



Supplementary Materials

## The Impact of Pressure and Hydrocarbons on NO<sub>x</sub> Abatement over Cu- and Fe-Zeolites at Pre-Turbocharger Position

Deniz Zengel<sup>1</sup>, Simon Barth<sup>1,2</sup>, Maria Casapu<sup>1</sup>, Jan-Dierk Grunwaldt<sup>1,2,\*</sup>

- <sup>1</sup> Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18/20, 76131 Karlsruhe, Germany
- <sup>2</sup> Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermannvon-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, 76131 Karlsruhe, Germany
- \* Correspondence: grunwaldt@kit.edu; Tel.: +49-721-608-42120

Citation: Zengel, D.; Barth, S.; Casapu, M.; Grunwaldt, J.D. The Impact of Pressure and Hydrocarbons on NOx Abatement over Cu- and Fe-Zeolites at Pre-turbocharger Position. *Catalysts* **2021**, *11*, 336. https://doi.org/10.3390/catal11030336

Academic Editor: Wenpo Shan

Received: 6 February 2021 Accepted: 5 March 2021 Published: 6 March 2021

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

## 1. Tables

|                                             | 0 |              | 5             |
|---------------------------------------------|---|--------------|---------------|
|                                             |   | Fe-ZSM-5 [g] | Cu-SSZ-13 [g] |
| Sample #1 (C <sub>3</sub> H <sub>6</sub> )  |   | 2.06         | 2.20          |
| Sample #2 (C12H26)                          |   | 1.96         | 2.20          |
| Sample #3 (C <sub>8</sub> H <sub>10</sub> ) |   | 2.04         | 2.20          |

Table S1. Washcoat loading of Fe-ZSM-5 and Cu-SSZ-13 honeycombs.

## 2. Figures

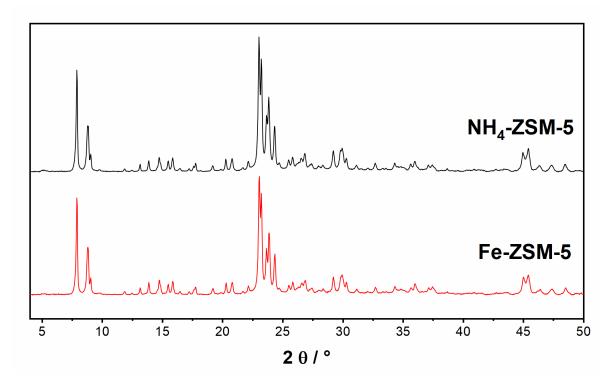



Figure S1. XRD patterns of NH<sub>4</sub>-ZSM-5 (before ion exchange) and Fe-ZSM-5 (after ion exchange) show the characteristic pattern of the ZSM-5 framework.

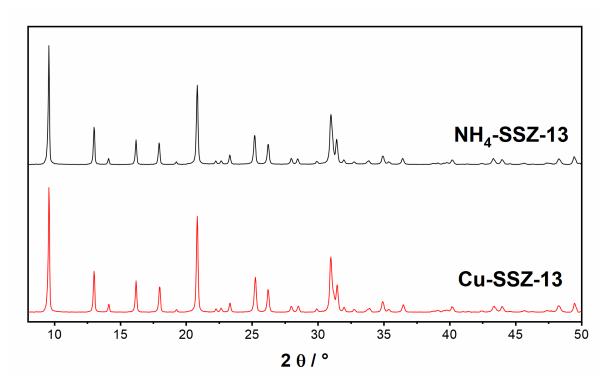
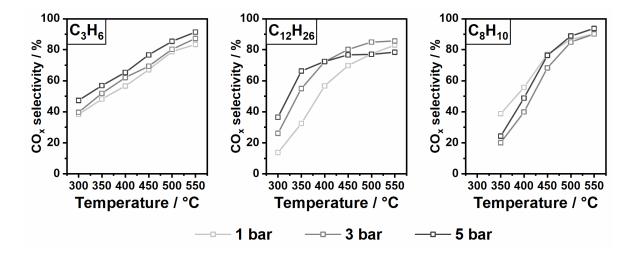




Figure S2. XRD patterns of NH<sub>4</sub>-SSZ-13 (before ion exchange) and Cu-SSZ-13 (after ion exchange) show the characteristic pattern of the SSZ-13 framework.



**Figure S3.** CO<sub>x</sub> selectivity (CO + CO<sub>2</sub>) during C<sub>x</sub>H<sub>y</sub> oxidation (14% O<sub>2</sub> and 4.5% H<sub>2</sub>O in N<sub>2</sub>) over Fe-ZSM-5 at 1, 3 and 5 bar pressure.

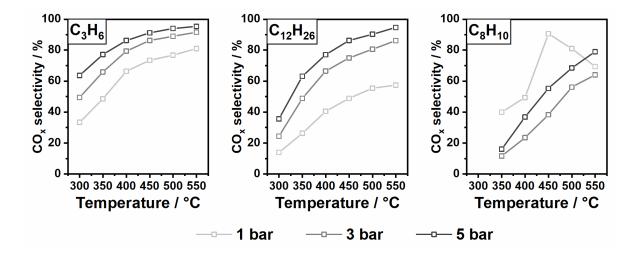
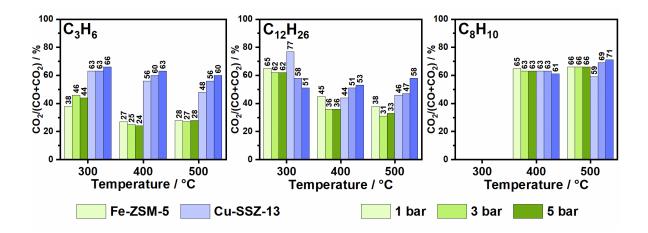
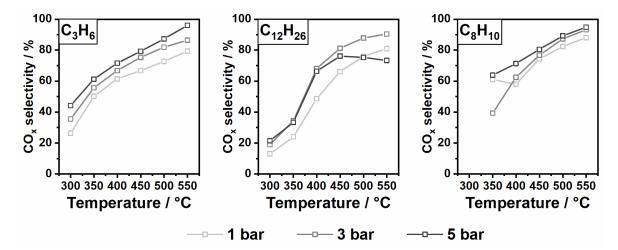
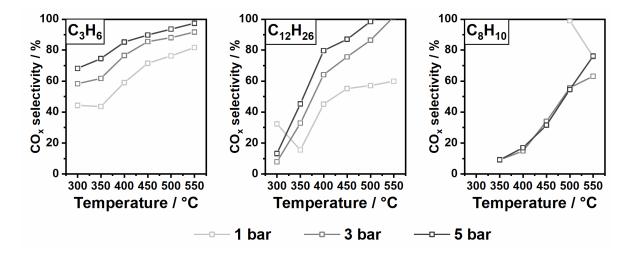
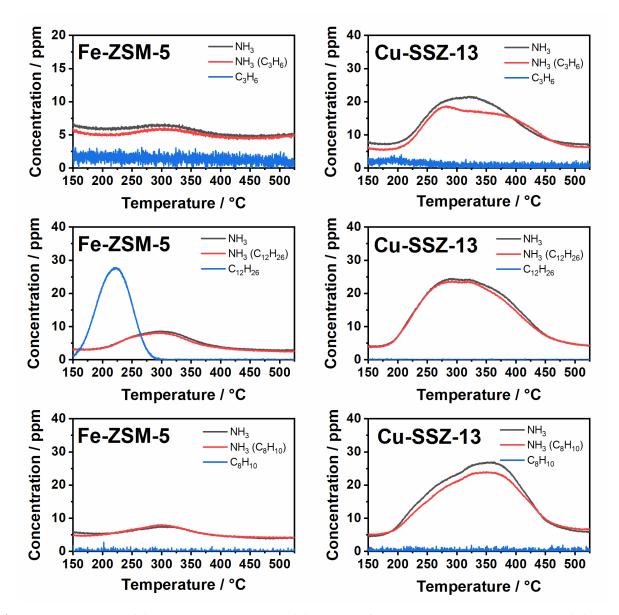
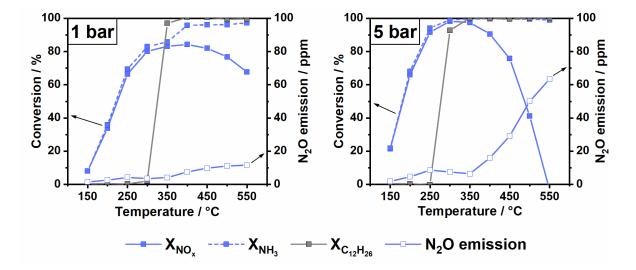



Figure S4. CO<sub>x</sub> selectivity (CO + CO<sub>2</sub>) during C<sub>x</sub>H<sub>y</sub> oxidation (14% O<sub>2</sub> and 4.5% H<sub>2</sub>O in N<sub>2</sub>) over Cu-SSZ-13 at 1, 3 and 5 bar pressure.



Figure S5.  $CO_2$  share of formed  $CO_x$  (CO + CO<sub>2</sub>) via hydrocarbon oxidation during standard SCR over Fe-ZSM-5 and Cu-SSZ-13.




**Figure S6.** CO<sub>x</sub> selectivity (CO + CO<sub>2</sub>) during C<sub>x</sub>H<sub>y</sub> oxidation in standard SCR gas mixture (350 ppm NO, 350 ppm NH<sub>3</sub>, 14% O<sub>2</sub> and 4.5% H<sub>2</sub>O in N<sub>2</sub>) over Fe-ZSM-5 at 1, 3 and 5 bar pressure.



**Figure S7.** CO<sub>x</sub> selectivity (CO + CO<sub>2</sub>) during C<sub>x</sub>H<sub>y</sub> oxidation in standard SCR gas mixture (350 ppm NO, 350 ppm NH<sub>3</sub>, 14% O<sub>2</sub> and 4.5% H<sub>2</sub>O in N<sub>2</sub>) over Cu-SSZ-13 at 1, 3 and 5 bar pressure.



**Figure S8.** Comparison of the temperature programmed desorption of ammonia (NH<sub>3</sub>-TPD) in presence and absence of  $C_xH_y$  of Fe-ZSM-5 and Cu-SSZ-13. All samples were saturated for half an hour with NH<sub>3</sub> or NH<sub>3</sub> +  $C_xH_y$  in a gas mixture consisting of 350 ppm NH<sub>3</sub>, 200 ppm C<sub>3</sub>H<sub>6</sub>/50 ppm C<sub>12</sub>H<sub>26</sub>/75 ppm C<sub>8</sub>H<sub>10</sub>, 4.5% H<sub>2</sub>O and N<sub>2</sub> at 150 °C and subsequently heated in N<sub>2</sub> at a heating rate of 5 K min<sup>-1</sup>. Differences in the amount of stored NH<sub>3</sub> of the same catalyst type between the different hydrocarbons are due to a different amount of washcoat loading of the respective honeycomb used and the prior catalytic testing with the corresponding hydrocarbon.



**Figure S9.** NO<sub>x</sub>/NH<sub>3</sub>/C<sub>12</sub>H<sub>26</sub> conversion and N<sub>2</sub>O emission over Cu-SSZ-13 for 1 bar (left) and 5 bar (right) in Standard SCR gas mixture (50 ppm C<sub>12</sub>H<sub>26</sub>, 350 ppm NO, 350 ppm NH<sub>3</sub>, 14% O<sub>2</sub>, 4.5% H<sub>2</sub>O in N<sub>2</sub>).