The high-resolution Fe 2p spectrum of nZVI (Fe0) displays four peaks corresponding to
Fe0 (720.0 and 706.3 eV), Fe2O3 (Fe 2p3/2 (710.4 eV)), and Fe2O3 (Fe 2p1/2 (724 eV)) [28–30].
The Fe 2p for the bimetallic Fe/Ag and Fe/Cu as well as the trimetallic Fe/Cu/Ag were
identical. The XPS spectra shows the presence of metallic Fe, as observed in the XRD
patterns. Since XRD is a bulk technique, the overwhelming amount of Fe2O3 masks some
of the species that might be present.

The high-resolution Ag 3d spectra for Fe/Ag and Fe/Cu/Ag nanoparticles show two
peaks at 367.3 eV (Ag 3d5/2) and 374.2 eV (Ag 3d3/2), corresponding to metallic silver [31].
Furthermore, the Cu 2p high-resolution spectra of Fe/Cu and Fe/Cu/Ag show peaks
at 932.1 eV and 953.3 eV corresponding to Cu 2p3/2 and Cu 2p1/2, respectively, which
correlate to metallic copper [31]. In addition to this, there are Cu2+ peaks associated with
copper oxide. There was no overwhelming evidence of CuO in the XRD patterns [28,30,32].
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This suggests that the oxidation of copper is only surface deep. Most significantly, these
results confirm the successful synthesis of the trimetallic nanoparticles.
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Figure 3. XPS survey spectra, Fe 2p, Ag 3d and Cu 2p high-resolution spectra of nZVI (Fe0),
Fe/Ag (5:0.1), Fe/Cu (5:1), and Fe/Cu/Ag (5:1:0.2) nanoparticles.

Figure 4 displays the typical TEM micrographs of all the fabricated nanoparticles.
Both the nZVI(Fe0) and Fe-composite nanoparticles are nearly spherical in shape and
appear as noticeable chain-like agglomerates due to the enormous energy interface and
magnetic properties of Fe particles [33]. The nanoparticles all show a contrast between the
core and the shell, which is the same as the Fe/Cu bimetallic nanoparticles reported by
Wang et al. [30] and Fe/Ag bimetallic nanoparticles reported by Luo et al. [34]. From the
nanoparticle preparation method, the core is comprised of metallic iron and the shell
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consists of iron oxide coexisting with Ag, Cu, or both depending on the composition of
the particles. According to the histograms, the particle sizes for nZVI, Fe/Ag, Fe/Cu,
and Fe/Cu/Ag nanoparticles range from 40–60, 40–70, 40–70, and 60–90 nm, respectively.
It has been established that the particle size calculated by TEM is higher than the crystal-lite
size calculated by XRD [35]. This is because one particle can be composed of multiple
crystalline domains, which is why particle size is nearly always larger than crystallite
size [36].
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2.2. Performance of the Nanoparticles in Methyl Orange Degradation
2.2.1. Effect of Catalyst on the Degradation of MO Dye

The degradation of 10 mg/L MO dye was performed at room temperature using
unsupported nanoparticles at an unmodified MO dye pH of ~4.5; this was also performed
to optimize the degradation of MO using trimetallic nanoparticles. It was observed that
the color of the MO dye fades away as the degradation occurs within just a few minutes
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of stirring the MO solution in the presence of nanoparticles. The UV absorption spectra
of the MO dye solution (presented in Figure A2) showed a gradual decrease in the height
of the absorption band for MO at the wavelength of 464 nm over time; displaying the
decline in MO dye concentration in the solution. In Figure 5, it is observed that MO dye
degradation by the nanoparticles occurs rapidly. Figure 5 also showed that the degradation
efficiency of the Fe/Cu bimetallic system was higher than that of nZVI as expected and
the same observation was reported by Bransfield et al. [23]. The addition of Cu on the
surface of nZVI improved the degradation because of the synergistic effect between Cu
and Fe, which enhances the catalytic activity of the Fe/Cu system and also the degradation
capabilities [19,37]. The effective degradation of organic pollutants using Fe/Cu nanopar-
ticles, which are cost-effective, has also been reported by various researchers [21,30,38].
The degradation efficiency of Fe/Ag 5:0.1 was lower than that of nZVI. According to
Luo et al. [34], the performance of Fe/Ag nanoparticles is slower than of nZVI unless the
reaction is enhanced by ultrasonic radiation. Thus, the study showed that in the absence of
ultrasonic radiation, the reaction of Fe/Ag firstly proceeds via adsorption of the dye and
thereafter, Fe dissolves due to weakly acidic conditions, thereby releasing the adsorbed
dye molecules from the surface of the nanoparticles, leading to a decline in degradation ef-
ficiency. Additionally, the degradation efficiencies obtained with the Fe/Cu/Ag trimetallic
systems were greater than those attained with Fe/Cu, Fe/Ag, and nZVI. The degradation
efficiencies of the trimetallic nanoparticles did not increase with an increase in Ag content
as one would expect. This is attributed to the fact that at a certain point of increasing the
Ag content, the degradation efficiency is negatively influenced after reaching the critical
point [34]; in this case 5:1:0.2 was the optimum ratio for MO dye degradation using the
trimetallic Fe/Cu/Ag nanoparticles. According to Luo et al. [34], increasing the content of
Ag beyond a certain threshold could impede the production of H2 by the corrosion of iron.
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The catalytic activity of bimetallic and trimetallic nanoparticles has also been related
to properties of individual metals such as electron configuration, electronegativity, and re-
duction potential. It has been demonstrated that the elements in group 8 and 11 of the
periodic table have excellent catalytic properties owing to configuration fluctuations [39,40].
Furthermore, transition metals with unfilled d-shells, and thus presence of unpaired elec-
trons, are more catalytically active [41]. In this case, both Cu and Ag are in group 11 of
the periodic table, although they have filled d-electron shells, they are easily excited to
sp-states and catalytic activity is produced by the consequent unpaired d-electrons [41].
In addition, the electronegativity of Fe (1.83) is lower than those of Cu (1.90) and Ag (1.93);
as a result, it is easier for Fe which has the lowest electronegativity to transfer electrons to
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Cu then Ag [42]. This can also be explained by the standard reduction potential trend of
the metals: Fe (E0 = −0.447 V) < Cu (E0 = 0.34 V) < Ag (E0 = 0.80 V). It has been shown
that the increasing trend in the reduction potential of the metals on Fe core enhances the
catalytic activity of the metals [14,43]. This is because the corrosion of Fe releases electrons
that progressively travel to the Cu layer and then the Ag layer due to the increase in
reduction potential; leading to a high electron density at the Ag layer which can promote
the generation of H2 and enhance the reactivity of Fe/Cu/Ag 5:1:0.2 nanoparticles [14].

Additionally, it has been stated that the addition of lesser amounts of the second and
third metals on iron will lead to lesser agglomeration of the synthesized nanoparticles [44].
The Fe/Cu/Ag 5:1:0.2 trimetallic nanoparticles are suitable for the degradation of MO
in aqueous solution as the degradation occurs rapidly; the metals are not too costly in
comparison with certain metals used in the presence of iron (e.g., Pd and Pt) [45,46],
and there is a major delay in the formation of oxides that will hinder the degradation
of MO. The addition of Cu and Ag has the capability to stimulate the corrosion of iron,
accelerate hydrogen evolution, and produce and retain adsorbed atomic hydrogen on the
surface of the particle [34]. Moreover, like Fe, Cu also plays a critical role in the reduction
of organic dyes [47,48] and might also be directly involved in the reduction of MO in
this instance.

The comparison of surface area characteristics of the catalysts and their efficiency in
the degradation of MO dye, the latter measured by turnover number (TON) and turnover
frequency (TOF), was done and the results are summarized in Table 2. The number of
active sites was estimated using the catalyst concentration, which is equal to the number of
moles of the catalyst used [49]; the amount of catalyst added was 10 mg. This was used to
calculate the TON of the catalyst:

TON =
Amount of dye reacted (moles)
Number of active sites (moles)

(1)

Table 2. The surface area, active sites and catalyst efficiency measures of the prepared nanoparticles.

Catalyst Degradation
Efficiency (%) SBET

b (m2/g)
Number of Active

Sites (Moles) TON a TOF a (min−1)

nZVI (Fe0) 72.13 47,092 3.60 × 10−5 3.0631 0.2042
Fe/Cu 5:1 67.06 69,893 3.66 × 10−5 2.7949 0.1863

Fe/Ag 5:0.1 22.79 51,952 3.64 × 10−5 0.9561 0.0637
Fe/Cu/Ag 5:1:0.1 92.92 92,690 3.70 × 10−5 3.8345 0.2556
Fe/Cu/Ag 5:1:0.2 100.00 104,420 3.74 × 10−5 4.0879 0.2725
Fe/Cu/Ag 5:1:0.3 96.51 381,328 3.77 × 10−5 3.9095 0.2606
Fe/Cu/Ag 5:1:0.4 98.36 397,073 3.80 × 10−5 3.9498 0.2633
Fe/Cu/Ag 5:1:0.5 81.44 388,790 3.84 × 10−5 3.2428 0.2162

a TON and TOF were calculated using 10 mg catalyst loading and degradation efficiencies of the dye at 2 min reaction time. b BET
surface area.

The TOF, which describes the number of moles of MO dye that a single catalyst active
site can convert into products per unit time [50], was calculated using the following equation:

TOF =
TON

time (min)
(2)

TON, and subsequently TOF, was determined using data at 2 min, which was the
earliest point at which total MO degradation was attained (i.e., with the Fe/Cu/Ag
5:1:0.2 nanoparticles).

According to the results, the trimetallic nanoparticles had the highest amount of active
sites as compared to the nZVI and the bimetallic nanoparticles. The number of active
sites of the catalysts decreased in the following manner: Fe/Cu/Ag 5:1:0.5 > Fe/Cu/Ag
5:1:0.4 > Fe/Cu/Ag 5:1:0.3 > Fe/Cu/Ag 5:1:0.2 > Fe/Cu/Ag 5:1:0.1 > Fe/Cu 5:1 > Fe/Ag
5:0.1 > nZVI. The aforementioned observation corresponds well with the BET surface area
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values obtained. It has been reported that catalysts with a high surface area possess high
catalytic activity owing to an increase in accessible active sites [51,52]. The reported MO
degradation efficiencies of the nanoparticles increased with an increase in BET surface area
and number of active sites. However, the high surface area obtained with the trimetallic
nanoparticles with Fe:Cu:Ag ratios above 5:1:0.2 did not lead to any enhancement in the
MO degradation efficiency of the catalysts. This could imply that some of the reactive
surface sites on the trimetallic nanoparticles were inaccessible or not directly involved in
the catalytic reaction [53,54]. Moreover, adding Cu and Ag on the surface of nZVI led to an
increase in surface area of the trimetallic nanoparticles.

The TOF and TON followed the same trend as the BET surface area, number of active
sites and the degradation efficiency; in agreement with work previously reported by oth-
ers [55], with all the trimetallic nanoparticles exhibiting the highest catalyst efficiency as
measured by the TOF and TON. Furthermore, lower crystallite size has been directly linked
to a high surface area and an improved catalytic activity [56], hence the observed trend
which is in accordance with the crystallite sizes reported herein. Moreover, the Fe/Cu/Ag
5:1:0.2 nanoparticles have the highest TOF value (0.2752 min−1) amongst the trimetallic sys-
tems, stipulating that their catalytic behavior was better than the other studied trimetallic
systems, which was indeed the case as observed in Figure 5.

2.2.2. Parametric Tests on MO Dye Using Fe/Cu/Ag Nanoparticles
Effect of pH

Solution pH is known to be among the most significant variables influencing the
degradation rate of MO dye with nZVI [1]. Thus, to study the influence of pH on the
removal of MO, batch tests were performed at room temperature using Fe/Cu/Ag 5:1:0.2
nanoparticles at different pH values ranging from 3 to 9. The plot showing the effect of
initial pH on MO dye degradation is illustrated in Figure 6. The observed degradation
results at initial pH 3, 6, and 9 show that the degradation efficiency of methyl orange
improved with a decrease in pH. These results show that the degradation of MO dye
using the nZVI-based trimetallic nanoparticles is an acidic pH-driven process. This can
be attributed to the fact that at higher pH, ferrous ions dissolved from the iron surface
react with hydroxyl ions in an alkaline media, thereby producing ferrous hydroxide precip-
itation on the surface of iron invading the reactive sites and consequently inhibiting the
reaction [57,58]. On the contrary, the increase in degradation rate of MO at low pH could
be attributed to the ionization of the surface of nZVI and deprotonating of MO; the H+

promotes the reduction of MO [59]. It can therefore be conclusively specified that acidic
conditions are more favorable for the degradation process, as is expected with nZVI.
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Figure 6. Degradation efficiencies of methyl orange dye (10 mg/L) using 10 mg Fe/Cu/Ag 5:1:0.2
nanoparticles with different pH conditions at room temperature.
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Effect of Initial MO Dye Concentration

The initial concentrations of MO were evaluated for its degradation using Fe/Cu/Ag
5:1:0.2 at room temperature. As presented in Figure 7, the degradation of MO decreased as
the initial MO concentration increased. The degradation reaches 100% in 30 min for the ini-
tial concentrations of 10, 25, and 50 mg/L, but it became slower as the initial concentration
of MO increased further. At a low initial MO concentration (10 mg/L), the degradation effi-
ciency was at 100% within 1 min into the reaction whilst at an elevated initial concentration
(50 mg/L), the degradation only reached 100% after 30 min into the reaction. When the
initial concentration was increased to 100 and 200 mg/L, the degradation efficiencies were
even slower and did not reach 100% within 30 min. Moreover, for the initial MO concentra-
tion of 200 mg/L, the degradation efficiency reached saturation (86%) at 20 min reaction
time. The decline in degradation as MO concentration increases can be ascribed to adsorp-
tion competition among dye molecules on the inadequate reaction sites of the nanoparticles
at a greater concentration of MO dye [1]. Furthermore, an increase in reaction intermediates
could be produced by the higher concentration of MO reducing the active sites available
for the degradation of MO [30]. These results are in line with what other authors have
reported on the effect of initial pollutant concentration in its degradation using nZVI-based
nanoparticles. For example, Chen et al. [59] reported that an increase in dye concentration
effectuates a decrease in the removal efficiency of MO using bentonite-supported nZVI.
Moreover, studies involving bimetallic nZVI-based nanoparticle such as Fe/Ag on the
degradation of tetrabromobisphenol [34] and Fe/Cu on orange II degradation [37] also
showed similar results to what was reported above. The degradation efficiency of the
pollutants, as reported in these afore-mentioned studies, was found to be restricted by
increased initial concentration of the pollutants.
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Figure 7. Degradation efficiencies of methyl orange dye using 10 mg Fe/Cu/Ag 5:1:0.2 nanoparticles
with different initial MO concentrations (pH ~ 4.5) at room temperature.

Effect of Initial Fe/Cu/Ag Nanoparticle Dosage

The effect of nanoparticle dosage on MO was investigated with three different dosages
(4, 7, and 10 mg) at MO concentration of 10 mg/L. As depicted in Figure 8, the degradation
efficiency of MO increases with an increase in nanoparticle dosage. Higher degradation
efficiency was obtained using higher Fe/Cu/Ag 5:1:0.2 nanoparticle dosage, which was
10 mg. When 4 mg of Fe/Cu/Ag 5:1:0.2 nanoparticles was used, only 85% of the dye was
degraded in the first 10 min while the other two loadings reached 100% within 10 min.
It can be interpreted that the dosage of Fe/Cu/Ag 5:1:0.2 nanoparticles increased the
number of active sites leading to enhanced degradation of the MO dye [33].



Catalysts 2021, 11, 428 11 of 23

Catalysts 2021, 11, x FOR PEER REVIEW 12 of 25 
 

 

which was 10 mg. When 4 mg of Fe/Cu/Ag 5:1:0.2 nanoparticles was used, only 85% of 
the dye was degraded in the first 10 min while the other two loadings reached 100% within 
10 min. It can be interpreted that the dosage of Fe/Cu/Ag 5:1:0.2 nanoparticles increased 
the number of active sites leading to enhanced degradation of the MO dye [33]. 

 
Figure 8. Degradation efficiencies of 10 mg/L methyl orange dye (pH ~4.5) by Fe/Cu/Ag 5:1:0.2 
nanoparticles with varying nanoparticle dosage at room temperature. 

2.3. Catalyst Reusability Studies 
The stability and reusable capability of Fe/Cu/Ag 5:1:0.2 nanoparticles were investi-

gated in three consecutive cycles under the same experimental conditions. As presented 
in Figure 9, the degradation efficiency of MO using the nanoparticles decreases after every 
run. The results show that the effectiveness of the nanoparticles reduces in consecutive 
experiments from 100% to 54% in run 3 within 30 min. The observed results are the norm 
in catalytic reactions; for example, a study by Wang et al. [30] observed a similar trend, 
except that the depreciation in the efficiency of Fe/Cu nanoparticles was relatively slower 
as compared to that reported in this study. Similarly, Shen et al. [60] used bimetallic Fe/Cu 
nanoparticles for the removal of nitrate in water. The reusability of the Fe/Cu nanoparti-
cles was found to be relatively poor compared to when the catalyst was regenerated using 
HCl and NaBH4 to restore the zerovalent state of the catalyst metals. However, without 
the regeneration, the removal of nitrate declined from about 95% in the first cycle to about 
5% in the third cycle. Thus, the reducing efficacy during degradation can be ascribed to 
the alteration in the oxidation state of the active catalyst induced by the presence of oxy-
gen in water and catalyst contamination by methyl orange degradation byproducts 
[30,39,61]. As a result, the regeneration of the nanoparticles using the reducing agent min-
imizes the depreciation in the activity of the nanoparticles upon reuse, when compared to 
merely washing the nanoparticles in ethanol and then reusing them [62,63]. Moreover, 
according to Navalon et al. [64], catalyst reusability depends on the amount of the solid 
used and using smaller amounts of catalyst would make the reusability challenging. Thus, 
that could be the reason why the catalyst in this study only showed a great reusability 
capacity in run 2 which then decreased by about 40% in the third run. Furthermore, the 
drastic decrease in the degradation efficiency in the third run is ascribed to the exposure 
of nanoparticles to air during washing after degradation tests. Nevertheless, the great deg-

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

110

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

110

D
eg

ra
da

tio
n 

ef
fic

ie
nc

y 
(%

)

Time (min)

 4 mg
 7 mg
 10 mg

D
eg

ra
da

tio
n 

ef
fic

ie
nc

y 
(%

)

Time (min)

 

 

Figure 8. Degradation efficiencies of 10 mg/L methyl orange dye (pH ~ 4.5) by Fe/Cu/Ag 5:1:0.2
nanoparticles with varying nanoparticle dosage at room temperature.

2.3. Catalyst Reusability Studies

The stability and reusable capability of Fe/Cu/Ag 5:1:0.2 nanoparticles were investi-
gated in three consecutive cycles under the same experimental conditions. As presented in
Figure 9, the degradation efficiency of MO using the nanoparticles decreases after every
run. The results show that the effectiveness of the nanoparticles reduces in consecutive
experiments from 100% to 54% in run 3 within 30 min. The observed results are the norm
in catalytic reactions; for example, a study by Wang et al. [30] observed a similar trend,
except that the depreciation in the efficiency of Fe/Cu nanoparticles was relatively slower
as compared to that reported in this study. Similarly, Shen et al. [60] used bimetallic Fe/Cu
nanoparticles for the removal of nitrate in water. The reusability of the Fe/Cu nanoparticles
was found to be relatively poor compared to when the catalyst was regenerated using HCl
and NaBH4 to restore the zerovalent state of the catalyst metals. However, without the
regeneration, the removal of nitrate declined from about 95% in the first cycle to about 5%
in the third cycle. Thus, the reducing efficacy during degradation can be ascribed to the
alteration in the oxidation state of the active catalyst induced by the presence of oxygen
in water and catalyst contamination by methyl orange degradation byproducts [30,39,61].
As a result, the regeneration of the nanoparticles using the reducing agent minimizes the
depreciation in the activity of the nanoparticles upon reuse, when compared to merely
washing the nanoparticles in ethanol and then reusing them [62,63]. Moreover, according
to Navalon et al. [64], catalyst reusability depends on the amount of the solid used and
using smaller amounts of catalyst would make the reusability challenging. Thus, that could
be the reason why the catalyst in this study only showed a great reusability capacity in run
2 which then decreased by about 40% in the third run. Furthermore, the drastic decrease in
the degradation efficiency in the third run is ascribed to the exposure of nanoparticles to
air during washing after degradation tests. Nevertheless, the great degradation efficiency
in run 2 demonstrated that the fabricated Fe/Cu/Ag 5:1:0.2 shows potential reusability
capability. The nanoparticles might not be stable enough to be reused multiple times
without regeneration with a reducing agent.



Catalysts 2021, 11, 428 12 of 23

Catalysts 2021, 11, x FOR PEER REVIEW 13 of 25 
 

 

radation efficiency in run 2 demonstrated that the fabricated Fe/Cu/Ag 5:1:0.2 shows po-
tential reusability capability. The nanoparticles might not be stable enough to be reused 
multiple times without regeneration with a reducing agent. 

 
Figure 9. Degradation efficiencies of 10 mg/L methyl orange (pH= ~4.5) using 10 mg Fe/Cu/Ag 
5:1:0.2 nanoparticles for 30 min in different batch runs. 

2.4. Reaction Kinetics of the Degradation of Methyl Orange 
The degradation results were fitted on the following kinetic models; zeroth, first, 

pseudo-first, and second order. Based on the data acquired, the kinetics of MO degrada-
tion has more correlation with the pseudo-first order model. In which case, it is the kinetic 
measurement of a second order reaction, using an excess of one reactant in order to pro-
duce more precise results as only one analyte concentration (MO) could be accurately 
quantified [65]. Thus, the kinetics were investigated using the pseudo first-order kinetics 
model which is mostly used to evaluate the degradation of azo dyes using nZVI nanopar-
ticles in other studies [58,66], the rate (v) can be expressed as: ݒ = − ݐܥ݀݀ = ݇ௌ஺ܽ௦⍴௠(3) ܥ

where kSA, as, ⍴m are constant for a specific reaction and can therefore be expressed as a 
single parameter kobs, which is the pseudo first-order observed rate constant. Equation (3) 
can be integrated into the equation given below: ln ଴ܥܥ = −݇௢௕௦(4) ݐ

where C is the MO dye concentration at a certain time t, C0 is the initial MO dye concen-
tration and kobs is the pseudo first-order reaction observed rate constant which can be de-
termined from the slope of the plot lnC/C0 versus time (min). The regression lines were 
achieved from the aforementioned plot with a correlation coefficient (R2) of over 0.865 for 
all three parameters as shown in Table 3; which confirms that the degradation of MO by 
Fe/Cu/Ag 5:1:0.2 fitted the pseudo first-order kinetic model. The rate constant (kobs) de-
creases with an increase in pH in the following order: pH 3 (0.7177 min−1) > pH 6 (0.3930 
min−1) > pH 9 (0.2353 min−1) (Figure 10a and Table 3). It is therefore clear that the initial 
solution pH is a significant parameter that affects the kinetics in the degradation of methyl 
orange dye by Fe/Cu/Ag 5:1:0.2 nanoparticles. Furthermore, Figure 10b shows the effect 
of nanoparticle dosage on the kinetics of MO dye degradation by Fe/Cu/Ag 5:1:0.2 nano-
particles. The rate constant increases linearly with an increase in nanoparticle dosage in 

0 5 10 15 20 25 30
0

10
20
30
40
50
60
70
80
90

100
110

D
eg

ra
da

tio
n 

ef
fic

ie
nc

y 
(%

)

Time (min)

 Run 1
 Run 2
 Run 3

 

 

Figure 9. Degradation efficiencies of 10 mg/L methyl orange (pH= ~ 4.5) using 10 mg Fe/Cu/Ag
5:1:0.2 nanoparticles for 30 min in different batch runs.

2.4. Reaction Kinetics of the Degradation of Methyl Orange

The degradation results were fitted on the following kinetic models; zeroth, first,
pseudo-first, and second order. Based on the data acquired, the kinetics of MO degradation
has more correlation with the pseudo-first order model. In which case, it is the kinetic
measurement of a second order reaction, using an excess of one reactant in order to produce
more precise results as only one analyte concentration (MO) could be accurately quanti-
fied [65]. Thus, the kinetics were investigated using the pseudo first-order kinetics model
which is mostly used to evaluate the degradation of azo dyes using nZVI nanoparticles in
other studies [58,66], the rate (v) can be expressed as:

v = −dC
dt

= kSAasρmC (3)

where kSA, as, ρm are constant for a specific reaction and can therefore be expressed as a
single parameter kobs, which is the pseudo first-order observed rate constant. Equation (3)
can be integrated into the equation given below:

ln
C
C0

= −kobst (4)

where C is the MO dye concentration at a certain time t, C0 is the initial MO dye con-
centration and kobs is the pseudo first-order reaction observed rate constant which can
be determined from the slope of the plot lnC/C0 versus time (min). The regression lines
were achieved from the aforementioned plot with a correlation coefficient (R2) of over
0.865 for all three parameters as shown in Table 3; which confirms that the degradation
of MO by Fe/Cu/Ag 5:1:0.2 fitted the pseudo first-order kinetic model. The rate constant
(kobs) decreases with an increase in pH in the following order: pH 3 (0.7177 min−1) > pH 6
(0.3930 min−1) > pH 9 (0.2353 min−1) (Figure 10a and Table 3). It is therefore clear that the
initial solution pH is a significant parameter that affects the kinetics in the degradation of
methyl orange dye by Fe/Cu/Ag 5:1:0.2 nanoparticles. Furthermore, Figure 10b shows the
effect of nanoparticle dosage on the kinetics of MO dye degradation by Fe/Cu/Ag 5:1:0.2
nanoparticles. The rate constant increases linearly with an increase in nanoparticle dosage
in the following order: 4 mg (0.1371 min−1) < 7 mg (0.2408 min−1) < 10 mg (0.6663 min−1)
due to an increased reactive surface area [67]. Lastly, the effect of initial MO concentration
on degradation is shown in Figure 10c. The rate constant obtained decreases with an in-
crease in dye concentration: 10 mg/L (0.6663 min−1) > 25 mg/L (0.4576 min−1) > 50 mg/L
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(0.1798 min−1) > 100 mg/L (0.1714 min−1) > 200 mg/L (0.1420 min−1). Similar results as
above were also reported in previous studies [57,66,67].

Table 3. Summary of R2 and pseudo first-order rate constant of the studied parameters in MO
degradation using Fe/Cu/Ag 5:1:0.2.

Parameters R2 kobs (min−1)

pH
3 a 0.897 0.7177
6 0.996 0.3930
9 0.873 0.2353

Nanoparticle dosage (mg)
4 0.934 0.1371
7 0.987 0.2408

10 a 0.865 0.6663

Initial dye
concentrations

(mg/L)

10 a 0.865 0.6663
25 0.995 0.4576
50 0.901 0.1798
100 0.964 0.1714
200 0.941 0.1420

a The rate constants were calculated after 2 min due to the rapid degradation as opposed to the other conditions.

1 

 

 

Figure 10. Pseudo first-order kinetics of MO degradation using Fe/Cu/Ag 5:1:0.2 nanoparticles varying the (a) pH,
(b) nanoparticle dosage and (c) Initial MO concentration.

2.5. Degradation Products and Pathway

The degradation products of methyl orange dye by the Fe/Cu/Ag nanoparticles
were identified using LC-MS analysis. Figure 11 shows the total mass spectrograms of
MO at 0, 5, and 30 min of degradation by Fe/Cu/Ag 5:1:0.2 nanoparticles. It can be
observed that at 0 min (Figure 11a), there is a characteristic peak at m/z 306 that is assigned
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to the positive ion of the MO dye. However, the chromatogram of the degraded MO
at 1 min showed a complete disappearance of the MO peak at 2.02 min retention time
(Figure A3). This observation is a confirmation of the UV-vis (Figure A2) results that
presented 100% degradation efficiency within 1 min of contact with the nanoparticles.
Thus, the mass spectrogram at 5 min (Figure 11b) of degradation shows new m/z peaks at
121, 136, 157, and 172 that correspond to the intermediate products from MO degradation.
The products that were formed are sulfanilic acid at m/z 172 which further fragmented into
benzenesulfonic acid at m/z 157 after losing an amino group (NH2) and N,N-dimethyl-p-
phenylenediamine at m/z 136 which further fragmented into N,N-dimethylbenzenenamine
at m/z 121 after losing an amino group (NH2). Figure 11c shows the degradation at 30 min
and only one product at m/z 157 (benzenesulfonic acid) is observed and decreased by
about 50% of the intensity observed at 5 min. The peak at m/z 282 was unidentified as it
does not correspond to any of the masses of the MO, any other known MO degradation
byproducts, the catalyst used in the experiment, or the combination of the catalyst and
the products. Thus, it can be stipulated that it is an anomalous peak emanating from
impurities from the column, metal ions such as Cu or Fe from the sample itself (in this
case) or the autosampler [68,69]. Moreover, the observed results are in line with what
other researchers have reported for the degradation of MO using Fe-based particles [58,70].
However, in this study, MO was completely degraded within 1 min into the reaction, which
was faster than previously reported MO degradation results using Fe-based bimetallic
nanoparticles [71]. From the observed results, it can be concluded that MO degradation
pathway possibly involved the symmetric cleavage of the azo bond (–N=N–); producing
sulfanilic acid and N,N-dimethyl-p-phenylenediamine, which was followed by further
degradation of the intermediate products. As shown in Figure 12, unlike MO, the products
from MO degradation might be further mineralized into CO2 and H2O in the presence of
other parameters such as •OH radicals and high temperature [19,72].
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3. Materials and Methods
3.1. Materials

The precursor for iron nanoparticles: iron sulphate heptahydrate (FeSO4·7H2O,
≥99.0%), the reducing agent: sodium borohydride (NaBH4, ≥98.0%), the surfactant
polyvinylpyrollidone (PVP, MW 40,000), hydrochloric acid (HCl, 37.0%), and sodium
hydroxide pellets (NaOH ≥ 98.0%) were all obtained from Sigma Aldrich, Johannesburg,
South Africa. The silver nanoparticles precursor: silver nitrate (AgNO3 > 99.5% purity)
was obtained from the Radchem, Johannesburg, South Africa. The copper nanoparticles
precursor: cupric sulphate pentahydrate (CuSO4·5H2O) and methyl orange dye were both
from ACE Chemicals, Johannesburg, South Africa. Absolute ethanol (99.9%) was obtained
from Kayla Africa Suppliers and Distributors, Johannesburg, South Africa. All the chemi-
cals and materials were used without additional purification. Deionized water was used
throughout the entire experimental process.

3.2. Synthesis of the Nanoparticles

The nanoparticles were synthesized using the sodium borohydride chemical reduction
method. In the preparation of Fe/Cu/Ag nanoparticles, 1 g of PVP was first weighed in a
three-neck round-bottom flask (500 mL) containing a stirrer bar with 50 mL ethanol and
50 mL of water. The mixture was placed on a stirrer plate and supplied with a fixed stream
of nitrogen gas to eliminate oxygen that could interfere with the reaction by forming oxides.
After 30 min, 5.57 g of FeSO4·7H2O was added into the mixture and stirred for a further
30 min. Then 0.945 g of NaBH4 was added into a 25 mL volumetric flask and filled up
with high purity water and drop-wisely added into the FeSO4·7H2O mixture to produce
black nanoscale zerovalent iron (Fe0) nanoparticles. Thereafter, 1 g of CuSO4·5H2O and
0.068 g of AgNO3 were both added into a 100 mL volumetric flask and filled to the mark
with high purity water. The solution was added into the iron nanoparticles after 30 min
and continually stirred. After a further 30 min, NaBH4 solution prepared as above was
added into the mixture to produce Fe/Cu/Ag 5:1:0.2 nanoparticles. After stirring for a
further 30 min, the nanoparticles were removed from the stirrer and subsequently placed
into centrifuge tubes. The nanoparticles were washed 3 times in ethanol to remove excess
nanoparticle precursors and NaBH4, and residual PVP. After washing, the nanoparticles
were dried at 25 ◦C overnight under a vacuum. For optimization purposes, the amount
of silver was varied and the following Fe/Cu/Ag molar ratios were prepared: 5:1:0.1,
5:1:0.2, 5:1:0.3. 5:1:0.4, and 5:1:0.5. Bimetallic Fe/Cu (5:1) and Fe/Ag (5:0.1) as well as nZVI
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nanoparticles were also synthesized as above. Figure 13 shows a summary of the addition
of the precursors for each of the nanoparticles synthesized.
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3.3. Degradation Studies and Sample Analysis

A series of batch degradation experiments of methyl orange dye (MO) were conducted
to determine the catalytic activity of the nanoparticles. All degradation tests were carried
out at room temperature in an open-batch system. About 50 mL of MO dye solution
(10 mg/L) was poured into a 100 mL beaker equipped with a stirrer bar and stirred on a
stirrer plate at 250 rpm for 30 min. Thereafter, 10 mg of the prepared nanoparticles was
added onto the MO dye and stirred at 250 rpm. Samples were drawn into small centrifuge
tubes at the following time intervals: 1, 2, 3, 4, 5, 10, 15, 20, and 30 min. These samples
were then centrifuged for about 15 min to isolate the prepared nanoparticles from the
supernatant. The used particles were collected using a centrifuge then washed in ethanol
3 times and dried in a vacuum oven for reusability studies. For the parametric tests, the pH,
nanoparticle dosage, and initial MO dye concentration were varied. The pH of the solution
was modified from 3 to 9 using HCl and NaOH. The nanoparticle dosages studied were 4, 7,
and 10 mg. While the initial dye concentrations studied were 10, 25, 50, 100, and 200 mg/L.
The parametric tests were performed under the same experimental conditions as above.
The degradation efficiency was determined using the following:

Degradation (%) =
A0 − At

A0
× 100 (5)

where A0 is the MO dye absorbance before degradation and At is the MO dye absorbance
after certain time t.

3.4. Characterization

Powder X-ray Diffraction (p-XRD) measurements of the nanoparticles were conducted
using Bruker AXS D8 (Bruker, Johannesburg, South Africa) X-ray advanced powder diffrac-
tometer operating at 40 kV and 35 mA (λ = 1.78897 Å). The diffraction patterns were
recorded with a scanning speed of 0.02◦/s in the 2θ range of 10 to 75◦ diffraction angle.
The powder diffractometer was fitted with a nickel filter and a LinxEye detector (Bruker,
Johannesburg, South Africa). The crystallite sizes (D) of the synthesized nanoparticles were
calculated using the Scherrer equation given below:

D =
Kλ

βCosθ
(6)
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where K is the proportionality constant, λ is the wavelength of the diffractometer, θ is the
Bragg’s angle (in radians), and β is the peak’s full width at half maximum (FWHD) [36,73].

An X-ray photoelectron spectroscopy (XPS) analysis of the nanoparticles was per-
formed using a Thermo Fisher Scientific ESCAlab 250Xi (Thermo Fisher Scientific, Johan-
nesburg, South Africa) with monochromatic Al kα at 1486.7 eV running at 300 W of power
to identify different elements in the nanoparticles. The hemispherical electron energy
analyzer with a spot size of 100 µm worked in the constant analyzer energy (CAE) mode
at an analyzer pass energy of 100 eV for the wide range XPS spectra and 20 eV for the
high-resolution narrow scan of each element.

Transmission Electron Microscopy (TEM) analyses coupled with Energy Dispersion
X-ray spectroscopy (EDX) were conducted on a JEOL JEM-2100F (JEOL, Tokyo, Japan) field
emission electron microscope. The samples were suspended in ethanol by ultrasonication
and then dropped on a 300 mesh formvar-coated nickel grid. The particle sizes of the
nanoparticles observed on TEM were estimated using ImageJ.

The dye solutions were analyzed using a Thermo Fisher Scientific, Multiskan GO,
UV-vis Microplate Spectrophotometer (Thermo Fisher Scientific, Vantaa, Finland). Methyl
orange concentrations in the solutions were quantified by the use of the absorption peak at
wavelength of 464 nm.

The surface areas of the nanoparticles were determined using the Brunauer-Emmet-
Teller (BET) method from Nitrogen physisorption analysis conducted at −196 ◦C (77 K)
using a Micromeritics TriStar 3000 V6.05 A (Micromeritics Instrument Corporation, Nor-
cross, GA, USA).

The identification of methyl orange degradation products was performed on a Bruker
Compact Q-TOF high resolution Liquid Chromatography-Mass Spectroscopy (LC-MS)
(Bruker, Johannesburg, South Africa). Separations were obtained under isocratic condi-
tions using a Luna Omega 1.6 µm C18 column (50 × 2.1 mm) (Separations Scientific SA
(Pty) Ltd., Johannesburg, South Africa) and a mobile phase composed of 0.1% formic acid,
in both acetonitrile and water; flow rate 0.3 mL/min. A 20 µL volume of sample was
injected using the autosample system. The MS was coupled with an electrospray ioniza-
tion source (ESI) and ran at positive polarity. The ESI conditions were in the following
manner: capillary voltage = 4500 V, endplate offset = −500 V, nebulizer pressure = 1.8 bar,
drying gas flow = 9.0 L/min, temperature = 220 ◦C and mass range = 50–1300 m/z.

4. Conclusions

In this work, Fe/Cu/Ag 5:1:0.2 trimetallic nanoparticles were successfully synthesized
using the sodium borohydride reduction method and characterized by surface sensitive
and surface specific techniques. The TEM images showed a chain-like structure with
core-shells that consist of iron in the core and a mixture of Cu, Ag, and Fe oxides in the
shell. Experiments displayed that the degradation efficiency of the Fe/Cu/Ag trimetallic
nanoparticles (100% in 1 min) was higher than that of the bimetallic Fe/Cu (100% in 10 min)
and Fe/Ag (68% in 15 min) nanoparticles, proving that trimetallic nanoparticles provide
faster degradation efficiencies of the MO dye compared to their bimetallic counterparts.
The catalytic efficiency of the nanoparticles was proposed using the number of active
sites and TOF in dye degradation; the optimal trimetallic system Fe/Cu/Ag 5:1:0.2 had
a TOF value of 0.2752 min−1. Moreover, batch experiments illustrate that initial MO dye
concentration, nanoparticle dosage, and solution pH did affect the degradation efficiency
of MO using the Fe/Cu/Ag nanoparticles. A lower pH value, high nanoparticle dosage,
and lower initial MO concentration were more favorable for the catalytic degradation of MO
dye. The degradation followed a pseudo first-order kinetic model. Furthermore, the pseudo
first-order rate constant increased with a decrease in pH and initial MO dye concentration
and increased with an increase in nanoparticle dosage. The results of LC-MS show that the
degradation of methyl orange occurs within 1 min, yielding aromatic products that are more
prone to mineralization. Lastly, the Fe/Cu/Ag trimetallic nanoparticles could be potentially
reusable when used in larger quantities and have in this study been demonstrated to
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possess the capability to be used for remediation of textile dye wastewater. The application
of these nanoparticles in industrial scale applications will require the nanoparticles to be
immobilized in a membrane substrate to reduce the possibility of agglomeration, owing to
the high magnetic properties, and enhance reusability and recoverability.
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Figure A1. XPS narrow scan spectra of the nanoparticles: (a) Fe0/nZVI-Fe2p, (b) Fe/Ag (5:0.1)-Fe2p and Ag3d, (c) Fe/Cu
(5:1)-Fe2p and Cu2p and (d) Fe/Cu/Ag (5:1:0.2)-Fe2p, Cu2p and Ag3d.
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Figure A2. UV-vis absorption spectra of MO dye degradation by nZVI, bimetallic Fe/Ag (5:0.1), bimetallic Fe/Cu (5:1) and
trimetallic Fe/Cu/Ag (5:1:0.1), (5:1:0.2), (5:1:0.3), (5:1:0.4) and (5:1:0.5) nanoparticles for 30 min.
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Figure A3. Mass chromatogram of methyl orange solution (a) before degradation at 0 min and (b) after 1 min degradation 
by Fe/Cu/Ag 5:1:0.2 nanoparticles. 
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