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Abstract: Selective catalytic reduction of nitrogen oxides with NH3 (NH3-SCR) is still the most
commonly used control technology for nitrogen oxides emission. Specifically, the application of rare
earth materials has become more and more extensive. CeO2 was widely developed in NH3-SCR
reaction due to its good redox performance, proper surface acidity and abundant resource reserves.
Therefore, a large number of papers in the literature have described the research of cerium-based
catalysts. This review critically summarized the development of the different components of cerium-
based catalysts, and characterized the preparation methods, the catalytic performance and reaction
mechanisms of the cerium-based catalysts for NH3-SCR. The purpose of this review is to highlight: (1)
the modification effect of the various metal elements for cerium-based catalysts; (2) various synthesis
methods of the cerium-based catalysts; and (3) the physicochemical properties of the various catalysts
and clarify their relations to catalytic performances, particularly in the presence of SO2 and H2O.
Finally, we hope that this work can give timely technical guidance and valuable insights for the
applications of NH3-SCR in the field of NOx control.

Keywords: selective catalytic reduction; cerium-based catalysts; denitration; physicochemical prop-
erties; catalytic performance

1. Introduction

NOx emissions from automobile exhausts and stationary sources pose a serious threat
to environment. In 2017, the national NOx emission reached 17,852,200 tons, of which
the NOx emissions from industrial sources was 6,459,000 tons, accounting for 36.2% of
the total NOx emissions, and the NOx emissions from thermal power plants ranked first
among the total NOx emissions from the key industrial enterprises under investigation [1].
Meanwhile, many countries have issued a number of laws and measures to strictly control
NOx emissions, such as the New Sources Performance Standard of the United States, the
Large Combustion Plant Directive: H 2001/80/EC of the European Union, the Air Pollution
Prevention Law of Japan, the Atmospheric Environment Preservation Law of South Korea
and the Thermal Power Plant of China (GB13223-2011).

The most promising approach to reduce NOx emissions is the selective catalytic
reduction of NOx with NH3. The V2O5–WO3/TiO2 and V2O5–MoO3/TiO2 commercial
catalysts were conventionally developed for NH3-SCR, because of their excellent catalytic
performance and strong stability [2–5]. However, the poor catalytic temperature window
(300~400 ◦C) and the toxicity of vanadium also bring difficulties for the disposal of the
waste catalysts, which limit the future development of the vanadium-based catalysts [6,7].
Therefore, non-vanadium-based NH3-SCR catalysts currently attract significantly more
attention in this field.

Apparently, China is the country with the most abundant rare earth mineral resources
in the world, with not only with large reserves, but more importantly with complete min-
eral species and relatively low costs [8,9]. If rare earth oxide is applied to the research and
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development of SCR catalysts, it can develop the high efficiency deNOx from industrial
sources and automobile exhausts at low costs, which is the technical route for the prepa-
ration of SCR catalysts in accordance with China’s national conditions. Especially, CeO2
plays a key role in the treatment of automobile exhausts, and also has certain significance
for the abatement of particulate matter [10,11].

Up to now, CeO2 as the main active component and promoter of NH3-SCR catalysts
has been widely studied [12–14]. In general, CeO2 is an acid-based substance, which
has a large number of Lewis acid sites and a few Brönsted acid sites. CeO2 is as an
oxygen reservoir, which stores and releases oxygen via the redox shift between Ce4+ and
Ce3+ under oxidizing and reducing conditions. Besides, CeO2 exhibited an excellent SCR
activity in the presence of SO2 at 300–500 ◦C [15–18]. Furthermore, the most important
properties of suitable surface acidity and good redox ability play a significant role in SCR
performance [19,20]. Therefore, cerium-based catalysts were widely studied in NH3-SCR
reaction [21,22]. In this paper, the research progress of cerium-based NH3-SCR catalysts
made in recent years is summarized, including cerium-based bimetallic oxide catalysts,
cerium-based multiplex oxide catalysts and cerium-based molecular sieve catalysts.

2. Cerium-Based Bimetallic Oxide Catalysts

CeO2 enhances redox performance of the catalysts, which is vital for the catalytic
reaction. Obviously, CeO2 is responsible for the oxygen storage through the redox reac-
tion, and Ce3+ increases the amount of unstable surface oxygen holes and oxygen free
radicals [23–26]. However, the SCR performance of pure CeO2 catalyst is poor, so many
researchers have focused on synthesizing different composite catalysts for promoting
NH3-SCR activity and extending the operating temperature windows. Therefore, the
performance of cerium-based catalysts is continuously optimized by adding different metal
oxides [27,28].

2.1. CeO2–TiO2 Catalyst

Firstly, the CeO2–TiO2 catalyst has been widely concerned due to good redox perfor-
mance and its high specific surface area on the surface of catalyst [29,30]. As is known to
all, TiO2 is an optimal support of NH3-SCR catalysts with strong Lewis acidity and good
SO2 durability. Meanwhile, active components can be uniformly dispersed on its surface,
consequently increasing the number of surface active sites [31,32]. Generally, the prepara-
tion methods of the CeO2–TiO2 catalyst directly affect the strong interaction between CeO2
and TiO2 and the dispersion state of CeO2 on the catalyst’s surface. The former mainly
increases the specific surface. The latter directly affects the content of Ce3+ on the surface,
thereby determining the redox performance of the catalysts. For example, Gao et al. [33,34]
systematically compared the CeO2–TiO2 catalysts obtained by impregnation method, sol–
gel method and coprecipitation method. The results found that the catalyst prepared by the
sol–gel method showed up to 93–98% NOx conversion at 300–400 ◦C. More specifically, the
good deNOx performance might be attributed to the strong interaction between CeO2 and
TiO2, shown in Figure 1. In addition, it can be also observed from Figure 2 that the primary
particle size of CeTi (sol–gel) was less than 10 nm; meanwhile, these pictures revealed that
CeO2 was well dispersed on the surface of TiO2, thereby improving the catalytic activity of
the catalysts. Similarly, Duan et al. [35] found that CeO2 can be uniformly dispersed on the
TiO2; moreover, the levels of CeO2 in the catalyst did not change the crystal structure of
the anatase. Obviously, the preparation methods of the sol–gel have great impact on the
strong molecular interaction and surface characteristics of catalysts, which determine the
NH3-SCR performance. Besides, Huang et al. [36] obtained a series of CeO2/TiO2 catalysts
with organic additives by the ball milling method. The results indicated that the addition
of citric acid into the ball milling process could significantly change the proceedings of the
precursor mixture decomposition, enhancing the dispersion and reducibility of the CeO2
and the surface acidity as well as the surface microstructure.
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Furthermore, the presence of CeO2 in the CeO2–TiO2 catalyst can effectively enhance
the catalytic activity and thermostability of TiO2. Especially, ceria atoms can inhibit the
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crystalline grain growth and the collapse of the small channels generated by calcination [37].
In addition, some studies have found that the sulfate formed in the presence of SO2
is unstable on the surface of TiO2 and is easily decomposed; thus, TiO2 has high SO2
durability performance [38]. The function of the CeO2–TiO2 catalyst has been evaluated
by Fei et al. [39]. Particularly, the Ce0.5Ti0.5 catalyst exhibited the best catalytic activity
and extraordinary H2O/SO2 durability (Figures 3 and 4). Furthermore, the mechanism of
NH3-SCR over CeaTi1−a catalysts was confirmed in Figure 5, where NH3, as the main active
intermediate, reacted with NO to produce N2 and H2O in the E-R mechanism (Pathway 1).
Besides, for the L-H mechanism, a large amount of Ce3+ species and high surface adsorbed
oxygen reacted with adsorbed NH3 through the “fast SCR”, (Pathway 2). Subsequently,
NO firstly adsorbed on the active sites and reacted with O− to form the intermediate, and
lastly reacted with the adsorbed NH3 to form N2 and H2O (Pathway 3). Meanwhile, the
effect of the loading sequence of CeO2 and TiO2 on the catalytic activity was investigated
by Zhang et al. [40]. They also found that the TiO2/CeO2 catalyst not only showed good
low-temperature activity at 150~250 °C, but also showed great SO2 resistance performance
with the existence of 200 ppm SO2 at 300 °C. Actually, a large amount of CeO2 will actively
react with SO2 in priority, avoiding the interaction between the SO2 and Ce–O–Ti active
species; thereby the active species can completely exhibit great deNOx performance, as
shown in Figure 6. Additionally, some investigators have done some work on the influence
of different precursors of CeO2 and TiO2 on the catalysts’ performance. For instance,
Yao et al. [41] synthesized CeO2/TiO2 catalyst with anatase, brookite and rutile TiO2 as
support. The catalyst with rutile TiO2 exhibited great NH3-SCR activity owing to the large
amount of acid sites, surface Ce3+ content, and surface adsorbed oxygen species. However,
the H2O/SO2 durability performances of CeO2/TiO2 catalyst with rutile TiO2 need to be
further studied and improved. The abovementioned reports suggested that CeO2 and TiO2
exhibited more acid sites and higher dispersion than the pure CeO2, which significantly
enhanced the catalytic activity of the catalysts. SO2 and H2O showed a promotion on
NOx reduction over Ce/TiO2 catalyst at higher temperature, whereas they show a great
inhibitory effect at low temperature [42].
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2.2. CeO2–MnO2 Catalyst

Up to now, the Mn-based catalyst has been extensively investigated in the literature.
It was found to have superior low temperature activity due to its rich variable valence
states (MnO, Mn3O4, Mn5O8, Mn2O3, and MnO2) and huge surface area [43–45]. The
presence of the Mn4+ species and its redox process are important for the excellent NH3-SCR
activity at low temperatures and for N2 selectivity [46–49]. At the same time, the thermal
stability, chemisorbed oxygen and the concentration of Oα species on the surface will be
improved by MnOx and CeO2 [50]. However, the obstacle to the application of Mn-based
catalysts is the poor performance of resisting H2O and SO2 [51]. The addition of CeO2 can
enhance resistance to H2O and SO2 to a certain extent [52,53]. For example, Qi et al. [54,55]
introduced the CeO2–MnOx, which catalyst showed great H2O/SO2 durability. Moreover,
Mn ions entered the lattice of CeO2 and a large number of chemisorbed oxygen species
were released to the surface, thereby enhancing the NH3-SCR activity of the catalysts.

Besides, Ce and Mn can present different valence states under suitable preparation
methods and reaction conditions. Furthermore, the strong interaction between CeO2 and
MnO2 will make the catalysts show excellent low-temperature activity and improve the
redox performance of the catalysts. For example, the different preparation methods of
the MnOx–CeO2 catalyst have been analyzed by Shen et al. [56]. It was demonstrated
that the hydrolysis process method suggested higher SCR activity in the temperature
range of 80–260 ◦C; meanwhile, this catalyst showed higher Mn4+/Mn3+, Ce4+/Ce3+ ra-
tio, higher specific area and higher Oa/Op ratio. Apart from some mature preparation
methods, many researchers have made innovative works about preparation methods;
Yao et al. [57] reported that the MnOx–CeO2 catalyst prepared by the hydrothermal treat-
ment method revealed the best NH3-SCR performance and good resistance to SO2 and
H2O (Figure 7a,b). The XRD patterns and Raman spectra characterization were shown
in Figure 7c,d, where it was demonstrated that CeO2 and MnOx had a strong interaction
under the conditions of high temperature and high pressure. Furthermore, Mnn+ entered
into the lattice of CeO2 to form Mn–O–Ce solid solution, which enhanced the SCR perfor-
mance of the catalysts. Andreoli et al. [58] prepared CeO2–MnOx catalysts by the solution
combustion synthesis method, and this catalyst exhibited a higher NOx conversion of
more than 90% at 120–350 ◦C. Besides, Liu et al. [59] synthesized the MnOx–CeO2 catalyst
by the surfactant-template (ST) method and coprecipitation (CP) method, and the XRD
demonstrated that smaller mixed oxide particles were obtained by the surfactant-template
method. The smaller particles could contribute to improving the SCR performance, as
shown in Figure 8a. Meanwhile, more reducible subsurface and bulk oxygen were clearly
observed in the H2-TPR, as shown in Figure 8b. However, one problem relating to the
Mn based catalyst is that its application at low temperature is a big challenge. The main
problem is that the N2 selectivity will decrease significantly at high temperature. Mean-
while, the catalytic activity will still be inhibited by H2O and SO2, which cannot meet the
requirements of industrial production [60].
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2.3. Other CeO2–MOx Catalysts

In addition to the above composite metal oxides, other metal oxides as the main
active components in NH3-SCR catalysts have been extensively studied for low–medium
temperatures. For example, the addition of WO3 [61,62], Sn2O5 [63], MoO3 [64], CuOx [65]
and NiO [66] into Ce-based catalysts can improve the redox performance, surface acidity
and the adsorption of NH3 on the catalyst surface. Meanwhile, the addition of ZrO2 [67],
CoO [68] can enhance the specific surface area, thermal stability and the resistance to
H2O/SO2 of cerium-based catalysts. The modification of cerium-based catalysts by doping
WO3 showed excellent de-NOx performance. For instance, Wang et al. [61] reported that
the WO3 was deposited on CeO2 nanoparticles. This catalyst also exhibited the highest
SCR activity below 300 ◦C, excellent H2O/SO2 resistance and good NH3 adsorption at
125–450 ◦C. Generally, the presence of WO3 provided more surface lattice oxygen O2-

and acid sites at lower temperatures, which benefits the catalytic activity for NH3-SCR.
At the same time, the CeO2–WO3 catalyst has been reported on by Liu et al. [62]. The
results suggested that the presence of W provided more acid sites, thereby generating
additional chemisorbed oxygen, weakly adsorbed oxygen species and concentrations of
Ce and Ce3+ on the surface of the catalyst, shown in Figure 9. Liu et al. [63] investigated
the performance of a CeO2–SnO2 catalyst for NH3-SCR. The results revealed that the high
catalytic performance of this catalyst was attributed to the synergetic effect between Ce
and Sn species, which enhanced the redox ability, the Lewis acidity and the adsorption and
activation of NH3 species, thereby contributing to improving the NH3-SCR performance.
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Besides, the catalytic performance of the CeO2–MoO3 catalyst has been investigated
by Peng et al. [64]. This catalyst showed good NH3-SCR performance. Moreover, the Ce
atoms and amorphous MoO3 structure provided a large number of Lewis acid sites and
Brönsted acid sites on the catalyst surface. Atribak et al. [67] reported the performance
of the CeO2–ZrOx catalyst at high temperature, and the results indicated the addition
of Zr provided excellent thermal stability and more specific surface area of the catalysts.
Apart from the traditional CeO2–MOx catalysts, the single-atom catalysts have also showed
great potential in the NH3-SCR. Especially, adding a second late-transition metal into
cerium-based catalyst as single atom could have great potential in the automobile exhaust
field [69,70].

3. Cerium-Based Multiplex Oxide Catalysts

Cerium-based multiplex oxide catalysts are particularly outstanding owing to making
up for the shortcomings of some single or bimetallic catalysts on NH3-SCR activity. For
CeO2/TiO2 catalyst, such as Mn, W and Mo are introduced to further improve the redox
performance, the surface acidity and the H2O/SO2 durability of the catalysts. Therefore,
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the effects of cerium-based multiplex oxide catalysts on de-NOx performance were mainly
studied from the aspects of preparation methods, preparation conditions and additive
doping modification.

3.1. Ce–Mn/TiO2 Catalyst

Apparently, MnOx has many changeable valence states. Its oxides can be converted to
each other, which shows excellent catalytic activity at low temperature [71–73]. Meanwhile,
CeO2 can reduce the loss of specific surface area and pore volume during calcination,
which improves the oxygen storage capacity and redox performance of the catalysts.
Besides, the interaction between MnOx and CeO2 can form Mn–O–Ce solid solution,
thereby improving the adsorption and activation properties of NH3 [74]. For example,
Liu et al. [75] developed the Mn–Ce/TiO2 catalyst by hydrothermal method. It was also
found that the environmentally benign Mn–Ce/TiO2 catalyst exhibited excellent NH3-SCR
activity and good resistance to H2O and SO2 with a wide temperature window. Meanwhile,
this result showed that the dual redox cycles (Mn4+ + Ce3+↔Mn3+ + Ce4+, Mn4+ + Ti3+↔
Mn3+ + Ti4+) might play a key role in the catalytic reaction, which facilitated the adsorption
and activation of NH3, as shown in Figure 10. The structure and properties of 8% Mn–
Ce/TiO2-PILC catalyst has been analyzed by Shen et al. [76]. The catalyst suggested
rich mesoporous structure and large specific surface area. More specifically, it could be
demonstrated that Ce modified Mn–Ce/TiO2-PILC catalyst enhanced the dispersion of Mn
on the surface.
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Compared with CeO2–MnOx catalyst, the resistance to H2O and SO2 of the Ce-
Mn/TiO2 catalyst has been enhanced to some extent [77]. CeO2 can significantly inhibit the
deposition of (NH4)2SO4 and NH4HSO4 on the catalyst surface, which is the fundamental
reason for the improvement of SO2/H2O resistance [78]. For instance, that SO2 poisoning
and regeneration of the Mn–Ce/TiO2 catalyst have been reported by Sheng et al. [79]. This
catalyst showed good resistance to SO2; however, the deactivation of the Mn–Ce/TiO2
poisoned by SO2 still occurred. Then, Peng et al. [80] reported the influence of Ce addition
on the potassium poisoning of the MnOx/TiO2 catalyst, and found that K can reduce the
surface acidity and reduction performance of the catalyst. However, the presence of CeO2
can provide a certain number of Lewis acid sites, shown in Figure 11a; meanwhile, CeO2
enhanced the reducibility of Mn/Ti and maintained the redox performance of the SCR
catalysts after potassium poisoning, shown in Figure 11b.



Catalysts 2021, 11, 361 10 of 23Catalysts 2021, 11, x FOR PEER REVIEW 10 of 23 
 

 

  
Figure 11. (a) NH3-TPD profiles of fresh and poisoned catalysts in the range of 75–400 °C and (b) H2-TPR profiles of fresh 
and poisoned catalysts in the range of 150–700 °C [80]. 

3.2. Ce–W/TiO2 Catalyst 
Apparently, different aspects of W modified cerium-based catalysts have been 

widely studied, and highly dispersed WO3 is beneficial to improve the catalytic effect of 
the whole catalyst [81,82]. WO3, as a stabilizer and promoter, significantly increased the 
specific surface area, Ce3+/Ce4+ ratio and surface acid sites of the catalysts, consequently 
enhancing the adsorbed oxygen on the surface and the activated oxygen species [83,84]. 
Firstly, Chen et al. [85] developed Ce/TiO2 and W–Ce/TiO2 catalysts by the impregnation 
method. They also found that W–Ce/TiO2 catalyst showed better de-NOx performance. 
As shown in Figure 12, the presence of W provided more acid sites on the catalyst sur-
face, and accelerated the reaction between NH4NO3 and NO to achieve a superior 
low-temperature activity. Then, Guo et al. [86] found that the CeO2–WO3/TiO2 catalyst 
showed good catalytic activity. Pretreated TiO2 made the surface active substances have 
higher dispersion. The addition of WO3 also enhanced the surface acidity and surface 
chemisorption oxygen. Meanwhile, the influence of WO3 intervention on the catalytic 
performance of MnCeW/m-TiO2 catalyst has been investigated by Zha et al. [87]. This 
catalyst showed excellent deNOx performance and N2 selectivity under the conditions of 
wide temperature window and high space velocity. Particularly, in in situ DRIFTs, as 
shown in Figure 13, it found that the addition of WO3 enhanced more Brönsted acid sites 
on the surface at high temperature. Additionally, some researchers have reported some 
innovative preparation methods. For example, Katarzyna et al. [88] prepared WO3/CeOx–
TiO2 catalyst by the flame-spray synthesis method, and Figure 14 suggests the interpre-
tation of the mechanism of particle formation during flame-spray synthesis method. This 
method further strengthened the interaction of WO3, CeO2 and TiO2. Meanwhile, the 
presence of WO3 increased Ce3+ and surface acidity on the catalyst surface to a great ex-
tent. The highly dispersed WO3 enhanced the Ce–O–W reaction and Ce–O–Ti reaction, 
and consequently improved the performance of the NH3-SCR catalysts. Besides, the ad-
dition of WO3 improved the thermal stability of the catalysts at 550–600 °C [89], and a 
large cerium oxide phase and more TiO2 crystal formation can be avoided in the catalytic 
reaction process [90]. 

Figure 11. (a) NH3-TPD profiles of fresh and poisoned catalysts in the range of 75–400 ◦C and (b) H2-TPR profiles of fresh
and poisoned catalysts in the range of 150–700 ◦C [80].

Eventually, from the reported work on the Ce–Mn/TiO2 catalyst, it is not difficult to
find that the rich variable valence states of Mn show excellent NH3-SCR activity at low
temperature. However, its SCR performance resistance to H2O/SO2 still needs to be further
strengthened.

3.2. Ce–W/TiO2 Catalyst

Apparently, different aspects of W modified cerium-based catalysts have been widely
studied, and highly dispersed WO3 is beneficial to improve the catalytic effect of the
whole catalyst [81,82]. WO3, as a stabilizer and promoter, significantly increased the
specific surface area, Ce3+/Ce4+ ratio and surface acid sites of the catalysts, consequently
enhancing the adsorbed oxygen on the surface and the activated oxygen species [83,84].
Firstly, Chen et al. [85] developed Ce/TiO2 and W–Ce/TiO2 catalysts by the impregnation
method. They also found that W–Ce/TiO2 catalyst showed better de-NOx performance. As
shown in Figure 12, the presence of W provided more acid sites on the catalyst surface, and
accelerated the reaction between NH4NO3 and NO to achieve a superior low-temperature
activity. Then, Guo et al. [86] found that the CeO2–WO3/TiO2 catalyst showed good
catalytic activity. Pretreated TiO2 made the surface active substances have higher dispersion.
The addition of WO3 also enhanced the surface acidity and surface chemisorption oxygen.
Meanwhile, the influence of WO3 intervention on the catalytic performance of MnCeW/m-
TiO2 catalyst has been investigated by Zha et al. [87]. This catalyst showed excellent deNOx
performance and N2 selectivity under the conditions of wide temperature window and
high space velocity. Particularly, in in situ DRIFTs, as shown in Figure 13, it found that the
addition of WO3 enhanced more Brönsted acid sites on the surface at high temperature.
Additionally, some researchers have reported some innovative preparation methods. For
example, Katarzyna et al. [88] prepared WO3/CeOx–TiO2 catalyst by the flame-spray
synthesis method, and Figure 14 suggests the interpretation of the mechanism of particle
formation during flame-spray synthesis method. This method further strengthened the
interaction of WO3, CeO2 and TiO2. Meanwhile, the presence of WO3 increased Ce3+

and surface acidity on the catalyst surface to a great extent. The highly dispersed WO3
enhanced the Ce–O–W reaction and Ce–O–Ti reaction, and consequently improved the
performance of the NH3-SCR catalysts. Besides, the addition of WO3 improved the thermal
stability of the catalysts at 550–600 ◦C [89], and a large cerium oxide phase and more TiO2
crystal formation can be avoided in the catalytic reaction process [90].
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Generally, the ratio of CeO2 and WO3 has great effect on the redox ability and surface
characteristics of Ce–W/TiO2 catalysts, which also determines the NH3-SCR performance.
For instance, the Ce0.2W0.2Ti catalyst with Ce/W molar ratio of 1:1 has been synthesized by
Shan et al. [91]. It also showed that the best NH3-SCR catalytic performance and 100% N2
selectivity; above 90% of NO conversion was maintained from 275 ◦C to 450 ◦C. Besides,
in our previous research, we have done some work on the Ce–W/TiO2 catalyst for the
NH3-SCR reaction and analyzed the influence of the active components CeO2 and WO3
content on the de-NOx performance of the catalysts, and found that the 30Ce4W/TiO2
catalyst showed up to 90% NOx conversion at the widest temperature range of 310 ◦C.
More specifically, the results show that a higher proportion of Ce4+, more chemisorption of
oxygen and high specific surface area were key for the excellent NH3-SCR activity of this
catalyst [92].
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3.3. Ce–Mo/TiO2 Catalyst

Undoubtedly, it is not difficult to find that the addition of Mo can remarkably improve
the performance of SCR catalysts. Especially, CeO2 and MoO3 can be highly dispersed on
the surface of TiO2 carrier. Furthermore, Mo doping increases the Ce3+ content, creates more
abundant Brönsted acid sites, and increases the oxygen vacancy and adsorbed oxygen
substances on the catalyst surface [93,94]. Additionally, the presence of MoO3 could
effectively enhance the SO2 and H2O resistance of the catalysts at low temperature [95].
For example, Li et al. [96] prepared an Mo-doped MoO3/CeO2–TiO2 (MoO3/CT) catalyst.
The catalyst showed good low temperature activity and excellent SO2/H2O resistance
performance (Figure 15a,b). More specifically, the addition of MoO3 increased the Brönsted
acid sites on the catalyst surface, shown in Figure 16. Then, the influence of MoO3 modified
CeO2–TiO2 catalyst on the NH3-SCR performance was systematically investigated by Liu
et al. [97]„ who suggested that having more Brönsted acid sites was conducive to the
adsorption of NH3. Furthermore, MoO3 can inhibit the formation of sulfates; thereby
the catalyst simultaneously showed excellent SO2/H2O resistance. Besides, Ye et al. [98]
prepared CeO2–MoO3/TiO2 catalysts by different kinds of methods, and found that the
catalyst prepared by sol–gel method exhibited the widest reaction temperature window of
250–475 ◦C.
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Additionally, some researchers added active components to CeO2–MoO3/TiO2 cat-
alysts to enhance the deNOx performance of the catalyst. For instance, the NH3-SCR
performance of a new type of CeO2–MoO3–WO3/TiO2 catalyst has been reported by Jiang
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et al. [99]. The result exhibited that the NO conversion was 93.8~98.9% at a GHSV of
90,000 h−1 and a temperature window of 275–450 ◦C. The presence of WO3 and MoO3 in-
creased the adsorption capacity of NH3, the redox performance, the amount of Ce3+ and the
chemisorption of oxygen on the surface. At the same time, the interaction between CeO2,
MoO3, WO3 and TiO2 might play an increasingly vital role in the improvement of catalytic
performance. Zhang et al. [100] developed the catalytic performance of the CeFMoTiOx
catalyst, which not only exhibited higher than 90% NO conversion at 240–420 ◦C, but also
presented superior H2O/SO2 durability. The results demonstrated that the presence of
MoO3 improved the dispersity of CeO2 on the catalyst surface. The introduction of F
increased the oxygen vacancy, consequently improved the redox performance of CeO2.
Meanwhile, the Ti–F bond played a key role in the SCR reaction. Eventually, the poisoning
mechanism of As on CeO2–MoO3/TiO2 catalyst has been analyzed by Li et al. [101], as
shown in Figure 17. The results exhibited that As2O5 would directly weaken the specific
surface area, surface acidity and redox performance. However, after the addition of Mo, the
stronger interaction between Mo and As can alleviate the effects of surface CeO2 poisoning
to a certain extent, so as to recover the redox performance and Brönsted acid sites of the
CeO2–MoO3/TiO2 catalyst.
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3.4. Other Cerium-Based Multiplex Oxide Catalysts

In addition to the above multiplex oxide catalysts, many research papers have reported
that CeO2 was combined with other transition metal oxides to form NH3-SCR catalysts,
such as Sn2O5 [102], VOx [103], CuO [104], Nb2O5 [105], ZrO2 [106] and CoO [107]. They
can simultaneously enhance the surface acidity, redox performance and SO2/H2O resis-
tance of the SCR catalysts. For instance, Zhang et al. [97] prepared CeSnTiOx catalysts by
the solvothermal method. The results suggest that the Sn doped catalysts showed better
low-temperature activity, exhibiting an extraordinarily wide operation window ranging
from 180 to 460 ◦C. Meanwhile, the H2-TPR and XPS spectra results verified that the
addition of Sn2O5 improved the interaction between CeO2 and SnO2 and the redox ability
of the catalysts. Then, a novel V2O5/CeTiOx catalyst was introduced by Lian et al. [103].
The addition of VOx enhanced catalytic activity, N2 selectivity and the resistance to SO2
and H2O. Then, Li et al. [104] studied Cu modified Ce/TiO2 catalyst, and found that the
catalyst with a Cu/Ce molar ratio of 0.005 showed the best low-temperature activity and
excellent SO2 resistance performance. By means of XRD, BET, Raman, XPS and NH3-
TPD, it was demonstrated that the presence of CuO increased the amount of the surface
adsorbed oxygen and Ce3+ species and created more Brönsted acid sites on the catalyst
surface. Furthermore, the in situ DRIFT results demonstrated that CuO doping enhanced
the adsorption capacity of NH3.
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Besides, Jawaher et al. [105] prepared Nb5-Ce40/Ti10 catalyst by sol–gel method, and
found that the catalyst showed up to 95% NOx conversion at 200 ◦C. The addition of Nb
strengthened the surface acidity. Meanwhile, the strong interaction between Ce and Ti
to form the Ce–O–Ti solid solution and the high dispersion of Nb2O5 can improve the
NH3-SCR activity. However, the presence of Nb2O5 will greatly decrease the specific
surface area of the catalysts. Then, Zr modified Ce–W/TiOx catalyst was analyzed by
Zhao et al. [106]. The presence of Zr enhanced more acidic sites, oxygen vacancies and
adsorbed oxygen species on the surface, which showed the best NH3-SCR catalytic activity
and thermal stability. Liu et al. [107] found that the Co–Ce/TiO2 catalyst exhibited good
low-temperature activity, widened the temperature window and reacted quickly under
the mechanism of L-H and E-R. Furthermore, the different particle sizes of Co2+ and Ce4+

promoted the Ce3+ ratio and surface adsorption oxygen. Besides, Li et al. [108] prepared
Ho-doped Mn–Ce/TiO2 catalyst by impregnation method. The results indicated that the
catalyst with Ho/Ti of 0.1 presented excellent catalytic activity with the NO conversion
of more than 90% at 140–220 ◦C (Figure 18a,b). The characterization results showed that
Ho increased the specific surface area and led to higher levels of chemisorbed oxygen, as
shown in Figure 19; meanwhile, the presence of Ho inhibited the sulfation on the surface
to some extent.
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4. Molecular Sieve Catalysts

Apart from the ceria-based composite oxide SCR catalysts, the excellent activity and
high N2 selectivity of molecular sieves are also considered as the most promising SCR cata-
lysts [109,110]. Especially, molecular sieve catalyst has strong stability, toxicity resistance
and wide reaction temperature range [111]. Among the molecular sieve catalysts, ZSM-5,
Beta, USY and other carriers exhibit good adsorption capacity, moderate surface acidity and
flexible reaction temperature window. Peculiarly, ZSM-5 exhibits stable crystal structure,
good specific surface area, abundant acid sites and great thermal stability [112–114]. For
example, Krishna K et al. [115] prepared the Ce/ZSM-5 catalyst by ion exchange method.
The results suggested that CeO2 is closely bound to ZSM-5, which provided more active
sites to transform NOx. Then, Liu et al. [116] prepared CeO2-modified Cu/ZSM-5 catalyst
by a wetness impregnation method, and found the presence of CeO2 enhanced the NH3-
SCR activity of the catalyst at low temperature. However, this catalyst had a poor catalytic
performance at high temperature. Additionally, Dou [117] analyzed that the addition of Ce
can inhibit the crystallization of Cu and increase the dispersion of active component, which
made the catalyst show better de-NOx performance at 148–427 ◦C. The Fe–ZSM-5@CeO2
catalyst has been investigated by Chen et al. [118]. The catalyst showed excellent NH3-SCR
activity and N2 selectivity, mainly due to the construction strategy of Fe–ZSM-5@CeO2
to increase the redox performance and active oxygen species of the catalyst, shown in
Figure 20. Subsequently, the surface Ce4+ and active oxygen species over Fe–ZSM-5@CeO2
promoted the adsorption and activation of NO, shown in Figure 21. Carja et al. [119]
studied the Mn–Ce/ZSM-5 catalyst and the results exhibited good NH3-SCR activity in the
presence of H2O and SO2. More importantly, the synergistic interaction of ZSM-5 and Ce,
Mn promoted microporous-mesoporous characteristics and specific surface properties of
catalysts. Besides, Liu et al. [120] reported CuCe0.75Zr0.25Oy/ZSM-5 catalyst. The reaction
temperature window was widened to 175–468 ◦C. According to XRD and TEM results, the
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presence of Zr increased the dispersion of Cu and inhibited the crystallization of Cu, and
XPS and H2-TPR analysis demonstrated that Cu ions entered the lattice of ZrO2 or CeO2.
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In addition, both the β and USY zeolite catalysts have been mentioned slightly less
often than the ZSM-5 zeolite catalyst. However, there are still some valuable studies to
be found; for example, Liu et al. [121] reported the coating of CeO2 shells on the surface
of MoFe/Beta catalyst, as shown in Figure 22, and found that the presence of the CeO2
shells enhanced the resistance to SO2 and H2O and high thermal stability. This was
mainly due to the fact that both chemisorbed oxygen species and specific surface area
were increased after the coating of the CeO2 shells (Figures 23 and 24). Then, Huang
et al. [122] reported Mn–Ce catalysts with β, ZSM-5 and USY molecular sieves as carriers,
respectively, by the impregnation method and studied the de-NOx performance of the
catalysts at low temperature. The results showed that the three zeolite supported Mn–Ce
catalysts have good low temperature activity, and the Mn–Ce/USY catalyst showed up to
90% NOx conversion at 107 ◦C. The MnOx is mainly distributed on the catalyst surface in
an amorphous structure. Meanwhile, the weak acid on the catalyst surface played a major
role in the reaction.
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Finally, it is worth considering that the addition of active components and promoters
can increase redox property for cerium-based SCR catalysts. Furthermore, the oxidation
reaction of the catalysts was enhanced. However, the oxidation of SO2 was simultaneously
increased in the catalytic reaction process, thereby resulting in the formation of sulfate on
the surface and inhibiting the NH3-SCR activity of the catalysts. Therefore, the question
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of the resistance to SO2, H2O needs to be further investigated. Finally, for all the above
types of catalysts, the denitration performance of the catalysts under different preparation
methods and conditions was described in Table 1.

Table 1. The denitration performance of different catalysts.

Catalysts Method Temperature
Window/◦C

NOx
Conversion/%

Gas Hourly Space Velocity
(GHSV)/h−1 Refs.

CeO2/TiO2
CeO2/TiO2

Sol–gel
Dry ball milling

300–400
180

93–98%
84.6%

50,000 h−1

GHSV of 30,000 h−1
[31,32]

[34]
MnOx–CeO2 One-step hydrolysis process 180 Over 90% GHSV of 30,000 h−1 [53]
CeO2–WO3 Two-step hydrothermal impregnation 300–450 100% GHSV of 60,000 h−1 [58]
CeO2–SnO2 Hydrothermal 280–425 Over 90% GHSV of 128,000 h−1 [60]

Mn–Ce/TiO2 Hydrothermal 150–350 Over 90% GHSV of 64,000 h−1 [70]
Ce–W/TiO2 Sol–gel precipitation 210–460 Over 90% GHSV of 150,000 h−1 [81]
Ce–Mo/TiO2 Sol–gel 250–475 Over 90% GHSV of 90,000 h−1 [94]

MnCeW/TiO2 Impregnation 140–340 Over 95% GHSV of 40,000 h−1 [83]
Ce–Cu/ZSM-5 Wet impregnation 210–320 Over 90% GHSV of 100,000 h−1 [112]
MoFe/Beta@

CeO2
Wet impregnation 225–600 Over 90% GHSV of 50,000 h−1 [117]

5. Conclusions and Perspectives

In conclusion, cerium-based catalysts have been deeply studied due to their high
deNOx performances and low costs. The catalytic performance of cerium-based catalysts
mainly depends on surface acidity, specific surface area, redox performance and resis-
tance to H2O and SO2. The current study indicated the better catalytic performance of
cerium-based bimetallic oxides than pure CeO2 in NH3-SCR. Furthermore, the multiplex
oxide catalysts present a wider operation temperature widow and great low-temperature
activity than the bimetallic oxide catalysts. This is attributed to the synergistic interaction
between active components and promoters, the enhancement of the acid sites and the
redox properties. Moreover, not only the addition of the other metal oxides can modify the
performance of cerium-based catalysts, but different synthesis methods can also enhance
the dispersion of the active species and the interaction of the different active components,
the cerium-based bimetallic oxide catalysts, the cerium-based multiplex oxide catalysts and
cerium-based molecular sieve catalysts are still the research directions in NH3-SCR field in
the future. Some researchers have done fruitful work in the fields of the synthesis method,
modification and catalytic mechanism of cerium-based catalysts. Nevertheless, some as-
pects need to be further investigated. First of all, at low temperature, the performance of
catalysts is still inhibited by H2O and SO2. Due to that, the improvement of the SO2/H2O
resistance of cerium-based catalysts is still the main research direction. Secondly, traditional
synthesis methods of catalysts need to be further studied and new synthesis methods need
to be explored in order to expose more active sites on the catalyst surface and enhance the
interaction between the active components. Furthermore, in order to provide the excellent
performance of cerium-based catalysts, it is necessary to further achieve the optimal ratio
of the active components. Additionally, for the cost of the catalysts, some metal oxides
have high costs, which cause substantial obstacles to their actual production. Therefore, to
ensure the excellent catalytic performance of cerium-based catalysts, the active components
with low costs should be selected.
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