

Article

Nanosheet-Like Ho₂O₃ and Sr-Ho₂O₃ Catalysts for Oxidative Coupling of Methane

Yuqiao Fan¹, Changxi Miao^{2,*}, Yinghong Yue¹, Weiming Hua^{1,*} and Zi Gao¹

- ¹ Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China; 18110220090@fudan.edu.cn (Y.F.); yhyue@fudan.edu.cn (Y.Y.); zigao@fudan.edu.cn (Z.G.)
- ² Shanghai Research Institute of Petrochemical Technology SINOPEC, Shanghai 201208, China
- * Correspondence: miaocx.sshy@sinopec.com (C.M.); wmhua@fudan.edu.cn (W.H.); Tel.: +86-21-31249121 (W.H.)

Abstract: In this work, Ho₂O₃ nanosheets were synthesized by a hydrothermal method. A series of Sr-modified Ho₂O₃ nanosheets (Sr-Ho₂O₃-NS) with a Sr/Ho molar ratio between 0.02 and 0.06 were prepared via an impregnation method. These catalysts were characterized by several techniques such as XRD, N₂ adsorption, SEM, TEM, XPS, O₂-TPD (temperature-programmed desorption), and CO₂-TPD, and they were studied with respect to their performances in the oxidative coupling of methane (OCM). In contrast to Ho₂O₃ nanoparticles, Ho₂O₃ nanosheets display greater CH₄ conversion and C₂-C₃ selectivity, which could be related to the preferentially exposed (222) facet on the surface of the latter catalyst. The incorporation of small amounts of Sr into Ho₂O₃ nanosheets leads to a higher ratio of $(O^- + O_2^-)/O^{2-}$ as well as an enhanced amount of chemisorbed oxygen species and moderate basic sites, which in turn improves the OCM performance. The optimal catalytic behavior is achievable on the 0.04Sr-Ho₂O₃-NS catalyst with a Sr/Ho molar ratio of 0.04, which gives a 24.0% conversion of CH₄ with 56.7% selectivity to C₂-C₃ at 650 °C. The C₂-C₃ yield is well correlated with the amount of moderate basic sites present on the catalysts.

Keywords: oxidative coupling of methane; Ho₂O₃-based nanosheets; morphology effect; Sr modification

1. Introduction

The present energy crisis, owing to the dwindling petroleum resource and its nonrenewable feature, must be solved as soon as possible. Methane, as a major component of natural gas, coal-bed gas, and shale gas, is attracting increasing attention as a clean fossil energy and a raw material for producing chemicals. Methane conversion can proceed via nondirect and direct routes [1–7]. The oxidative coupling of methane (OCM) to ethylene and ethane (C_2 hydrocarbons) is an indispensable way that has great prospect in the direct conversion of methane into value-added products [5–7]. Ethylene is one of the most important parts in petrochemical fields. Ethylene and its derivatives are associated closely with over 70% of petroleum chemicals. Since 1982 Keller et al. [8] first reported the OCM technology, it has attracted more and more attention in catalysis, chemical industry, and oil and gas fields because of its potential economic value and application prospect.

Up to now, several types of catalysts have been tried for OCM reaction [5,7]. It is widely accepted that Li/MgO and Mn-Na₂WO₄/SiO₂ are the most promising catalysts for application, and they have been widely researched [9–23]. In general, higher reaction temperatures (above 800 °C) are required for both kinds of catalysts to achieve the optimal OCM performance. Wang et al. [24] reduced the reaction temperature from 800 to 720 °C by doping Ti into Mn-Na₂WO₄/SiO₂, and they acquired 26% CH₄ conversion with 76% C₂-C₃ selectivity. More studies are now shifted to a low-temperature OCM process. Nanoscale rare earth oxide-based catalysts with special morphologies (nanorods and nanosheets),

Citation: Fan, Y.; Miao, C.; Yue, Y.; Hua, W.; Gao, Z. Nanosheet-Like Ho₂O₃ and Sr-Ho₂O₃ Catalysts for Oxidative Coupling of Methane. *Catalysts* **2021**, *11*, 388. https:// doi.org/10.3390/catal11030388

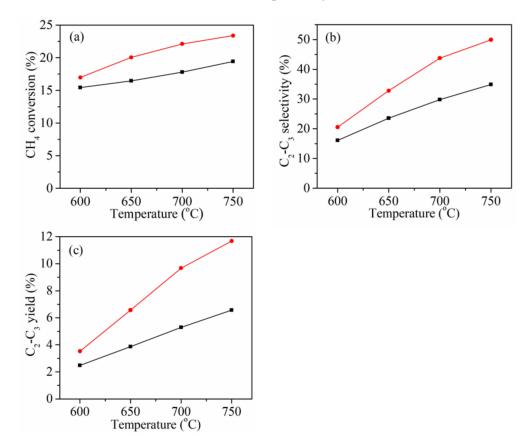
Academic Editor: Joris W. Thybaut

Received: 15 February 2021 Accepted: 16 March 2021 Published: 18 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

2 of 13


such as CeO₂, La₂O₃, Sm₂O₃, and Er₂O₃, were found to effectively catalyze the OCM process at lower temperatures (500–650 °C) [25–30]. However, the C₂ selectivity and yield still need to improve.

 Ho_2O_3 was demonstrated to have potential application for high-*k* dielectric material [31], photocatalysts [32,33], and energy-storage electrodes [34]. There are few reports dealing with the use of Ho_2O_3 as a catalyst in the OCM process [35]. In this work, we synthesized Ho_2O_3 and Sr- Ho_2O_3 nanosheets to develop a new type of efficient catalyst system for a low-temperature OCM reaction. The catalytic performances of these catalysts were related to their characterization results.

2. Results and Discussion

2.1. Catalytic Performances

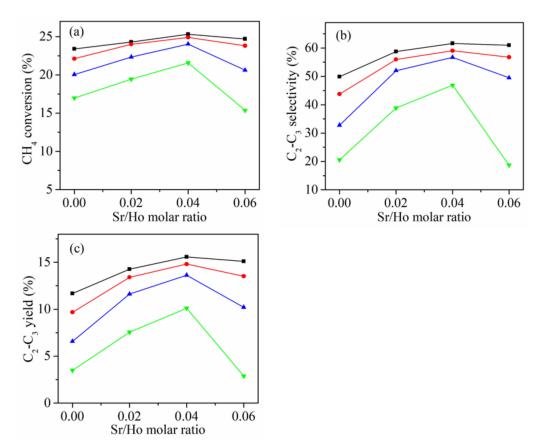

We first compared catalytic behaviors of Ho₂O₃ nanosheets and nanoparticles for the OCM reaction to investigate the morphology effect of the Ho₂O₃ catalysts. As shown in Figure 1, with the reaction temperature raised from 600 to 750 °C, the CH₄ conversion increases progressively, while the selectivity to C₂-C₃ (C₂H₄, C₂H₆, C₃H₆, and C₃H₈) rises more evidently. Because of this, the C₂-C₃ yield also improves with the temperature. It is evident that the OCM performance is better over Ho₂O₃-NS nanosheets than Ho₂O₃-NP nanoparticles. For instance, the CH₄ conversion, C₂-C₃ selectivity, and yield over Ho₂O₃-NP are 17.8%, 29.7%, and 5.3%, respectively. The shape effects of La₂O₃, Sm₂O₃, and Er₂O₃ catalysts on the OCM reaction were also reported by Zhu et al. and in our recent work [25–28].

Figure 1. CH₄ conversion (**a**), C₂-C₃ selectivity (**b**) and C₂-C₃ yield (**c**) as a function of reaction temperature for the Ho₂O₃ catalysts. (\blacksquare) Ho₂O₃-NP (nanoparticles), (\bullet) Ho₂O₃-NS (nanosheet).

We then tested the catalytic performances of Sr-modified Ho₂O₃ nanosheets (Sr-Ho₂O₃-NS) to investigate the impact of Sr modification on Ho₂O₃-NS nanosheets in the OCM reaction. As the Sr/Ho molar ratio is increased from 0 to 0.06, the CH₄ conversion, C₂-C₃

selectivity, and the yield first rise and then diminish (Figure 2). The 0.04Sr-Ho₂O₃-NS catalyst with a Sr/Ho ratio of 0.04 exhibits the best OCM performance. This catalyst yields a 24.0% CH₄ conversion and 56.7% C₂-C₃ selectivity at 650 °C. Even at a low temperature of 600 °C, a 21.6% CH₄ conversion and 46.9% C₂-C₃ selectivity can be achieved. Notably, the 0.04Sr-Ho₂O₃-NS catalyst performs better than Ho₂O₃-NS (20.0% CH₄ conversion and 32.8% C₂-C₃ selectivity at 650 °C). The typical product distribution over the Ho₂O₃-NS and Sr-Ho₂O₃-NS catalysts at 650 °C is listed in Table 1. According to the literature [5,36,37], the proposed reaction mechanism of methane transformation to ethane and ethylene is shown in Scheme S1. The interaction of the adsorbed CH_4 and O_2 generates methyl radicals (CH_3). The coupling of CH₃ radicals generates C_2H_{6} , followed by the dehydrogenation to C_2H_4 . Propane and propylene can be formed in the similar way, as illustrated in Scheme S1. The results shown in Figure 2 indicate that the introduction of appropriate amounts of Sr to Ho_2O_3 -NS is beneficial for the OCM reaction. It is noteworthy that the 0.06Sr-Ho₂O₃-NS catalyst shows a bit lower CH₄ conversion and C₂-C₃ selectivity than 0.04Sr-Ho₂O₃-NS at 750 °C and 700 °C, which could be attributed to the blockage of some active sites upon introducing excessive Sr. However, much worse OCM performance was observed for the former catalyst than the latter one at 650 °C and 600 °C, particularly at 600 °C. It was also reported that there were the optimal contents of Na and Li for Na-CaO and for the Li-promoted Bi-Mn oxide catalysts employed in the OCM reaction [38,39].

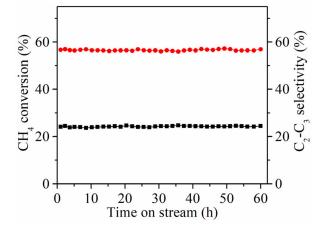


Figure 2. Effect of Sr/Ho molar ratio on catalytic performances of Sr-modified Ho₂O₃ nanosheet (Sr-Ho₂O₃-NS) catalysts at different temperatures: (**a**) CH₄ conversion, (**b**) C₂-C₃ selectivity, and (**c**) C₂-C₃ yield. (\triangledown) 600 °C, (\blacktriangle) 650 °C, (\bullet) 700 °C, (\blacksquare) 750 °C.

Catalyst	Conversion			Selectiv	vity (%)			Selectivity	Yield of
Catalyst	of CH ₄ (%)	C_2H_4	C_2H_6	C_3H_6	C_3H_8	CO ₂	CO	of C ₂ -C ₃ (%)	C ₂ -C ₃ (%)
Ho ₂ O ₃ -NS 0.02Sr-Ho ₂ O ₃ -NS 0.04Sr-Ho ₂ O ₃ -NS 0.06Sr-Ho ₂ O ₃ -NS	20.0 22.3 24.0 20.6	14.9 25.5 27.4 21.9	17.1 23.5 26.0 24.9	0.3 1.5 1.6 1.2	0.5 1.5 1.7 1.5	40.4 36.1 35.5 38.9	26.8 11.9 7.8 11.6	32.8 52.0 56.7 49.5	6.6 11.6 13.6 10.2

Table 1. Reaction data of the Ho₂O₃-NS and Sr-Ho₂O₃-NS catalysts at 650 °C.

We selected the best 0.04Sr-Ho₂O₃-NS catalyst to investigate the lifetime for the OCM reaction, which was evaluated at 650 °C. It is clear from the results presented in Figure 3 that the 0.04Sr-Ho₂O₃-NS catalyst shows good stability during 60 h of the reaction, maintaining ca. 24% CH₄ conversion with 57% C₂-C₃ selectivity.

Figure 3. CH₄ conversion (\blacksquare) and C₂-C₃ selectivity (\bullet) with time on stream over 0.04Sr-Ho₂O₃-NS at 650 °C.

We compared the catalytic performances of our catalyst 0.04Sr-Ho₂O₃-NS and three reference catalysts, i.e., 0.04Sr-La₂O₃ nanofibers, 0.04Sr-CeO₂ nanowires, and 3% Li/MgO. As shown in Figure S1, both 0.04Sr-CeO₂ and 3% Li/MgO are inactive at 600 and 650 °C. Our catalyst 0.04Sr-Ho₂O₃ displays a higher methane conversion and C₂-C₃ selectivity than the three reference catalysts at 600–750 $^{\circ}$ C.

2.2. Structural and Textural Properties

Figure 4 presents the XRD patterns of the Ho_2O_3 nanoparticles and nanosheets, as well as the Sr-modified Ho₂O₃ nanosheets. These samples display similar characteristics of diffraction peaks that belong to the cubic Ho₂O₃ phase (PDF #43-1018). The diffraction peaks at about 21°, 29°, 34°, 36°, 40°, 44°, 49°, 53°, 56°, 58°, 59°, and 60° correspond to the (211), (222), (400), (411), (332), (134), (440), (611), (145), (622), (136), and (444) planes of the cubic phase of Ho_2O_3 , respectively. The absence of any other crystal phases on the XRD profiles is a consequence of having lower contents of Sr and high dispersion of Sr in the catalysts. Table 2 shows that in comparison with Ho₂O₃-NS, the Sr-modified Ho₂O₃ nanosheets display greater lattice parameters (1.0571–1.0589 nm vs. 1.0561 nm). This observation implies that Sr is doped into the lattice of Ho₂O₃, considering that Sr²⁺ has larger ionic radius than Ho³⁺ (0.118 nm vs. 0.090 nm). The doping of Sr into the lattice of La_2O_3 via an impregnation method, followed by calcination at high temperatures, was also displayed in former studies [29,40].

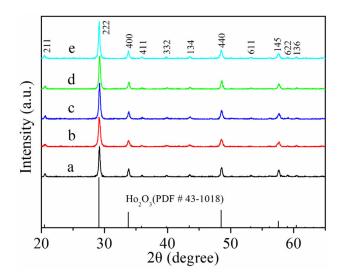


Figure 4. XRD patterns of the catalysts. (a) Ho_2O_3 -NP, (b) Ho_2O_3 -NS, (c) 0.02Sr- Ho_2O_3 -NS, (d) 0.04Sr- Ho_2O_3 -NS, (e) 0.06Sr- Ho_2O_3 -NS.

Table 2. Textural properties and XPS data of the Ho₂O₃-based catalysts.

Catalyst -	SBET	Average	a = b = c		O 1s BE ^e , F	WHM ^f (eV)		$(O^{-} + O_{2}^{-})/$
Catalyst	(m ² /g)	size (nm)	(nm) ^d	O ²⁻	O -	CO3 ²⁻	O_2^-	$(O^- + O_2^-)/O^{2-}$
Ho ₂ O ₃ -NP	7.9	17.5 ± 3.3	1.0560	529.3/1.7	530.8/1.7	531.8/1.2	532.7/1.2	1.4
Ho ₂ O ₃ -NS	6.1	$\begin{array}{c} 771 \pm 232 \text{ a} \\ 81.9 \pm 21.0 \text{ b} \end{array}$	1.0561	529.3/1.6	530.6/1.5	531.6/1.1	532.5/1.4	1.7
0.02Sr- Ho ₂ O ₃ -NS	7.5	_ c	1.0571	529.3/1.5	530.8/1.7	531.8/1.2	532.6/1.4	1.9
0.04Sr- Ho ₂ O ₃ -NS	7.7	$\begin{array}{c} 761 \pm 184 \text{ a} \\ 82.5 \pm 27.9 \text{ b} \end{array}$	1.0580	529.6/1.5	530.9/1.6	532.0/1.4	532.8/1.3	2.2
0.06Sr- Ho ₂ O ₃ -NS	7.2	_ c	1.0589	529.2/1.8	530.7/1.5	531.6/1.2	532.5/1.3	2.0

^a Average width of nanosheets; ^b Average thickness of nanosheets; ^c Not measured; ^d Lattice parameter; ^e Binding energy; ^f Full width at half maximum.

The SEM images of Ho₂O₃-NS and 0.04Sr-Ho₂O₃-NS are shown in Figure 5. Clearly, both catalysts display a nanosheet morphology. The morphology of nanoparticles with an irregular shape can be found for Ho₂O₃-NP (Figure S2). The average width and thickness of Ho₂O₃-NS are 771 nm and 81.9 nm, respectively. Ho₂O₃-NP has a mean size of 17.5 nm. In addition, 0.04Sr-Ho₂O₃-NS has a similar size to Ho₂O₃-NS (Table 2), suggesting that the introduction of a small amount of Sr to Ho₂O₃-NS has a little impact on the catalyst size. As illustrated in Figure 6, the exposed facets of Ho₂O₃-NS and 0.04Sr-Ho₂O₃-NS can be clearly identified. The crystal lattice fringes marked on their surfaces are indexed to

the (440) and (04 4) reflections of cubic Ho_2O_3 . The Fourier transform patterns (insets) achieved from selected areas of the corresponding crystals suggest that they are sitting against a plane perpendicular to the [222] zone axis, demonstrating that the (222) facets are exposed on the surfaces of Ho_2O_3 -NS and 0.04Sr- Ho_2O_3 -NS.

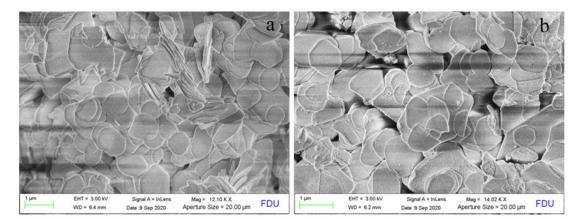
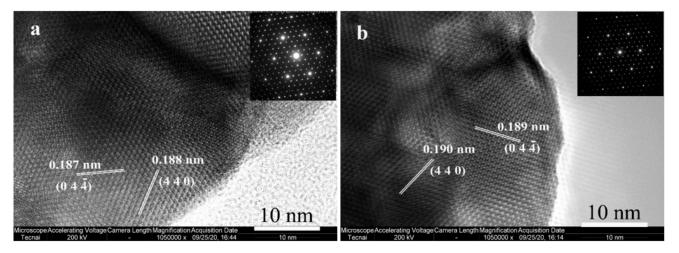
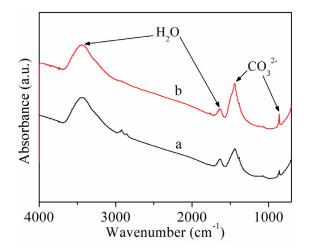



Figure 5. SEM images of Ho₂O₃-NS (a) and 0.04Sr-Ho₂O₃-NS (b).

Figure 6. High resolution (HR) TEM graphs of Ho₂O₃-NS (**a**) and 0.04Sr-Ho₂O₃-NS (**b**). Insets are the fast Fourier transfer (FFT) patterns of the HR-TEM images.


The Brunauer–Emmett–Teller (BET) specific surface areas of the Ho₂O₃-based catalysts are given in Table 2. All catalysts give low surface areas between 6.1 and 7.9 m²/g, which is preferred for the OCM reaction. In contrast to Ho₂O₃-NP, Ho₂O₃-NS has a lower surface area (6.1 vs. 7.9 m²/g). The incorporation of small amounts of Sr into Ho₂O₃-NS slightly increases the surface area.

2.3. XPS and IR

Figure S3 shows the XPS spectra of O1s on Ho₂O₃-NP, Ho₂O₃-NS, and Sr-Ho₂O₃-NS catalysts. The XPS spectra were deconvoluted into four peaks corresponding to four different oxygen species. The XPS data are listed in Table 2. Oxygen species located at ~529.3, ~530.7, ~531.8, and ~532.6 eV are O²⁻ (lattice oxygen), O⁻ (peroxide ions), CO_3^{2-} (carbonate), and O_2^- (superoxide ions), respectively [25,41–44]. It is generally accepted that the surface electrophilic oxygen species O⁻ and O₂⁻ are beneficial for C₂ selectivity in the OCM reaction, while the lattice oxygen O²⁻ is responsible for the deep oxidation of CH₄ in forming CO and CO₂ [25,26,29,43,45]. The Ho₂O₃-NS catalyst gives a $(O^- + O_2^-)/O^{2-}$ ratio of 1.7, higher than Ho₂O₃-NP (1.4). The Sr-Ho₂O₃-NS catalysts have a higher ratio of $(O^- + O_2^-)/O^{2-}$ ratio (2.2). It is thus concluded that the Ho₂O₃-NS possesses the highest $(O^- + O_2^-)/O^{2-}$ ratio display higher C₂ selectivity in the OCM reaction at 700 °C and 750 °C (Figures 1 and 2). This observation is in accord with the results reported for the OCM reaction catalyzed by the La₂O₃-based catalysts [26,29,40,45].

Based on theoretical studies, Sayle and co-workers have disclosed that the energy required to generate oxygen vacancies over CeO₂ for different crystal planes follows the order of (110) < (310) < (111) [46]. In other words, oxygen vacancies are easier to form on the (110) plane of CeO₂. The interaction between O₂ and oxygen vacancies generates the surface electrophilic oxygen species such as O⁻ and O₂⁻. Therefore, we think that the higher (O⁻ + O₂⁻)/O²⁻ ratio observed over Ho₂O₃-NS than Ho₂O₃-NP could be associated with the predominantly exposed (222) planes over the former catalyst. It was found that the OCM process was a structure-sensitive reaction [25,30,44].

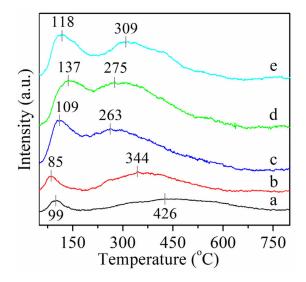

Figure 7 compares the FTIR spectra of 0.04Sr-Ho₂O₃-NS and 0.06Sr-Ho₂O₃-NS catalysts after the OCM reaction at 600 °C for 1 h. Two bands that appeared at 1637 and 3445 cm⁻¹ are assigned to the bending and stretching vibrations of the O–H groups in H₂O [47]. The bands appearing at 858 and 1442 cm⁻¹ correspond to the bending and asymmetric stretching vibrations of C–O in CO₃^{2–} [48,49], and they stemmed from the combination of catalysts with CO₂ produced during the OCM reaction. Clearly, the spent 0.06Sr-Ho₂O₃-NS catalyst displays a stronger intensity of CO₃^{2–} vibrations than the spent 0.04Sr-Ho₂O₃-NS, suggesting that the amount of carbonate is higher over the former catalyst than the latter one. Thus, the worse OCM performance observed for the former catalyst than the latter one at 650 °C and 600 °C (Figure 2) is due to the blockage of active sites by carbonate.

Figure 7. FTIR spectra of 0.04Sr-Ho₂O₃-NS (a) and 0.06Sr-Ho₂O₃-NS (b) catalysts after the oxidative coupling of methane (OCM) reaction at 600 $^{\circ}$ C for 1 h.

2.4. Temperature-Programmed Desorption (TPD) of O₂ and CO₂

To further understand the activation of oxygen over the catalysts, which plays an important role in the OCM process, the TPD of O_2 was performed. Figure 8 shows that there are two desorption peaks of oxygen from the surfaces of catalysts. The low-temperature peaks located at 85–137 °C are assigned to the desorption of molecular oxygen species (i.e., loosely bounded surface oxygen), and the high-temperature peaks located at 263–426 °C are ascribed to the desorption of chemisorbed oxygen species, which could be O^- , O_2^- , and O^{2-} [40,44,50] that stemmed from the interaction of O_2 with the Ho₂O₃-based catalysts. It is generally believed that the chemisorbed oxygen species benefit CH₄ activation and C_2 selectivity in the OCM process [25,44,50,51]. Table 3 shows that a greater number of chemisorbed oxygen species are achieved over Ho_2O_3 -NS than Ho_2O_3 -NP (15.9 vs. 12.8 μ mol/g), which is responsible for the higher CH₄ conversion and the C₂-C₃ yield observed for the former catalyst than the latter one. The incorporation of small amounts of Sr into Ho₂O₃-NS leads to an increase in the quantity of chemisorbed oxygen species (19.8–24.2 µmol/g), indicative of enhancing the oxygen activation. The largest quantity of chemisorbed oxygen species are achieved over 0.04Sr-Ho₂O₃-NS. Moreover, introducing Sr into Ho₂O₃-NS weakens the interaction between oxygen and the Sr-Ho₂O₃-NS catalysts, since the desorption peaks of chemisorbed oxygen species shift to low temperatures (from 344 °C to 263–309 °C). The doping of low-valence Sr into high-valence Ho₂O₃ can increase the quantity of oxygen vacancies [51–53], which promotes the activation toward oxygen, thus leading to an increased amount of chemisorbed oxygen species. As a result, the Sr-Ho₂O₃-NS catalysts exhibit better OCM performances than Ho₂O₃-NS. The optimal CH₄ conversion and C₂-C₃ yield are obtained on the 0.04Sr-Ho₂O₃-NS catalyst with a Sr/Ho molar ratio of 0.04.

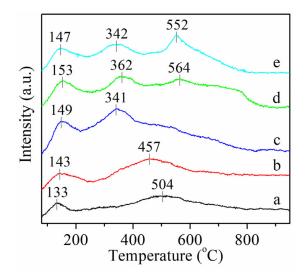
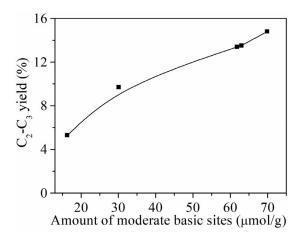

Figure 8. O₂-TPD (temperature programmed desorption) profiles of the catalysts. (a) Ho_2O_3 -NP, (b) Ho_2O_3 -NS, (c) 0.02Sr-Ho_2O_3-NS, (d) 0.04Sr-Ho_2O_3-NS, (e) 0.06Sr-Ho_2O_3-NS.

Table 3.	O ₂ -TPD ar	nd CO ₂ -TPD o	data of the	Ho ₂ O ₃ -based cataly	ysts.
----------	------------------------	---------------------------	-------------	--	-------


Catalyst	Peak Temperature (°C)		Amount of I (µm)	-	Amount of Basic Sites (µmol/g)		
	Ι	II	Ι	II	Weak	Moderate	Total
Ho ₂ O ₃ -NP	99	426	2.3	12.8	3.2	16.3	19.5
Ho ₂ O ₃ -NS	85	344	2.2	15.9	7.0	30.1	37.1
0.02Sr-Ho ₂ O ₃ -NS	109	263	9.2	19.8	16.7	61.8	78.5
0.04Sr-Ho ₂ O ₃ -NS	137	275	11.3	24.2	16.2	69.9	86.1
0.06Sr-Ho ₂ O ₃ -NS	118	309	9.9	20.7	14.6	63.0	77.6

In addition to oxygen activation, the basicity of the catalysts is a key factor influencing the OCM reaction [54,55]. The surface basicity of the Ho₂O₃-NP, Ho₂O₃-NS, and Sr-Ho₂O₃-NS catalysts was measured by CO₂-TPD, and the results are presented in Figure 9 and Table 3. Figure 9 shows that there are two desorption peaks of CO₂ from the surfaces of the Ho₂O₃-NP, Ho₂O₃-NS, and 0.02Sr-Ho₂O₃-NS catalysts, while there are three CO₂ desorption peaks for the 0.04Sr-Ho₂O₃-NS and 0.06Sr-Ho₂O₃-NS catalysts. It was reported that the surface basic sites were associated closely with the O⁻, O_2^- and O^{2-} oxygen species [10,51,54,56]. Based on the peak temperature of CO₂ desorption, the peaks that are below 200 °C, between 200 and 600 °C, and higher than 600 °C correspond to basic sites with weak, moderate, and strong strength, respectively [29,40,51]. Table 3 shows that the surfaces of all catalysts are dominated by moderate basic sites. Ho₂O₃-NS has a greater number of weak and moderate basic sites than Ho₂O₃-NP. The modification of Ho₂O₃-NS with Sr brings about an increase in the number of weak and moderate basic sites, and the number of moderate basic sites is increased to the maximum on 0.04Sr-Ho₂O₃-NS. As evidenced in Figure 10, the C_2 - C_3 yield obtained at 700 °C correlates well with the number of moderate basic sites present on the Ho₂O₃-based catalysts. This finding is in accordance

with some previous reports that the surface basic sites with moderate strength are more favorable for the C_2 product formation in the OCM process [25,26,44,55,57–60].

Figure 9. CO₂-TPD profiles of the catalysts. (a) Ho₂O₃-NP, (b) Ho₂O₃-NS, (c) 0.02Sr-Ho₂O₃-NS, (d) 0.04Sr-Ho₂O₃-NS, (e) 0.06Sr-Ho₂O₃-NS.

Figure 10. Relationship between the C_2 - C_3 yield obtained at 700 °C and the amount of moderate basic sites present on the Ho₂O₃-based catalysts.

3. Materials and Methods

3.1. Catalyst Preparation

Ho₂O₃ nanosheets (labelled as Ho₂O₃-NS) were synthesized by a hydrothermal method reported by Lee and co-workers [61]. Typically, 3.79 g of HoCl₃•6H₂O was dissolved in 100 mL deionized water, and 1 mL of aqueous ammonia (25–28 wt%) was then added dropwise to the above solution under stirring. The obtained suspension was transferred into a Teflon-lined stainless autoclave, which was placed in an oven setting at 200 °C for 12 h. Ho₂O₃ nanoparticles (named as Ho₂O₃-NP) were prepared via a conventional precipitate method; 3.0 mL of aqueous ammonia (25–28 wt%) was added dropwise to 100 mL of 0.1 M HoCl₃ solution under stirring. All the resulting precipitates were fully washed with deionized water, followed by drying at 80 °C in an oven for 12 h. Finally, the dried Ho(OH)₃ samples were calcined at 750 °C in air for 4 h in a muffle to obtain Ho₂O₃ nanosheets and nanoparticles.

Sr-modified Ho_2O_3 nanosheets were synthesized by an incipient wetness impregnation method. In a typical procedure, different amounts of $Sr(NO_3)_2$ were dissolved in deionized water, and then a certain amount of dried $Ho(OH)_3$ nanosheets were added. After drying under an infrared lamp, the sample was dried at 80 °C in an oven for 12 h, followed by calcination at 750 °C in air for 4 h in a muffle. The resulting catalysts were labelled as xSr-Ho₂O₃-NS, where x represents the Sr/Ho molar ratio (x = 0.02, 0.04, and 0.06, respectively).

For comparison, 0.04Sr-La₂O₃ nanofibers were prepared according to the literature [29]. Ce(OH)₃ nanowires were prepared according to the literature [30]. The 0.04Sr-CeO₂ nanowires were prepared in the same way as our Sr-modified Ho₂O₃ nanosheets. The 3% Li/MgO was prepared according to the literature [62]. The calcination temperature for three reference catalysts was 750 °C. The Sr/La or Sr/Ce molar ratio was 0.04. The content of Li in the catalyst was 3 wt.%.

3.2. Characterization of the Catalyst

X-ray diffraction (XRD) patterns were recorded on a D2 PHASER X-ray diffractometer using nickel-filtered Cu K α radiation at 30 kV and 10 mA (Brucker, Madison, WI, USA). The BET surface areas of the samples were analyzed by N_2 adsorption at -196 °C using a Micromeritics Tristar 3000 instrument (Micromeritics, Atlanta, GA, USA). X-ray photoelectron spectroscopy (XPS) measurements were performed on a Perkin-Elmer PHI 5000C spectrometer (Perkin-Elmer, Waltham, MA, USA). All binding energy values were calibrated using the C 1s peak at 284.6 eV. The surface basicity was measured by the temperature programmed desorption of CO2 (CO2-TPD) using a Micromeritics AutoChem II analyzer (Micromeritics, Atlanta, GA, USA); 0.2 g of sample was preheated at 750 °C for 1 h under He (30 mL/min), then cooled down to 80 °C. CO2 adsorption was conducted at this temperature, followed by purging with He (30 mL/min) for 2 h. The temperature was then raised from 80 to 950 °C at a ramping rate of 10 °C/min. O₂ temperature programmed desorption $(O_2$ -TPD) was performed on the same instrument; 0.2 g of sample was preheated at 750 °C for 1 h under He (30 mL/min), then cooled down to 50 °C. O2 adsorption was conducted at this temperature, followed by purging with He (30 mL/min) for 2 h. The temperature was then raised from 50 to 800 $^{\circ}$ C at a ramping rate of 10 $^{\circ}$ C/min. The desorbed CO₂ and O₂ were detected with a thermal conductivity detector (TCD). Field-emission scanning electron microscopy (FESEM) images were taken using a Hitachi S-4800 instrument (Hitachi, Tokyo, Japan). Transmission electron microscopy (TEM) images were recorded on an FEI Tecnai G² F20 S-TWIN instrument (FEI, Hillsboro, OR, USA). Fourier transform infrared (FTIR) spectra were recorded on a Nicolet Avatar 360 spectrometer (Nicolet, Madison, WI, USA). 30 mg of the spent catalyst and 300 mg of KBr were first mixed uniformly; 40 mg of the mixture was then pressed into a self-supporting disk.

3.3. Catalytic Tests

The oxidative coupling of methane reaction was performed with a fixed-bed flow reactor at atmospheric pressure, with a quartz tube internal diameter of 6 mm. Here, 0.2 g of the catalyst (40–60 mesh) was placed in the middle of the reactor, with the downstream of the catalyst fixed with quartz wool. The catalytic performance was evaluated using a mixture of methane and oxygen ($CH_4/O_2 = 4/1$ molar ratio) as feed gas, with a total flow rate of 60 mL/min, which results in a gas hourly space velocity (GHSV) of 18,000 mL/($g\bullet$ h). Before the reaction, the catalyst was pretreated at 750 $^{\circ}$ C in Ar (30 mL/min) for 1 h. The reaction temperature (actually the catalyst bed temperature) was monitored by a thermocouple placed in the middle of the catalyst bed. The reaction products were analyzed by an on-line GC equipped with a TCD and a 2-m Shincarbon ST packed column (for separation of H_2 , O_2 , CO, CH_4 , and CO_2) and by another on-line GC equipped with a FID and a 50-m PoraPLOT Q capillary column (for the separation of CH_4 , C_2H_4 , C_2H_6 , C_3H_6 , and C_3H_8). Prior to the analysis using TCD, the products were passed through a cold trap at -3 °C to remove most of water generated during the reaction. The CH₄ conversion and C_2 - C_3 selectivity were calculated using the standard normalization method based on carbon atom balance. The typical GC chromatograms showing the reaction products are given in Figure S4.

4. Conclusions

In this work, we developed Ho₂O₃ and Sr-Ho₂O₃ nanosheet catalysts for low-temperature OCM reaction. The HR-TEM images revealed that Ho₂O₃ and Sr-Ho₂O₃ nanosheets predominantly expose (222) facets. The Ho₂O₃ nanosheets outperformed Ho₂O₃ nanoparticles, which could be associated with the preferentially exposed (222) facet on the surface of the former catalyst. The ratio of $(O^- + O_2^-)/O^{2-}$, the amount of chemisorbed oxygen species, and the moderate basic sites were enhanced upon the addition of small amounts of Sr to Ho₂O₃ nanosheets, as demonstrated by XPS, O₂-TPD, and CO₂-TPD, respectively. This, in turn, resulted in an improved catalytic performance. The optimal 0.04Sr-Ho₂O₃ nanosheets with a Sr/Ho molar ratio of 0.04 afforded a methane conversion of 24.0% with 56.7% C₂-C₃ selectivity at 650 °C. Moreover, this catalyst exhibited good stability in the OCM reaction for 60 h of time on stream. A good correlation between the C₂-C₃ yield and amount of moderate basic sites was established.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4 344/11/3/388/s1, Figure S1: Comparison of catalytic performances of our catalyst 0.04Sr-Ho₂O₃ and three reference catalysts at different temperatures: (a) CH₄ conversion and (b) C₂-C₃ selectivity. (\checkmark) 0.04Sr-Ho₂O₃-NS, (\blacktriangle) 0.04Sr-La₂O₃, (\bullet) 3%Li/MgO, (\blacksquare) 0.04Sr-CeO₂, Figure S2: TEM image of Ho₂O₃-NP, Figure S3: XPS spectra of O 1s on Ho₂O₃-NP (a), Ho₂O₃-NS (b), 0.02Sr-Ho₂O₃-NS (c), 0.04Sr-Ho₂O₃-NS (d) and 0.06Sr-Ho₂O₃-NS (e), Figure S4: The typical GC chromatograms detected by a FID (a) and a TCD (b), Scheme S1: Proposed reaction mechanism of methane transformation to ethane, ethylene, propane and propylene.

Author Contributions: C.M. and W.H. conceived and designed the experiments; Y.F. performed the experiments; Y.Y., W.H., and Z.G. analyzed the data; Y.F. wrote the paper; C.M. and W.H. revised the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Key R&D Program of China (Grant No. 2017YFB0602200), the National Natural Science Foundation of China (Grant No. 91645201), the Science and Technology Commission of Shanghai Municipality (Grant No. 19DZ2270100), and the Shanghai Research Institute of Petrochemical Technology SINOPEC (Grant No. 33750000-19-ZC0607-0005).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Lee, J.; Oyama, S. Oxidative coupling of methane to higher hydrocarbons. Catal. Rev. Sci. Eng. 1988, 30, 249–280. [CrossRef]
- Arndt, S.; Laugel, G.; Levchenko, S.; Horn, R.; Baerns, M.; Scheffler, M.; Schlögl, R.; Schomäcker, R. A critical assessment of Li/MgO-based catalysts for the oxidative coupling of methane. *Catal. Rev. Sci. Eng.* 2011, 53, 424–514. [CrossRef]
- 3. Han, B.; Yang, Y.; Xu, Y.; Etim, U.J.; Qiao, K.; Xu, B.; Yan, Z. A review of the direct oxidation of methane to methanol. *Chin. J. Catal.* **2016**, *37*, 1206–1215. [CrossRef]
- 4. Mesters, C. A selection of recent advances in C1 chemistry. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 223–238. [CrossRef] [PubMed]
- 5. Galadima, A.; Muraza, O. Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. *J. Ind. Eng. Chem.* **2016**, *37*, 1–13. [CrossRef]
- 6. Pierre, S.; Pan, X.L.; Bao, X.H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects. *Chem. Rev.* 2017, *117*, 8497–8520.
- 7. Gambo, Y.; Jalil, A.A.; Triwahyono, S.; Abdulrasheed, A.A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review. *J. Ind. Eng. Chem.* **2018**, *59*, 218–229. [CrossRef]
- 8. Keller, G.E.; Bhasin, M.M. Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. *J. Catal.* **1982**, *73*, 9–19. [CrossRef]
- 9. Ito, T.; Lunsford, J.H. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium-oxide. *Nature* **1985**, *314*, 721–722. [CrossRef]
- 10. Driscoll, D.J.; Martir, W.; Wang, J.X.; Lunsford, J.H. Formation of gas-phase methyl radicals over MgO. *J. Am. Chem. Soc.* **1985**, 107, 58–63. [CrossRef]
- 11. Peil, K.P.; Goodwin, J.G.; Marcelin, G. Surface phenomena during the oxidative coupling of methane over Li/MgO. J. Catal. 1991, 131, 143–155. [CrossRef]
- 12. Nagaoka, K.; Karasuda, T.; Aika, K. The effect of SnO₂ addition to Li/MgO catalysts for the oxidative coupling of methane. *J. Catal.* **1999**, *181*, 160–164. [CrossRef]
- 13. Amin, N.A.S.; Pheng, S.E. Influence of process variables and optimization of ethylene yield in oxidative coupling of methane over Li/MgO catalyst. *Chem. Eng. J.* 2006, 116, 187–195. [CrossRef]

- 14. Tang, L.; Yamaguchi, D.; Wong, L.; Burke, N.; Chiang, K. The promoting effect of ceria on Li/MgO catalysts for the oxidative coupling of methane. *Catal. Today* **2011**, *178*, 172–180. [CrossRef]
- Arndt, S.; Simon, U.; Kiefer, K.; Otremba, T.; Siemensmeyer, K.; Wollgarten, M.; Berthold, A.; Schmidt, F.; Görke, O.; Schomäcker, R.; et al. Li/MgO catalysts doped with alio-valent ions. Part I: Structure, composition, and catalytic properties. *ChemCatChem* 2017, *9*, 3583–3596. [CrossRef]
- 16. Fang, X.; Li, S.; Lin, J.; Gu, J.; Yan, D. Preparation and characterization of catalyst for oxidative coupling of methane. *J. Mol. Catal.* **1992**, *6*, 254–262.
- 17. Ji, S.; Xiao, T.; Li, S.; Chou, L.; Zhang, B.; Xu, C.; Hou, R.; York, A.P.E.; Green, M.L.H. Surface WO₄ tetrahedron: The essence of the oxidative coupling of methane over M-W-Mn/SiO₂ catalysts. *J. Catal.* **2003**, *220*, 47–56. [CrossRef]
- Wang, J.; Chou, L.; Zhang, B.; Song, H.; Zhao, J.; Yang, J.; Li, S. Comparative study on oxidation of methane to ethane and ethylene over Na₂WO₄-Mn/SiO₂ catalysts prepared by different methods. *J. Mol. Catal. A* 2006, 245, 272–277. [CrossRef]
- 19. Arndt, S.; Otremba, T.; Simon, U.; Yildiz, M.; Schubert, H.; Schomäcker, R. Mn–Na₂WO₄/SiO₂ as catalyst for the oxidative coupling of methane. What is really known? *Appl. Catal. A* **2012**, *425–426*, 53–61. [CrossRef]
- 20. Ghose, R.; Hwang, H.T.; Varma, A. Oxidative coupling of methane using catalysts synthesized by solution combustion method: Catalyst optimization and kinetic studies. *Appl. Catal. A* 2014, 472, 39–46. [CrossRef]
- 21. Elkins, T.W.; Hagelin-Weaver, H.E. Characterization of Mn-Na₂WO₄/SiO₂ and Mn-Na₂WO₄/MgO catalysts for the oxidative coupling of methane. *Appl. Catal. A* **2015**, *497*, 96–106. [CrossRef]
- Fleischer, V.; Steuer, R.; Parishan, S.; Schomäcker, R. Investigation of the surface reaction network of the oxidative coupling of methane over Na₂WO₄/Mn/SiO₂ catalyst by temperature programmed and dynamic experiments. *J. Catal.* 2016, 341, 91–103. [CrossRef]
- 23. Werny, M.J.; Wang, Y.; Girgsdies, F.; Schlögl, R.; Trunschke, A. Fluctuating storage of the active phase in a Mn-Na₂WO₄/SiO₂ catalyst for the oxidative coupling of methane. *Angew. Chem. Int. Ed.* **2020**, *59*, 14921–14926. [CrossRef]
- Wang, P.; Zhao, G.; Wang, Y.; Lu, Y. MnTiO₃-driven low-temperature oxidative coupling of methane over TiO₂-doped Mn₂O₃-Na₂WO₄/SiO₂ catalyst. *Sci. Adv.* 2017, *3*, e1603180. [CrossRef]
- 25. Huang, P.; Zhao, Y.; Zhang, J.; Zhu, Y.; Sun, Y. Exploiting shape effects of La₂O₃ nanocatalysts for oxidative coupling of methane reaction. *Nanoscale* **2013**, *5*, 10844–10848. [CrossRef]
- 26. Jiang, T.; Song, J.; Huo, M.; Yang, N.; Liu, J.; Zhang, J.; Sun, Y.; Zhu, Y. La₂O₃ catalysts with diverse spatial dimensionality for oxidative coupling of methane to produce ethylene and ethane. *RSC Adv.* **2016**, *6*, 34872–34876. [CrossRef]
- 27. Fu, B.; Jiang, T.; Zhu, Y. Structural effect of one-dimensional samarium oxide catalysts on oxidative coupling of methane. *J. Nanosci. Nanotechnol.* **2018**, *18*, 3398–3404. [CrossRef]
- Fan, Y.; Sun, M.; Miao, C.; Yue, Y.; Hua, W.; Gao, Z. Morphology effects of nanoscale Er₂O₃ and Sr-Er₂O₃ catalysts for oxidative coupling of methane. *Catal. Lett.* 2021, 1–10. [CrossRef]
- 29. Song, J.; Sun, Y.; Ba, R.; Huang, S.; Zhao, Y.; Zhang, J.; Sun, Y.; Zhu, Y. Monodisperse Sr–La₂O₃ hybrid nanofibers for oxidative coupling of methane to synthesize C₂ hydrocarbons. *Nanoscale* **2015**, *7*, 2260–2264. [CrossRef]
- 30. Sun, Y.; Shen, Y.; Song, J.; Ba, R.; Huang, S.; Zhao, Y.; Zhang, J.; Sun, Y.; Zhu, Y. Facet-controlled CeO₂ nanocrystals for oxidative coupling of methane. *J. Nanosci. Nanotechnol.* **2016**, *16*, 4692–4700. [CrossRef]
- 31. Wiktorczyk, T. Preparation and optical properties of holmium oxide thin films. Thin Solid Films 2002, 405, 238–242. [CrossRef]
- 32. Mortazavi-Derazkola, S.; Zinatloo-Ajabshir, S.; Salavati-Niasari, M. New facile preparation of Ho₂O₃ nanostructured material with improved photocatalytic performance. *J. Mater. Sci.* **2017**, *28*, 1914–1924. [CrossRef]
- Zinatloo-Ajabshir, S.; Mortazavi-Derazkola, S.; Salavati-Niasari, M. Simple sonochemical synthesis of Ho₂O₃-SiO₂ nanocomposites as an effective photocatalyst for degradation and removal of organic contaminant. *Ultrason. Sonochem.* 2017, 39, 452–460. [CrossRef]
- 34. Shiri, H.M.; Ehsani, A. A novel and facile route for the electrosynthesis of Ho₂O₃ nanoparticles and its nanocomposite with p-type conductive polymer: Characterization and electrochemical performance. *Bull. Chem. Soc. Jpn.* **2016**, *89*, 1201–1206. [CrossRef]
- Takenaka, S.; Kaburagi, T.; Yamanaka, I.; Otsuka, K. Oxidative coupling of methane over Li⁺-added Y₂O₃ catalyst prepared from Y(OH)₃. *Catal Today* 2001, 71, 31–36. [CrossRef]
- Campbell, K.D.; Morales, E.; Lunsford, J.H. Gas-phase coupling of methyl radicals during the catalytic partial oxidation of methane. J. Am. Chem. Soc. 1987, 109, 7900–7901. [CrossRef]
- Al-Zahrani, S.; Song, Q.; Lobban, L.L. Effects of CO₂ during oxidative coupling of methane over Li/MgO: Mechanisms and models. *Ind. Eng. Chem. Res.* 1994, 33, 251–258. [CrossRef]
- Vislovskii, V.P.; Baidikova, I.V.; Mamedov, E.A.; Rizayev, R.G. Promoting effect of alkali oxides on Bi-Mn catalysts activity in oxidative coupling of methane. *React. Kinet. Catal. Lett.* 1992, 47, 193–197. [CrossRef]
- 39. Baronetti, G.T.; Padró, C.; Scelza, O.A.; Castro, A.A. Structure and reactivity of alkali-doped calcium oxide catalysts for oxidative coupling of methane. *Appl. Catal. A* **1993**, *101*, 167–183. [CrossRef]
- 40. Zhao, M.; Ke, S.; Wu, H.; Xia, W.; Wan, H. Flower-like Sr-La₂O₃ microspheres with hierarchically porous structures for oxidative coupling of methane. *Ind. Eng. Chem. Res.* **2019**, *58*, 22847–22856. [CrossRef]
- 41. Kharas, K.C.C.; Lunsford, J.H. Catalytic partial oxidation of methane over barium metaplumbate BaPbO₃: Possible involvement of peroxide ion. *J. Am. Chem. Soc.* **1989**, *111*, 2336–2337. [CrossRef]

- 42. Peng, X.D.; Richards, D.A.; Stair, P.C. Surface composition and reactivity of lithium-doped magnesium oxide catalysts for oxidative coupling of methane. *J. Catal.* **1990**, *121*, 99–109. [CrossRef]
- 43. Ding, W.; Chen, Y.; Fu, X. Oxidative coupling of methane over Ce⁴⁺-doped Ba₃WO₆ catalysts: Investigation on oxygen species responsible for catalytic performance. *Catal. Lett.* **1994**, *23*, 69–78. [CrossRef]
- 44. Hou, Y.H.; Han, W.C.; Xia, W.S.; Wan, H.L. Structure sensitivity of La₂O₂CO₃ catalysts in the oxidative coupling of methane. *ACS Catal.* **2015**, *5*, 1663–1674. [CrossRef]
- 45. Bai, Y.; Xia, W.; Weng, W.; Lian, M.; Zhao, M.; Wan, H. Influence of phosphate on La-based catalysts for oxidative coupling of methane. *Chem. J. Chin. Univ. Chin.* **2018**, *39*, 247–254.
- Sayle, T.X.T.; Parker, S.C.; Sayle, D.C. Oxidising CO to CO₂ using ceria nanoparticles. *Phys. Chem. Chem. Phys.* 2005, 7, 2936–2941.
 [CrossRef]
- 47. Bernal, S.; Botana, F.J.; Garcia, R.; Rodiguez-Izquierdo, J.M. Behaviour of rare earth sesquioxides exposed to atmospheric carbon dioxide and water. *React. Soliak.* **1987**, *4*, 23–40. [CrossRef]
- 48. Djerdj, I.; Garnweitner, G.; Su, D.S.; Niederberger, M. Morphology-controlled nonaqueous synthesis of anisotropic lanthanum hydroxide nanoparticles. *J. Solid State Chem.* **2007**, *180*, 2154–2165. [CrossRef]
- 49. Farrukh, M.A.; Imran, F.; Ali, S.; Khaleeq-ur-Rahman, M.; Naqvi, I.I. Micelle assisted synthesis of La₂O₃ nanoparticles and their applications in photodegradation of bromophenol blue. *Russ. J. Appl. Chem.* **2015**, *88*, 1523–1527. [CrossRef]
- 50. Spinicci, R.; Tofanari, A. Characterization of catalysts for methane-coupling by means of temperature programmed desorption. *Catal. Today* **1990**, *6*, 473–479. [CrossRef]
- 51. Xu, J.; Zhang, Y.; Xu, X.; Fang, X.; Xi, R.; Liu, Y.; Zheng, R.; Wang, X. Constructing La₂B₂O₇ (B = Ti, Zr, Ce) compounds with three typical crystalline phases for the oxidative coupling of methane: The effect of phase structures, superoxide anions, and alkalinity on the reactivity. *ACS Catal.* **2019**, *9*, 4030–4045. [CrossRef]
- 52. McFarland, E.W.; Metiu, H. Catalysis by Doped Oxides. Chem. Rev. 2013, 113, 4391-4427. [CrossRef]
- 53. Liang, Q.; Wu, X.; Weng, D.; Xu, H. Oxygen activation on Cu/Mn–Ce mixed oxides and the role in diesel soot oxidation. *Catal. Today* **2008**, *139*, 113–118. [CrossRef]
- 54. Papa, F.; Luminita, P.; Osiceanu, P.; Birjega, R.; Akane, M.; Balint, I. Acid–base properties of the active sites responsible for C₂⁺ and CO₂ formation over MO–Sm₂O₃ (M = Zn, Mg, Ca and Sr) mixed oxides in OCM reaction. *J. Mol. Catal. A* **2011**, *346*, 46–54. [CrossRef]
- 55. Elkins, T.W.; Roberts, S.J.; Hagelin-Weaver, H.E. Effects of alkali and alkaline-earth metal dopants on magnesium oxide supported rare-earth oxide catalysts in the oxidative coupling methane. *Appl. Catal. A* **2016**, *528*, 175–190. [CrossRef]
- 56. Bernal, S.; Blanco, G.; El Amarti, A.; Cifredo, G.; Fitian, L.; Galtayries, A.; Martín, J.; Pintado, J.M. Surface basicity of ceriasupported lanthana. Influence of the calcination temperature. *Surf. Interface Anal.* **2006**, *38*, 229–233. [CrossRef]
- Peng, L.; Xu, J.; Fang, X.; Liu, W.; Xu, X.; Liu, L.; Li, Z.; Peng, H.; Zheng, R.; Wang, X. SnO₂ based catalysts with low-temperature performance for oxidative coupling of methane: Insight into the promotional effects of alkali-metal oxides. *Eur. J. Inorg. Chem.* 2018, 2018, 1787–1799. [CrossRef]
- Xu, J.; Peng, L.; Fang, X.; Fu, Z.; Liu, W.; Xu, X.; Peng, H.; Zheng, R.; Wang, X. Developing reactive catalysts for low temperature oxidative coupling of methane: On the factors deciding the reaction performance of Ln₂Ce₂O₇ with different rare earth A sites. *Appl. Catal. A* 2018, 552, 117–128. [CrossRef]
- Xu, J.; Zhang, Y.; Liu, Y.; Fang, X.; Xu, X.; Liu, W.; Zheng, R.; Wang, X. Optimizing the reaction performance of La₂Ce₂O₇-based catalysts for oxidative coupling of methane (OCM) at lower temperature by lattice doping with Ca cations. *Eur. J. Inorg. Chem.* 2019, 183–194. [CrossRef]
- 60. Wang, Z.; Zou, G.; Luo, X.; Liu, H.; Gao, R.; Chou, L.; Wang, X. Oxidative coupling of methane over BaCl₂-TiO₂-SnO₂ catalyst. *J. Nat. Gas Chem.* **2012**, *21*, 49–55. [CrossRef]
- 61. Lee, H.I.; Lee, S.W.; Rhee, C.K.; Sohn, Y. Paramagnetic Ho₂O₃ nanowires, nano-square sheets, and nanoplates. *Ceram. Int.* **2018**, 44, 17919–17924. [CrossRef]
- 62. Ito, T.; Wang, J.X.; Lin, C.H.; Lunsford, J.H. Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. *J. Am. Chem. Soc.* **1985**, *107*, 5062–5068. [CrossRef]