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Abstract: The development of a heterogeneous catalyst through the combination of novel carrier
and powerful catalytic active sites is of particular interest. Herein, the successful integration of an
N-Heterocyclic carbene (NHC) moiety into a covalent organic framework (COF) was achieved by cou-
pling 4,4′,4′ ′,4′ ′ ′-(pyrene-1,3,6,8-tetrayl) tetraaniline (PyTTA) and equimolar 4,7-bis(4-formylphenyl)-
1-methyl-1H-benzimidazole (IM) and 2′3′5′6′-tetrafluoro-[1,1′:4′,1′ ′-terphenyl]-4,4′-dicarbaldehyde
(4F) followed by ionization with 1-bromobutane (C4H9Br) and then deprotonation upon addition of
a base. The resulting material exhibited promising heterogeneous catalytic activity towards trans-
esterification reaction of glycerol with dialkyl carbonate. Moreover, good recyclability granted no
substantial loss of activity upon five cycles. Combination of COFs and NHCs might synergize their
characteristics, thus providing more possibilities for creating new patterns of catalytic reactivity.

Keywords: covalent organic framework; carbene; catalyst; glycerol; transesterification

1. Introduction

Covalent organic frameworks (COFs) are an emerging class of crystalline porous
polymer that are composed of organic units linked by reversible covalent bonds or, less
commonly, irreversible covalent bonds [1–6]. These materials typically feature large surface
areas, well-defined pores, predesignable topological structures, and easy modification,
making them intriguing materials for a variety of potential applications pertaining to gas
storage/separation [7–13], catalysis [14–26], proton, or ion conduction [27–36], optoelec-
tronics [37–42] and environmental remediation [43–47]. Most COFs for catalysis are con-
structed through incorporating an existing, powerful, homogeneous catalyst into a linker,
which can be achieved through either a “bottom-up” strategy or post-synthetic modification
strategy [48,49]. A variety of catalytic active species, including metal ions [15,19,21,50–53]
or nanoparticles [54–58], chiral catalyst [23,59], and ionic liquids [60–62] have been suc-
cessfully introduced into the framework to obtain catalytic COF materials that exhibited
excellent catalytic performance in various organic reactions, such as Suzuki–Miyaura cou-
pling [15], Michael addition reaction [63], Heck reaction [64], Henry reaction [65], and some
cascade reactions [21,66,67]. Besides, a π-electronic COF was developed as an activator to
facilitate Diels–Alder reaction [68].

N-Heterocyclic carbenes (NHCs) are another class of powerful catalysts that would be
appealing to feature in COFs. In homogeneous catalysis, they are found to be highly effec-
tive for a broad range of rearrangement, addition, and group-transfer reactions entailing
carbon–carbon, carbon–nitrogen, and carbon–oxygen bond formation or deletion [69–73].
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The immobilization of NHCs not only broadens their application range but also pro-
vides new solutions for challenges in catalytic and synthetic chemistry [74], for instance,
transforming reactions from homogeneous into heterogeneous catalysis enables effective
catalyst/product separation for reuse, especially when separation and waste disposal are
high-cost. In a variety of catalysis carriers, silica- (i.e., zeolites) and carbon-based (i.e.,
graphene, carbon nanotubes) materials are the most frequently used Supporting Materials.
Recently, a growing interest in the use of metal–organic frameworks (MOFs) as carriers
for NHC immobilization emerges as they enable the uniform distribution of NHC active
sites in a controllable way [75–78]. However, MOFs are subjected to degradation upon
the addition of bases required to deprotonate heterocyclic carbon atoms or unwanted
recruitment of metal ions at the intended carbene sites during the syntheses of MOFs [74].

COFs are constructed from organic building units linked by strong covalent bonds,
which can essentially avoid the aforementioned problems met by MOFs. As such, the
incorporation of NHCs into COF skeletons will provide an intriguing strategy for the
development of heterogeneous NHC catalysts, especially considering the unique features
of COFs, i.e., large surface area, flexible regulation of pore size, shape, and size distribution,
as well as a one-dimensional (1D) open channel structure that facilitates fast diffusion
of substances. In addition to the fundamental advantage of heterogeneous catalysts in
product separation, we envisage that using COFs as catalytic carriers for the immobilization
of NHCs would (1) endow the chemical reactions with shape-, size-, chemo-, or enantio-
selectivity owing to well-defined pore environment; (2) allow spatial separation of multiple
catalytic sites in a framework that generally cannot co-exist compatibly in homogeneous
systems (like NHCs and Lewis acidic metal ions), thereby providing more possibilities
for creating new patterns of catalytic reactivity; (3) enhance catalyst reactivity due to co-
operative catalysis character of multiple catalytic sites. With this in mind, we report on
the post-synthetic modification strategy of a COF for NHC functionalization. Considering
that nucleophilic N-heterocyclic carbenes are efficient catalysts for transesterification re-
actions in homogeneous catalytic systems [79,80], we investigated the transesterification
of glycerol with dialkyl carbonates using in situ generated NHC-functionalized COF as
a heterogeneous catalyst. It was found that the NHC-functionalized COF also presented
its effectiveness in transesterification. Note that NHC-based COFs have recently been
reported and exhibited outstanding catalytic performance in carboxylation reaction [81]
and hydrogenation of reaction [82]. However, noble metals were decorated in these studies.
It is the first time that a metal-free NHC-functionalized COF was reported as a catalyst in
this work.

2. Results and Discussion
2.1. Synthesis and Characterization of COFs

An imine-linked COF, IM4F-Py-COF, was initially synthesized via a three-component
condensation reaction, in which 4,4′,4′ ′,4′ ′ ′-(pyrene-1,3,6,8-tetrayl) tetraaniline (PyTTA) was
used as the vertices and two linear dialdehyde monomers, namely 4,7-bis(4-formylphenyl)-
1-methyl-1H-benzimidazole (IM) and 2′3′5′6′-tetrafluoro-[1,1′:4′,1′ ′-terphenyl]-4,4′-dicarbal
dehyde (4F), were used as edges (Scheme 1). The molar ratio of IM to 4F was set at 1:1
because fluoro-substituted and non-substituted units at an equimolar ratio would produce
the strongest self-complementary interlayer interactions [83]. As a control, 4F-Py-COF was
also prepared through the condensation of 4F and PyTTA, i.e., only 4F was used as edges.
Post-synthetic modification of IM4F-Py-COF was achieved through the quaternization
reaction of benzimidazole groups on the skeleton with 1-bromobutane (C4H9Br) to produce
ionic BMIM4F-Py-COF, which was then transformed into NHC-functionalized NHC-Py-
COF in the presence of NaCO3. In other words, BMIM4F-Py-COF is a pre-catalyst in this
research. Each benzimidazole framework can be essentially treated as a discrete molecule
to undergo a reaction normally performed in molecular organic chemistry, providing a
completely different framework material. The catalytic performance of the resulting NHC-
Py-COF was then evaluated by the transesterification reaction of glycerol with dialkyl
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carbonates and excellent catalytic activity and good recyclability were observed for the
NHC-Py-COF.
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Scheme 1. Synthesis of NHC-Py-COF. 
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8.2°, 10.9°, 13.7°, and 23.2°, which were attributed to the (110), (020), (220), (330), (400), 
(550), and (001) facets, respectively (Figure 1a, red curve). The use of lattice modeling 
(Figure 1a, magenta curve) and Pawley refinement processes produce an eclipsed AA 
stacking model that reproduced the PXRD pattern very well with Rwp of 2.9% and Rp of 
1.6% (Figure 1a, black curve). The Pawley refinement using the unit cell parameters of a = 
49.83 Å, b = 42.60 Å, c = 3.93 Å, and α = β = γ = 90°, confirmed the peak assignment, as 
evidenced by the negligible difference (Figure 1a, blue curve). By contrast, an alterna-
tively staggered AB model did not match the observed data (Figure 1a, olive curve). A 
schematic arrangement structure was shown in Figure 1b. Moreover, identical PXRD 
patterns were also observed for BMIM4F-Py-COF and 4F-Py-COF, suggesting that these 
three COFs possess similar crystal structures (Figure 2). The slight decrease in the dif-
fraction peak intensity of BMIM4F-Py-COF was attributed to the occupation of the pores 
by the grafted n-butyl groups. 
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The crystalline nature of all the COFs was confirmed by powder X-ray diffraction
(PXRD) measurements. IM4F-Py-COF exhibited strong diffraction peaks at 2.8◦, 3.8◦, 5.5◦,
8.2◦, 10.9◦, 13.7◦, and 23.2◦, which were attributed to the (110), (020), (220), (330), (400),
(550), and (001) facets, respectively (Figure 1a, red curve). The use of lattice modeling
(Figure 1a, magenta curve) and Pawley refinement processes produce an eclipsed AA
stacking model that reproduced the PXRD pattern very well with Rwp of 2.9% and Rp of
1.6% (Figure 1a, black curve). The Pawley refinement using the unit cell parameters of
a = 49.83 Å, b = 42.60 Å, c = 3.93 Å, and α = β = γ = 90◦, confirmed the peak assignment, as
evidenced by the negligible difference (Figure 1a, blue curve). By contrast, an alternatively
staggered AB model did not match the observed data (Figure 1a, olive curve). A schematic
arrangement structure was shown in Figure 1b. Moreover, identical PXRD patterns were
also observed for BMIM4F-Py-COF and 4F-Py-COF, suggesting that these three COFs
possess similar crystal structures (Figure 2). The slight decrease in the diffraction peak
intensity of BMIM4F-Py-COF was attributed to the occupation of the pores by the grafted
n-butyl groups.
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 Figure 1. (a) PXRD patterns of IM4F-Py-COF. Observed XRD pattern (red) and profiles simulated using the Pawley
refinement (black), their difference (blue), AA-stacking (magenta), and AB-stacking (olive) modes of the IM4F-Py-COF;
(b) Schematic arrangement structure of IM4F-Py-COF.
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FT-IR spectroscopy was used to characterize the formation and modification of the
COFs. As shown in Figure 3, a strong characteristic stretching peak at 1622 cm–1 was
observed for all COFs, revealing imine (–C=N–) linkages of these COFs. Besides, a strong
peak appeared at 980 cm–1, which can be ascribed to the –C–F– stretching vibration. In
IM4F-Py-COF and BMIM4F-Py-COF, the peak at 1072 cm–1 was due to the –C–N– stretching
vibration, which was absent in 4F-Py-COF. A new peak that appeared at 2956 cm–1 in
BMIM4F-Py-COF was ascribed to the characteristic stretching of –CH2–, indicating the
successful grafting of n-butyl groups onto the channel walls.
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The porous properties of all the COFs were characterized by nitrogen adsorption–
desorption isotherms measured at 77 K. As shown in Figure 4a, the three COFs exhibited
the typical type-IV adsorption isotherms, indicative of mesoporous characteristics. The BET
surface areas were measured to be 1930, 1450, and 1326 m2 g−1, and the pore widths were
calculated to be 3.43, 3.34, and 3.31 nm for 4F-Py-COF, IM4F-Py-COF, and BMIM4F-Py-
COF, respectively (Figure 4b–d). Their corresponding total pore volumes were calculated
to be 1.82, 1.11, and 0.65 cm3 g−1, respectively (Table 1). Based on the PXRD and ad-
sorption isotherm results, it is evident that the ordered framework structure remained
after modification.
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Figure 4. N2 adsorption-desorption isotherms (a) and their pose size distribution of IM4F-Py-COF
(b), BMIM4F-Py-COF (c), and 4F-Py-COF (d) recorded at 77 K, respectively.

Table 1. Porous properties of 4F-Py-COF, IM4F-Py-COF, and BMIM4F-Py-COF.

COFs SBET
(m2 g−1)

Pore Width
(nm)

Total Pore Volume
(cm3 g−1)

4F-Py-COF 1930 3.43 1.82
IM4F-Py-COF 1450 3.34 1.11

BMIM4F-Py-COF 1326 3.31 0.65

The thermal behavior of the three COFs was detected by thermogravimetric analysis
(TGA). It can be seen from Figure 5 that all the materials decomposed at a temperature
above 450 ◦C, indicating their good thermal stability. The decomposition temperature
of IM4F-Py-COF is higher than 4F-Py-COF. This result suggests that strong interlayer
interaction stemming from a fluoro-substituted and non-substituted unit combination
leads to high thermal stability. After the ionization modification, the thermal stability
slightly decreased, as reflected by the weight loss at ca. 200 ◦C, which may be attributed
to the decomposition of an ionic moiety attached to the channel walls. However, the
frameworks still remain at high thermal stability (>450 ◦C). Therefore, it is practicable for
BMIM4F-Py-COF to be used as a pre-catalyst for the transesterification of glycerol with
dialkyl carbonates.
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The use of 1-alkylimidazlium type ionic liquid and CO2 in the presence of a base as a
precatalyst for carbene has been widely reported and the formed carbene catalysts exhibited
excellent catalytic performance in carboxylation reaction [84], reduction reactions [85], and
cycloaddition reaction [86]. Moreover, the NHC-functionalized polymer was also used
for reversible fixation-release of CO2 [87]. During these reactions, an intermediate N-
heterocyclic carbene (NHC)-CO2 zwitterionic adduct was formed in situ that was then
subjected to nucleophilic substitution reaction to give final products due to its strong
σ-donor character. In our case, although benzimidazolium moiety was integrated into the
skeleton of COF, we assume that the deprotonation to form NHC in the heterogeneous
system could also happen just like in a molecular solution.

2.2. Catalytic Performance of COFs.

The catalytic activity of the COF was tested in the transesterification reaction of
glycerol with dialkyl carbonates by the in situ generated NHC-Py-COF catalyst [88,89].
The reactions were performed at 70 ◦C, and the reaction time was 8 h. In these reactions,
a 5 mol% NHC-Py-COF catalyst, generated through the addition of 2.5 mol% Na2CO3
into BMIM4F-Py-COF, was used. The catalytic performance is summarized in Table 2.
The transesterification of glycerol with dimethyl carbonate (DMC) was used as a model
reaction. The reaction cannot proceed without a catalyst (Table 2, entry 1), which is in
accordance with previously reported literature [90,91]. On the contrary, high conversion
(99%) and yield (96%) were obtained when NHC-Py-COF was used as a catalyst (Table 2,
entry 2). A similar result was also observed for the transesterification reaction of glycerol
with diethyl carbonate (96% for both conversion and yield, Table 2, entry 3). Such high
catalytic activity is comparable to that of NHC-[BMIM]Br (Table 2, entry 4), suggesting that
the heterogeneous NHC-Py-COF catalyst possesses an excellent catalytic ability that can
only be achieved by a corresponding homogenous counterpart. In addition, [BMIM]Br,
IM4F-Py-COF, and 4F-Py-COF were tried to catalyze the model reaction, no product can
be detected, indicating that the reaction was catalyzed by NHC-Py-COF (Table 2, entry
5–7). The separation and recyclability of the catalyst are further investigated for this
heterogeneous reaction. After each cycle, the NHC-Py-COF could be simply regenerated
by centrifugation. As shown in Table 2, entry 8–12, the catalyst NHC-Py-COF could be
reused at least 5 times without significant loss of its catalytic activity.

Table 2. Transesterification of glycerol with dialkyl carbonates over NHC-Py-COF. [a].
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Entry Catalyst Substrate (R=) Conversion [b] (%) Yield [b] (%)

1 Blank CH3 — —
2 NHC-Py-COF CH3 99 96
3 NHC-Py-COF CH2CH3 96 96
4 NHC-[BMIM]Br CH3 99 99
5 [BMIM]Br CH3 — —
6 IM4F-Py-COF CH3 — —
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8 [c] NHC-Py-COF CH3 99 95
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11 [f] NHC-Py-COF CH3 97 94
12 [g] NHC-Py-COF CH3 95 93

[a] Reaction condition: catalyst 5 mol%, glycerol (2.5 mmol), dialkyl carbonate (7.5 mmol), 70 ◦C, 8h. [b] Determined
by GC and confirmed by 1H NMR analysis. [c–g] Cycle from one to five times, respectively.
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Based on our experiments and previous literature, we propose the following mech-
anism for this reaction (Scheme 2). Take DMC as an example, in situ generated carbene
on the skeleton of COF attacks the carbon of the carbonyl group of DMC, leading to the
cleavage of one methoxy anion (Step 1), that in turn deprotonates the primary alcohol
group of glycerol (Step 2). The generated alkoxide then attracts the carbonyl group on the
1-butyl-3-methylimidazole complex. As a result, the other methoxy anion is lost (Step 3).
This methoxy anion then deprotonates the secondary alcohol group (Step 4), giving an
alkoxide attached to the 1-butyl-3-methylimidazole complex. This alkoxide then attacks
the carbonyl carbon of the complex to produce the product and meanwhile regenerates the
active carbene species (Step 5).

Scheme 2. Proposed reaction mechanism of the transesterification of glycerol and DMC.

3. Experimental
3.1. Materials

All starting materials and solvents, unless otherwise specified, were obtained from commer-
cial resources and used without further purification. Three building units, 4,4′,4′′,4′′′-(pyrene-
1,3,6,8-tetrayl)tetraaniline (PyTTA), 4,7-bis(4-formylphenyl)-1-methyl-1H-benzimidazole (IM),
and 2′3′5′6′-tetrafluoro-[1,1′:4′,1′′-terphenyl]-4,4′-dicarbaldehyde (4F) were synthesized accord-
ing to published procedures [92–94]. All reactions were performed at ambient laboratory
conditions, and no precautions were taken to exclude oxygen or atmospheric moisture un-
less specified.

3.2. Synthesis

Synthesis of IM4F-Py-COF. PyTTA (21.67 mg, 0.04 mmol), IM (13.76 mg, 0.04 mmol),
and 4F (14.32 mg, 0.04 mmol) were placed in a glass ampule vessel (10 mL), followed by
adding 2 mL of 1,2-dichlorobenzene as a solvent. The mixture was sonicated for 10 min
and 0.2 mL of 6.0 M acetic acid was rapidly added. The vessel was then flash-frozen in
liquid nitrogen and degassed by three freeze-pump-thaw cycles. The internal pressure of
the vessel was controlled below 5 Pa. The system was rapidly sealed with a flame, and then
heated at 120 ◦C for 3 days. The resulting precipitate is filtered out, washed thoroughly
with anhydrous THF and acetone to give a yellow colored powder, which was dried at
100 ◦C under vacuum overnight to give the desired product in 78% yield.
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Synthesis of BMIM4F-Py-COF. IM4F-Py-COFT measuring 50 mg, 5 mL of 1-bromobutane,
and 20 mL of acetonitrile were added to a 50 mL round-bottom flask. The reaction was
heated under reflux at 80 ◦C and stirred for 48 h. After cooling down to room temperature,
the precipitate of the product was collected by filtration, and washed thoroughly with
anhydrous ethanol and acetone, respectively. The precipitate was then dried at 100 ◦C
overnight under vacuum, giving a dark yellow product in 95% yield.

Synthesis of 4F-Py-COF. PyTTA (21.67 mg, 0.04 mmol), and 4F (28.64 mg, 0.08 mmol)
were placed in a glass ampule vessel (10 mL), followed by adding 2 mL of 1,2-dichlorobenzene.
The mixture was sonicated for 10 min and 0.2 mL of 6.0 M acetic acid was rapidly added.
The vessel was then flash-frozen in liquid nitrogen and degassed by three freeze-pump-
thaw cycles. The internal pressure of the vessel was controlled below 5 Pa. The system
was rapidly sealed with a flame, and then heated at 120 ◦C for 3 days. The resulting
precipitate was filtered out and washed thoroughly with anhydrous THF and acetone to
give a yellow-colored powder, which was dried at 100 ◦C under vacuum overnight to give
the desired product with 81% yield.

3.3. General Procedures for Transesterification of Glycerol with Dialkyl Carbonates

In a typical experiment, the reaction was performed using a 5 mol% catalyst (generated
in situ by a 5 mol% pre-catalyst and 2.5 mol% Na2CO3), 2.5 mmol of glycerol, and 7.5 mmol
of dimethyl carbonate (or diethyl carbonate) at 70 ◦C for 8 h. No additional solvents were
used in this reaction. All experiments were carried out in a Schlenk tube attached with a
reflux condenser under an N2 atmosphere. Dimethyl carbonate and diethyl carbonate were
distilled before use. The products were analyzed by flame ionization gas chromatography
(GC-17A, Shimadzu), using a capillary column (TC-FFAP). After the reaction, 1 mmol of
1-propanol was added to the reaction solution as an internal standard.

3.4. Characterization

Fourier transform infrared (FT-IR) spectra were recorded using KBr pellets on a Bruker
model TENSOR 27 spectrophotometer. Powder X-ray diffraction (PXRD) measurements
were recorded on a PANalytical X’Pert model Pro Multipurpose Diffractometer using Cu
Kα radiation at 40 kV and 40 mA. The signals were collected from 2θ of 2.5–30◦ at a 0.03◦

step scan with an exposure time of 10 s per step. Low-pressure (0–110 kPa) N2 gas sorption
isotherms were measured volumetrically at 77 K using a Quantachrome Autosorb-iQ2
analyzer with ultrahigh-purity gases. The fresh samples were activated at 100 ◦C for 15 h
under a high vacuum prior to analysis. The Brunauer–Emmett–Teller (BET) model was used
to determine the specific surface areas using desorption branches over P/P0 of 0.01–0.05. In
all isotherm plots, closed circles describe adsorption data points and open circles are used
to represent desorption data points. The pore size distribution was evaluated by a nonlocal
density function theory (NLDFT) method. Thermogravimetric analysis (TGA, STA449F3,
NETZSCH, Germany) was performed from room temperature to 800 ◦C at a heating rate of
10 ◦C min−1 and a N2 flow rate of 20 mL min−1. Gas chromatography (GC, Agilent 7890A)
equipped with a capillary column (HP-5, 30 m× 0.25 mm) using a flame ionization detector.
1H and 13C nuclear magnetic resonance (NMR) spectra were recorded by a Bruker Advance
III 400 MHz NMR spectrometer (Bruker BioSpin Corporation, Fällanden, Switzerland).

4. Conclusions

In summary, we developed a post-synthetic modification strategy to anchor N-Heterocyclic
carbene (NHC) moiety into a covalent organic framework (COF) that was initially con-
structed through a three-component condensation reaction. After successful grafting of
1-butyl groups onto the skeletons of the COF, ionization of the framework was achieved,
and NHC-functionalized COF, i.e., NHC-Py-COF was then obtained in the presence of a
base. The precursors of the NHC-Py-COF were characterized by various technologies. The
in situ generated NHC-Py-COF was used as a catalyst for the transesterification reaction of
glycerol with dialkyl carbonates. Excellent catalytic activity and good recyclability were
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observed, suggesting the excellent catalytic performance of the NHC-functionalized COF.
Considering the powerful catalytic activity of NHC and unique features of COFs, we can
envisage that the combination of NHC and COF would open up a way to create new
patterns of catalytic reactivity.
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