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Abstract: Bifunctional catalysts—e.g., those with acidic and redox sites—are of particular importance,
especially in the cascade processes, including the one-pot transformation of glycerol to acrylic acid. In
this study, we explore one aspect of the preparation of a vanadium-containing catalyst, which can be
further modified with 3-(trihydroxysilyl)-1-propanesulfonic acid (TPS). The state of vanadium species
loaded on mesoporous ordered silica of SBA-15 type was investigated before and after treatment
with TPS, which can also be applied for the generation of acidic centers. Two vanadium sources,
i.e., ammonium metavanadate and vanadium(IV) oxide sulfate, were applied to generate redox
sites on SBA-15. The structure of materials obtained was analyzed using N2 adsorption/desorption
and XRD measurements. For the estimation of the amount of vanadium and characterization of
its state, the following techniques were applied: ICP, UV-Vis, XPS, ESR and FTIR combined with
pyridine adsorption. The treatment of vanadium containing SBA-15 with TPS was found to lead to
the oxidation of V4+ to V5+ and the partial removal of vanadium species, leading to a decrease in the
number of penta-coordinated vanadium species. These features should be taken into account in the
design of bifunctional catalysts with vanadium-active centers and SO3H acidic sites coming from TPS.

Keywords: vanadium; SBA-15; impregnation; TPS

1. Introduction

Vanadium-based catalysts have been successfully applied for a wide range of re-
actions which require the presence of redox sites, including, for instance, the oxidative
dehydrogenation of alkanes to alkenes [1,2], oxidation of methanol to formaldehyde [3–5] or
ammoxidation processes [6,7]. Many factors influence the activity of vanadium-containing
catalysts, e.g., the type of vanadium source used for catalyst preparation and metal oxide
dispersion on the support, metal oxidation state and reducibility or the kind of support.
Promising supports for different active sites are ordered mesoporous silicas, e.g., MCM-41,
SBA-15 or KIT-6, due to large surface areas and uniform systems of pores whose diameter
can be controlled by the application of different templates. These features permit us to
obtain good dispersion of active species.

Mesoporous silicas have also been applied as supports for vanadium species, e.g.,
MCM-41 [1], SBA-15 [8] or KIT-6 [9]. In addition to the dispersion of vanadium species, the
final oxidation state of vanadium, incorporated in the one-pot synthesis procedure of SBA-
15 and KIT materials, has been shown to depend on the type of mesoporous support [9].
The modification with vanadium resulted in the appearance of mainly V5+ species in the
KIT-6 sample, whereas a mixture of V4+ (31%) and V5+ (69%) on the SBA-15 support.

Recently, much effort has been focused on catalytic cascade processes that can reduce
the number of operations and, finally, the cost of production of desired bulk or fine
chemicals. This strategy mostly requires the application of bifunctional catalysts. An
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interesting example is the transformation of glycerol to acrylic acid [10,11]. In this process,
glycerol is first dehydrated to acrolein on acidic sites, followed by oxidation to acrylic acid
on redox sites. For this purpose, vanadium-containing catalysts have also been applied [12].
It is known that mesoporous silica is an attractive support for Brønsted acid sites. The
sites of this type can be generated by the immobilization of organosilane species, which
is mainly realized by the incorporation of (3-mercaptopropyl)trimethoxysilane (MPTMS)
by grafting or co-condensation during the synthesis of ordered mesoporous silica. The
formation of Brønsted acid sites requires the oxidation of SH species in MPTMS, which
is performed most commonly by hydrogen peroxide. Unfortunately, this method has
some drawbacks; for instance, an excess of H2O2 must be applied (much more than the
stoichiometric amount), or the oxidation process can lead to the partial removal of MPTMS
previously grafted on the silica surface [13].

Organosilane species, such as MPTMS immobilized on different silicas, not only allow
the generation of acidity on the surface of the support. These species can also interact with
the support or with the other modifiers incorporated into the catalyst. This is important,
because such an interaction can change the properties of the modifier. In our previous
work, we observed the positive impact of niobium present on SBA-15 and mesostructured
cellular foam (MCF) on the efficiency of thiol species oxidation into sulfonic species [14].
Moreover, the interaction of niobium species with an organosilane modifier resulted in
the better thermal stability of oxidized MPTMS. It was also found that the interaction
observed did not depend on the kind of silica structure. Thus, it seems to be important
to consider and investigate a possible interaction of other organosilane species with the
metalosilicate supports.

Recently, we successfully applied 3-(trihydroxysilyl)-1-propanesulfonic acid (TPS)
instead of MPTMS for the generation of Brønsted acid sites on an SBA-15 support [15].
The TPS modifier already has SO3H groupings; thus, the oxidation of SH species is not
necessary. However, there are no literature data concerning the interaction of dispersed
vanadium species supported on mesoporous silica with TPS species, which can further
influence the catalytic behavior of the final material. Therefore, the objective of this work
was to investigate the vanadium state in the mesoporous silica of SBA-15 type, determined
by the addition of two different metal precursors, followed by the interaction with TPS
species. For this reason, the impregnation-based procedure of TPS, instead of the grafting
method, was applied to reduce the possible incorporation of TPS species on the silica
support. The objective was to answer the question concerning the influence of TPS used for
the formation of bifunctional redox (vanadium)–acid (TPS—sulfonic groups) catalysts on
the redox and acidic characteristics of vanadium species. Thus, the modification conditions
were chosen in a manner that would enable the final removal of all TPS, allowing the
exclusive characterization of vanadium species.

2. Results and Discussion

Two sources of vanadium, i.e., ammonium metavanadate (VM in catalyst symbol)
and vanadium(IV) oxide sulfate (VS in catalyst symbol), were applied for modification of
mesoporous silica of SBA-15 type. These samples were also treated with 3-(trihydroxysilyl)-
1-propanesulfonic acid (TPS). To avoid the formation of vanadium oligomers, a relatively
small loading of the metal was applied, i.e., <2% wt. The final concentration of vanadium
according to ICP analysis was 1.7 and 1.0% wt. for VM/SBA-15 and VS/SBA-15, respec-
tively (Table 1). The samples treated with TPS showed a slightly lower concentration of
vanadium, which indicates a partial vanadium removal during the modification.

The SBA-15 support was prepared by hydrothermal synthesis. The obtained sample
showed a structure typical of the ordered mesoporous materials based on silica. Figure 1A
presents the XRD pattern of the support. An intense (100) peak located at 2 theta ca. 1.2◦

was observed. Its presence is typical of hexagonally ordered mesoporous solids and is
related to the reflections of the hexagonal plain group p6mm. The two characteristic peaks,
i.e., (110) and (200), were barely discernible. Their presence can be connected with the
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ordering of channels; thus, one should expect that the arrangement of the channels is not
well developed. The modification of the SBA-15 support with vanadium did not have an
impact on the material structure, as can be deduced from the XRD patterns. However, a
decrease in the intensity of the (100) peak was observed after modification with vanadium
species, mainly for the VS/SBA-15 sample. In the literature, this feature was assigned to
the location of different modifiers inside the material pores. Additionally, for VM/SBA-15,
a small shift of the (100) peak to lower values of 2 theta was observed. This points to
the increase in cell parameter of the sample obtained after modification with ammonium
metavanadate. This can be caused by at least partial incorporation of vanadium species
into the walls of the material. A similar effect has been described in the literature for
niobium species on SBA-15 [13]. As shown in Figure 1B, the incorporation of vanadium
species did not allow the formation of crystalline vanadium(V) oxide large enough for
XRD detection, as the characteristic XRD peaks were not present for VS/SBA-15, and they
were barely seen for VM/SBA-15. This observation points to a good isolation of vanadium
species, which was also confirmed by the UV-Vis and ESR measurements.

Table 1. Texture/structure characterization and vanadium incorporation efficiency.

Catalyst STotal
(m2g−1)

PSD 1

(nm)
Smicro

(m2g−1)
VTotal

(cm3g−1)
V Content 2

(wt%)

SBA-15 753 5.5 0.12 0.57 -
VM/SBA-15 562 5.5 0.07 0.46 1.7

TPS/VM/SBA-15 457 5.5 0.05 0.38 1.3
VS/SBA-15 687 5.5 0.10 0.53 1.0

TPS/VS/SBA-15 561 5.5 0.07 0.47 0.7
1 Pore size distribution—calculated by DFT method; 2 estimated by ICP method.
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Figure 1. Small-angle (A) and wide-angle (B) XRD patterns of SBA-15 before and after modification
with vanadium precursors.

Further detailed features of the materials’ structure and textural properties were
determined by low temperature N2 adsorption/desorption measurements. The obtained
isotherms, as well as pore size distribution (PSD) calculated using the DFT method, are
shown in Figure 2. A typical isotherm of type IVa according to the International Union of
Pure and Applied Chemistry (IUPAC) classification [16] and characteristic of mesoporous-
ordered materials was observed for SBA-15 support.

A characteristic feature of this type of isotherm is the presence of a saturation plateau
at a high value of relative pressure p/p0, and a hysteresis loop due to the condensation of
N2 inside the pores of the material. The hysteresis loop is of type H1, which indicates that
the pores of the SBA-15 support are narrow and uniform. As indicated by the DFT results,
most of the material pores are in the range between 5 and 7 nm. The same type of isotherms
and hysteresis loops were observed for the materials after modification with vanadium
and interaction with TPS. The textural parameters of the materials obtained are presented
in Table 1. The surface area of the support was relatively large and reached 753 m2g−1,
whereas the pore volume of this sample reached 0.57 cm3g−1. Both parameters decreased
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after modification with vanadium; however, the change was more pronounced for the
sample modified with ammonium metavanadate. After the interaction of vanadium species
with TPS, a further decrease in the mentioned parameters was observed. Nevertheless,
the surface area of the samples was still relatively large. In sum, all materials obtained
within this study showed a typical structure of SBA-15 support with textural parameters
characteristic of this mesoporous ordered silica.
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Figure 2. N2 adsorption/desorption isotherms and pore size distribution of materials obtained.
(A) SBA-15, (B) VM/SBA-15, (C) TPS/VM/SBA-15, (D) VS/SBA-15, (E) TPS/VS/SBA-15

The coordination environment of vanadium species incorporated on the SBA-15 sur-
face was investigated by UV-Vis analysis. Due to the sensitivity of vanadium species to
moisture, the spectra were obtained for hydrated (white color) and dehydrated (yellow
color) samples. The spectra of all samples are included in Figure S1, whereas the repre-
sentative spectra of VM/SBA-15 are presented in Figure 3. The spectra of the hydrated
sample showed four bands at 247, 317, 384 and 446 nm. The first absorption band at
247 nm—which is a dominant one for the dehydrated sample—is assigned to low-energy
charge transfer (CT) transition between oxygen and isolated V5+ cations [17–19]. The
second band at ca. 317 nm, according to the literature, should be assigned to tetrahedrally
coordinated oligomeric V5+ species [20]. The third absorption band at 384 nm is related
to pentagonal or pseudo-octahedral coordinated vanadium species interacting with mois-
ture [21–23]. Moreover, a band at 446 nm was also observed, which should be connected
with the presence of bulk vanadium(V) oxide species. Indeed, the results obtained for
VM/SBA-15 are in-line with XRD diffractograms showing very low intensity peaks related
to V2O5 crystalline phase. For all samples, after dehydration at 523 K, the bands related
to the hydrated species were very weak. The band at 244 nm dominated in the spectra,
indicating a good dispersion of vanadium species and a relatively low concentration of
vanadium oligomeric species. The kind of vanadium salt applied for modification of the
SBA-15 material did not seem to influence the coordination of vanadium species, because
very similar spectra were obtained for VM/SBA-15 and VS/SBA-15 samples. However,
the treatment of vanadium-containing materials by TPS influenced the coordination of
vanadium species, as evidenced in Figure S1. For the dehydrated samples, the dominant
band appeared at ca. 250 nm, whereas the intensity of the band at ca. 380 nm related to
pentagonal or pseudo-octahedral vanadium species interacting with moisture decreased.

The state of vanadium species was also investigated using the ESR technique. The
ESR spectra of all samples are presented in Figure S2, and the calculated parameters are
listed in Table S1. All catalysts showed a characteristic ESR signal from V4+ (3d1) ion with
typical hyperfine splitting (hfs) multiplets due to the interaction of an unpaired electron
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with nuclear spin I=7/2 51V. The well-resolved hyperfine signals and values of g and hfs
tensor parameters indicated well-dispersed (VO)2+ species in square pyramidal or distorted
octahedral coordination [24–27]. Moreover, all the identified isolated vanadyl species were
also characterized by giso and Aiso parameters. The correlation diagram (giso and Aiso)
produced according to the procedure proposed by Davidson and Che indicates the presence
of 5-coordinated and 6-coordinated vanadyl species. The ability of a fraction of these species
to adsorb water suggests the assignment to a 5-coordinated vanadyl group with a distorted
octahedral structure and one coordination vacancy in the equatorial plane [28]. It is worth
noting that for all catalysts, a very weak broad ESR signal from vanadium in the form of
all kinds of clusters or agglomerations was observed. This suggests very weak spin–spin
interactions between the VO2+ ions, which must be well dispersed.
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Figure 4 presents the ESR spectra of VM/SBA-15 and TPS/VM/SBA-15. The ESR
signal from V4+ in VM/SBA-15 material, after the treatment with TPS, became twice as
small as the original one, which confirms the oxidation of vanadium by TPS species.
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Figure 4. ESR spectra of (a) VM/SBA-15 and (b) TPS/VM/SBA-15.

For further characterization of vanadium species, XPS analyses were performed. This
method, as well as the elemental analysis, was used to exclude the presence of TPS species
in the samples after interaction with vanadium species. For both TPS/VM/SBA-15 and
TPS/VS/SBA-15 samples, no bands related to the presence of sulfur were identified. The
data from elemental analysis also indicated the lack of sulfur in the final material. Thus, one
can conclude that there were no TPS species remaining in the samples after the interaction
of vanadium-containing materials with organosilane.
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The XP spectra of vanadium-containing samples are presented in Figure 5. Up to three
V 2p3/2 bands for different vanadium oxidation states can be observed in the spectra for
different samples. The first band in the range of 517.5–518 eV is related to V5+ [29–31] and
was observed for the VS/SBA-15 sample before the interaction with TPS. This band was not
observed for VM/SBA-15 material; however, it appeared after the treatment with TPS. This
indicates the oxidation of vanadium species by sulfonic groups of TPS species. The second
band at 516.5–516.6 eV, related to V4+, [29–31] was observed for all vanadium-containing
samples, and it dominated for the materials before treatment with organosilane species.
The intensity of this band in the XP spectra decreased after the interaction with TPS and
became less pronounced than the band related to V5+. The last band at 515 eV was observed
only for VM/SBA-15 and according to the literature, it can be assigned to V3+ [29,30]. This
band was not intense and completely disappeared after interaction with TPS species.
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Figure 5. XP spectra of materials obtained in the V 2p region. (A) VS/SBA-15, (B) TPS/VS/SBA-15,
(C) VM/SBA-15, (D) TPS/VM/SBA-15

Figure 5 also summarizes the fractions of each oxidation form of vanadium in the samples.
The contribution of V5+ reached 70 and 56% for TPS/VS/SBA-15 and TPS/VM/SBA-15, respec-
tively, whereas before the interaction with TPS species, the concentration of V5+ was 23 and
0%, respectively. Thus, it was clearly seen that TPS oxidized vanadium species; however,
after the impregnation-like procedure, TPS species did not remain on the material surface
and did not contaminate the samples.

For determination of the type as well as the number of acid centers, FTIR spectroscopy
combined with the adsorption of pyridine was applied. The interaction of pyridine with
Lewis acid sites (LAS) resulted in the appearance of bands at ca. 1450 and 1610 cm−1

coming from the symmetric and antisymmetric stretching vibrations in pyridine coordina-
tively bonded to LAS, respectively [32]. The number of these sites can be estimated from
the band intensity using the corresponding molar coefficient (ε1450 = 1.5 µmol−1 cm [32]).
When pyridine interacted with Brønsted acid sites (BAS), the characteristic band at ca.
1550 cm−1 from the symmetric vibrations of pyridinium cations—formed by the proto-
nation of pyridine on BAS—appeared in the spectra (ε1550 = 1.8 µmol−1 cm [32]), which
was accompanied by the bands assigned to the antisymmetric stretching vibrations in the
1620–1640 cm−1 range. Mesoporous silica of SBA-15 type did not exhibit acidity. Only
some silanol groups can interact with pyridine, which can lead to the hydrogen bonding
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on the silica surface. This type of interaction is usually not strong and was manifested by
the infrared band at ca. 1595 cm−1.

The FTIR spectra recorded after the adsorption of pyridine at 423 K and outgassing
at the same temperature for 0.5 h are presented in Figure 6, while the calculated numbers
of acid sites are shown in Table 2. Moreover, Figure S3 shows the spectrum of pyridine
adsorbed on TPS/SBA-15, i.e., the material obtained via the interaction of TPS with SBA-15.
Only two weak bands at 1596 and 1445 cm−1 were observed, indicating the interaction of
pyridine with silanols by hydrogen bonding. For both samples modified with vanadium,
i.e., VM/SBA-15 and VS/SBA-15, the band at 1450 cm−1 was observed, testifying to the
presence of LAS. This band was more intense for VM/SBA-15, which is in-line with the
higher amount of vanadium in this sample. It can be observed that the intensity of the
1450 cm−1 band was much lower for TPS/VM/SBA-15, and this band was not visible
for TPS/VS/SBA-15. For the latter sample, this band was only observed after pyridine
adsorption prior to evacuation (spectra not shown). This confirms again that during the
interaction with TPS species, a part of vanadium species was removed from the sample.
Moreover, it suggests that the strength of LAS is not high. This was also confirmed by
the number of pyridine molecules interacting with LAS after outgassing at 473 K for 0.5 h
(Table 2), which was more than twice as low.
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Figure 6. FTIR spectra recorded at room temperature after adsorption of pyridine at 423 K fol-
lowed by desorption at 423 K for 0.5 h: (a) VM/SBA-15; (b) TPS/VM/SBA-15; (c) VS/SBA-15;
(d) TPS/VS/SBA-15.

Table 2. Number of Lewis (LAS) and Brønsted(BAS) acidic centers determined from the amount of
pyridine remaining adsorbed after outgassing the samples at 423 and 473 K.

Catalyst
LAS
423 K

(µmol g−1)

BAS
423 K

(µmol g−1)

LAS
473 K

(µmol g−1)

BAS
473 K

(µmol g−1)

VM/SBA-15 13.1 10.5 6.2 4.0
TPS/VM/SBA-15 6.4 3.9 2.5 0.8

VS/SBA-15 5.6 2.1 0 0
TPS/VS/SBA-15 5.3 1 0 0 0

1 Value after short outgassing.

The adsorption of pyridine also resulted in the formation of pyridinium cation,
which took place with the participation of BAS. This was much more pronounced for
the VM/SBA-15 sample. The possible formation of BAS on vanadium-modified materials
has been described in the literature [32]. The formation of BAS was related to the acidic
proton in the OH group of the framework hydroxylated (SiO)2(HO)V=O species. However,
BAS species present on the vanadium-modified samples did not seem to be strong. The
intensity of the band related to the interaction of the pyridinium ion with BAS significantly
decreased for VM/SBA-15, and this band completely disappeared for VS/SBA-15. However,
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the decrease in the acidity of the samples treated with TPS should be related to a slightly
lower concentration of vanadium species.

3. Materials and Methods
3.1. Materials

All chemicals and materials used were purchased from commercially available sources
and used without further purification. Tetraethyl orthosilicate (TEOS) (>99%), Pluronic
P123, ammonium metavanadate (99%) and vanadium(IV) oxide sulfate hydrate (97%)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). HCl (35%) was procured from
Stanlab (Lublin, Poland). 3-(trihydroxysiyl)-1-propanesufonic acid (30–35% in water) was
purchased from Gelest (Morrisville, PA, USA).

3.2. Synthesis of SBA-15

Mesoporous silica of SBA-15 type was obtained via hydrothermal synthesis. At
first, a mixture of Pluronic P123 (Poly(ethylene glycol)-block-poly(propylene glycol)-block-
poly(ethylene glycol) (4g), HCl (8.76 g converted to HCl) and water (141.24 g) was prepared.
To this mixture, TEOS (8.527 g) was added dropwise at 313 K upon stirring. Finally, the
mixture was stirred at 313 K for 20 h and then heated at 373 K under static conditions
for next 24 h. After synthesis, the product was washed with water and dried at room
temperature. The template was removed by calcination at 823 K for 6 h (temperature
ramp 5 K min−1).

3.3. Incorporation of Vanadium

Vanadium was introduced via incipient wetness impregnation. Prior to the modifica-
tion, the SBA-15 material was outgassed in an evaporator flask for 1 h at 353 K. Then, the
support was filled with aqueous solution of ammonium metavanadate or vanadium(IV)
oxide sulfate used in the amount that ensured that only the pores of SBA-15 would be filled.
The amount of vanadium in the solution was sufficient to obtain 2% wt. of this metal in
the final product. The mixture was rotated and heated in an evaporator flask at 353 K for
45 min. The powder obtained was dried at 383 K for 18 h and calcined at 773 K for 6 h in
air in static conditions (heating rate 5 K min−1).

3.4. Treatment of Vanadium Species with TPS

Vanadium-containing samples (1 g) were placed into a round bottom flask and treated
with the water solution of TPS (molar ratio of Si/TPS = 10) by rotating and heating in an
evaporator flask at 353 K for 45 min. Next, the sample was dried at 383 K for 18h.

3.5. Characterization Techniques

X-ray diffraction measurements were performed using a Bruker AXS D8 Advance
diffractometer (Bruker, Karlsruhe, Germany) with Cu Kα radiation (α = 0.154 nm) and at a
step of 0.05◦ s−1.

N2 adsorption/desorption measurements were performed using the Micromeritics
ASAP 2020 (Norcross, GA, USA). Prior to the N2 adsorption, the sample was outgassed
at 373 K under vacuum (<1.3 Pa) for 20 h. The surface area was calculated using the
BET method with 6points of freedom, the correlation coefficient was at least 0.99997 and
measurement error was less than 2 m2g−1. Pore volume and diameter were determined by
the DFT method.

Elemental analyses of vanadium-containing samples were carried out with an Ele-
mental Analyser Vario EL III (Elementar Analysensysteme GmbH, Hanau, Germany).

Inductively coupled plasma optical emission spectrometry was performed using the
ICP-OES 9820 Shimadzu, Kyoto, Japan.

XPS analyses were performed using an ultrahigh vacuum photoelectron spectrometer
based on the Phoibos 150 NAP analyzer (Specs, Berlin, Germany). The operating pressure
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in the chamber was close to 5 × 10−9 mbar. The materials examined were irradiated with a
monochromatic Al Kα radiation (1486.6 eV).

UV-Vis spectra were recorded using a Varian-Cary 300 Scan UV-Visible Spectropho-
tometer (Candela, Warszawa, Poland). Powdered samples as obtained and, after dehydra-
tion at 523K, were placed into the cell equipped with a quartz window. The spectra were
recorded in the range from 800 to 190 nm. Spectralon was used as a reference material.

FTIR spectra combined with pyridine adsorption were recorded at 298 K (4000–400 cm−1)
with a Bruker Invenio S spectrometer (Bruker, Karlsruhe, Germany). Samples were pressed
into thin wafers of ca. 10 mg cm−2 and placed inside the IR cell. Prior to the pyridine
adsorption, the catalyst was outgassed at 573K for 4h. Then, pyridine was adsorbed at
423 K, followed by a short outgassing for 10 min, and the spectrum was registered. The
spectra were also registered after the outgassing of the catalyst at 423 and 473 K for 30 min.
The spectrum of the IR cell alone was subtracted from all recorded spectra. Lewis and
Brønsted acid sites were calculated using the molar coefficient ε1450 = 1.5 µmol−1 cm and
ε1550 = 1.8 µmol−1 cm, respectively.

ESR measurements were conducted after the evacuation of the catalysts at various
temperatures (RT to 473 K). ESR spectra were recorded at 77 K on a RADIOPAN SE/X 2457
spectrometer (Radiopan, Poznań, Poland). A cavity operating at a frequency of 8.9 GHz
(X—band) was used.

4. Conclusions

In this work, the treatment of vanadium species loaded on mesoporous SBA-15
silica with 3-(trihydroxysilyl)-1-propanesulfonic acid (TPS) was investigated. The applied
methodology allowed us to obtain a final material which did not contain TPS species, as
evidenced by elemental analysis and XPS measurements. Nevertheless, the oxidation state
and coordination of vanadium species changed after the TPS treatment. This resulted in
the oxidation of V4+ to V5+ and a decrease in the amount of penta-coordinated vanadium
species. This finding should be taken into account if one considers the application of TPS
species instead of the commonly used (3-mercaptopropyl)trimethoxysilane (MPTMS) for
the design of bifunctional catalysts with redox (vanadium) and acidic (sulfonic species)
sites. These kinds of materials have already been synthesized and will be presented in a
separate paper.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/3/397/s1, Figure S1: UV-Vis spectra of hydrated and dehydrated samples; Figure S2: ESR
spectra of vanadium-containing catalysts (fresh samples) recorded at 77 K; Figure S3: FTIR spectra
recorded at room temperature after adsorption of pyridine at 423 K followed by desorption at 423 K
for 10 min on TPS/SBA-15; Table S1: Parameters of ESR spectra recorded at 77 K for the different
catalysts.
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