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Abstract: In recent years, metal–organic frameworks (MOFs) have received increasing attention as
selective oxidation catalysts and supports for their construction. In this short review paper, we survey
recent findings concerning use of MOFs in heterogeneous liquid-phase selective oxidation catalysis
with the green oxidant–aqueous hydrogen peroxide. MOFs having outstanding thermal and chemical
stability, such as Cr(III)-based MIL-101, Ti(IV)-based MIL-125, Zr(IV)-based UiO-66(67), Zn(II)-based
ZIF-8, and some others, will be in the main focus of this work. The effects of the metal nature and
MOF structure on catalytic activity and oxidation selectivity are analyzed and the mechanisms of
hydrogen peroxide activation are discussed. In some cases, we also make an attempt to analyze
relationships between liquid-phase adsorption properties of MOFs and peculiarities of their catalytic
performance. Attempts of using MOFs as supports for construction of single-site catalysts through
their modification with heterometals will be also addressed in relation to the use of such catalysts for
activation of H2O2. Special attention is given to the critical issues of catalyst stability and reusability.
The scope and limitations of MOF catalysts in H2O2-based selective oxidation are discussed.

Keywords: liquid-phase selective oxidation; heterogeneous catalysis; hydrogen peroxide; metal–
organic frameworks

1. Introduction

In the quest for sustainable and green production of valuable chemicals, an important
goal is the development of economic and ecologically sound oxidation processes using
benign and readily available oxidizing agents [1–3]. Hydrogen peroxide is a clean and
green oxidant because it contains 47% of potentially active oxygen and produces water as
the sole byproduct [4,5]. New methodologies being developed for the direct synthesis of
hydrogen peroxide from H2 and O2 are anticipated to expand significantly the scope of
this oxidant in the near future [6–8].

Metal–organic frameworks (MOFs) are an emerging class of materials composed of
metal ions or, more frequently, clusters connected by multidentate organic linkers into a
regular porous structure. A unique combination of properties, including extraordinarily
high surface areas, open nanoporosity, tunable functionality, and pore dimensions, together
with a large fraction (20–40 wt.%) of accessible metal sites uniformly distributed over the
framework, makes MOFs highly attractive materials for applications in gas storage and sep-
aration, molecular recognition, drug delivery, and heterogeneous catalysis [9–22]. Paz and
coworkers in their review paper analyzed efforts of commercial companies to bring func-
tional MOFs towards the industrial applications [18], while Choi and colleagues surveyed
recent developments in process engineering and upcoming applications of MOFs [22].

Analysis of the recent review literature devoted to heterogeneous catalysis on MOFs
showed that a considerable scientific effort was directed to evaluation of their potential
for selective oxidation [23–43]. So far, the majority of works in this area deal with the use
of molecular oxygen or anhydrous alkyl hydroperoxides as oxidants while not so many
are devoted to oxidation catalysis with H2O2. This is not surprising if we remember that
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aqueous hydrogen peroxide possesses not only oxidizing but also hydrolyzing and strong
complexing ability, which is a threat to the structure of most MOFs, especially at elevated
temperatures. However, discoveries of MOFs having outstanding chemical and thermal
stability, especially Zr-based ones, are currently changing the situation [44,45].

In this short review paper, we survey recent findings concerning use of MOFs as
heterogeneous catalysts for selective oxidations using H2O2, with special attention drawn
to the mechanistic aspects of the oxidation reactions and stability/reusability issues. Some
attempts of using MOFs as supports for construction of single-site selective oxidation
catalysts through their modification with heterometals will be also discussed in their
relation to H2O2-based oxidations. We focus here on MOFs with high chemical and thermal
stability, such as Cr(III)-based MIL-101, Ti(IV)-based MIL-125, Zn(II)-based ZIF-8, Zr(IV)-
based UiO-66(67), and some others. Representative MOF structures are shown in Figure 1,
while Table 1 summarizes typical physicochemical characteristics of these MOFs, including
thermal stability. Since the incorporation of metal–oxygen clusters or polyoxometalates
(POMs) into the structural nodes or cages of MOFs was recently surveyed [46,47], POM-
MOF catalysts are beyond the scope of this work.
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Table 1. Physicochemical characteristics of some MOFs with high chemical and thermal stability.

MOF Molecular Formula a
SBET dp

Metal
Content Thermal Stability

(m2/g) (Å) (%) a (oC) b

MIL-101
Cr3OX(BDC)3(H2O)

3200–3900
12 and 16 (windows)

21.7 275 [48](X = F, OH) 29 and 34 (cages)

MIL-125 Ti8O8(OH)4(BDC)6 1500
5–7 (windows)

24.5 360 [49]6 and 12.5 (cages)

UiO-66 Zr6O4(OH)4(BDC)6 1200
6 (windows)

32.9
520 [50,51]

8 and 11 (cages) 540 c [52]

UiO-67 Zr6O4(BPDC)6 2300
8 (windows)

25.8
520 [51]

11.5 and 18 (cages) 540 c [52]
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Table 1. Cont.

MOF Molecular Formula a
SBET dp

Metal
Content Thermal Stability

(m2/g) (Å) (%) a (oC) b

Zr-abtc Zr6O4(OH)4(abtc)2(OH)4(H2O)4 1300 7 (1D channels) 39.5 450 c [54]

MIP-200 Zr6O4(OH)4(mdip)2(formate)4 1000 13 and 6.8 (hexagonal
and triangular channels) 35.5 500 [55]

ZIF-8 Zn(MeIM)2 1300–1800
3.4 (windows)

28.7
400 [56]

11.6 (cages) 550 c [57]
a For ideal, non-defective MOF; b Under air (O2) atmosphere; c Under N2 atmosphere; BDC = 1,4-benzene-dicarboxylate; BPDC =
4,4’-biphenyl-dicarboxylate; fum = fumarate; abtc = 3,3’,5,5-azobenzene-tetracarboxylate; mdip = 5,5′-methylenediisophthalate; MeIM =
2-methylimidazolate.

2. MOFs as Selective Oxidation Catalysts
2.1. Oxidation of S-Compounds

Organic sulfides are nucleophilic substrates which can be readily oxidized to cor-
responding sulfoxides with electrophilic oxidants (most peroxo complexes of d0 transi-
tion metals) whereas sulfoxides possess a biphilic nature, and therefore their oxidative
transformation to sulfones can be accomplished using both electrophilic and nucleophilic
oxidants [58,59]. Considering high reactivity of alkyl aryl sulfides that allows use of mild
conditions for their oxidation, these substrates have been widely employed to evaluate cat-
alytic activity of MOFs [26,42,60–66]. Below we discuss a few MOF-based catalyst systems
which feature high selectivity to either sulfoxide or sulfone, thereby giving hints about the
oxidation mechanism.

2.1.1. Electrophilic Oxidation of Thioethers to Sulfoxides over Zn- and Cr-MOFs

In 2006, Dybtsev et al. reported the synthesis of a robust homochiral microporous
Zn-MOF, [Zn2(BDC)(L-lac)(DMF)], starting from Zn(NO3)2, L-lactic acid (L-H2lac), and
1,4-benzenedicarboxylic acid (H2BDC) and its application for enantioselective sorption
of sulfoxides and catalytic oxidation of alkyl aryl sulfides with urea hydroperoxide or
H2O2 [65]. Substrates with small substituents showed high conversions (92–100%) with
3 equiv. of H2O2 and excellent chemoselectivity toward sulfoxides (up to 100% for methyl
phenyl sulfoxide), although no asymmetric induction was observed. The preferable for-
mation of sulfoxides in this system allows suggestion about electrophilic activation of
the oxidant [58]; however, the detailed mechanism of the thioether oxidation is not com-
pletely clear.

One of the first applications of MOFs in oxidation catalysis with H2O2 is related to the
chromium(III) terephthalate Cr-MIL-101 ([Cr3X(H2O)2O(BDC)3]; X = F, OH; MIL stands
for Matérial Institut Lavoisier) discovered by Férey and coworkers [48]. MIL-101 possesses
a rigid zeotype (MTN) crystal structure, consisting of quasi-spherical cages of two modes
(2.9 and 3.4 nm) accessible through windows of ca. 1.2 and 1.6 nm (Figure 1). Characteristic
features of this MOF, which play a significant role in catalysis, are mesoporosity coupled
to high chemical, thermal and hydrothermal stability. An additional advantage for catal-
ysis arises from the possibility of creating coordinatively unsaturated sites (CUS) in the
Cr(III) metal nodes by removal of terminal water molecules using thermal treatment upon
evacuation (Figure 2) [23,66].
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In contrast to oxidations with anhydrous alkyl hydroperoxides [24,67,68], the use of
aqueous hydrogen peroxide as oxidant is generally detrimental for Cr-MIL-101 because
a cooperative action of water and H2O2 causes MOF destruction and metal leaching.
However, Chang, Férey and coworkers demonstrated that Cr-MIL-101 may preserve its
structure in H2O2-based oxidation of highly reactive substrates such as aryl alkyl sulfides,
where very mild conditions (room temperature) can be employed [66]. Moreover, they
found that the catalytic activity can be improved by increasing the number of CUS in
MIL-101 through its dehydration. The catalyst system produced exclusively sulfoxides
(88–99 % yields) and no sulfones, pointing to electrophilic activation of hydrogen peroxide
on the Cr(III) sites (Figure 2).

2.1.2. Oxidative Desulfurization

Since oxidative desulfurization (ODS) was considered as an alternative method to the
currently existing hydrodesulfurization (HDS) to reduce the sulfur content in gasoline and
diesel fuel to ultra-low levels [69], the oxidation of thiophene derivatives with hydrogen
peroxide was the most frequently studied oxidative transformation catalyzed by various
MOFs and MOF-derived materials.

The titanium terephthalate MIL-125 [49] (see Figure 1 for the structure) and MIL-
125_NH2 [70] prepared using H2BDC and 2-amino benzene dicarboxylic acid (H2BDC-
NH2), respectively, were employed for oxidative desulfurization using H2O2 [71,72]. In
general, MIL-125 was more active than its NH2-modified analogue but stability of both un-
der the ODS conditions was questionable [72]. Moreover, mesoporous carbons comprising
TiO2 nanoparticles obtained by pyrolysis of MIL-125_NH2 appeared to be more efficient
catalyst for the oxidation of dibenzothiophene than the original Ti-MOF [71]. A composite,
ZIF-8@H2N-MIL-125, exhibited the highest activity among the catalysts studied toward
the oxidative desulfurization of dibenzothiophene [71].

Since the pioneer work of Cavka et al. that reported the synthesis of UiO-66 (UiO
stands for University of Oslo, see Figure 1 for the structure) [52], Zr-based MOFs con-
structed from very robust Zr6-oxo-hydroxo clusters and various carboxylate linkers, due to
their outstanding chemical, thermal, hydrothermal, and mechanical stability [44,73–77],
have become one of the most appealing classes of MOFs for applications in heterogeneous
catalysis and, in particular, for ODS. Oxidation of thiophenes with UiO-66 as catalyst and
H2O2 as oxidant was studied by several research groups [78–84]. Catalytic activity of
UiO-66 and other Zr-MOFs was suggested to correlate with the number of missing-linker
defects (accessible Zr-OH/-OH2 sites) [78,80–85]. Zheng et al. compared the catalytic
performance of four Zr-MOFs, UiO-66, UiO-67, NU-1000, and MOF-808, and revealed
superior activity of MOF-808 that correlated with its higher Lewis acidity [81]. The authors
suggested that a higher concentration of readily accessible Zr-OH sites in the 6-connected
MOF-808 compared to the 12-connected UiO-66/UiO-67 and the 8-connected NU-1000
may be crucial for the catalytic activity and that the active species are •OH and •O2

−

radicals derived from homolytic decomposition of H2O2. Subsequent studies revealed
that engineering of defects in the structure of MOF-808 by acid treatment allows the ODS
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activity of MOF-808 to be increased significantly [85]. Other efforts to improve the cat-
alytic performance of Zr-MOFs involved their modification with Ti(IV) [86,87] and other
active species. Given that this research area was recently summarized by Piscopo and
coworkers [87] we do not touch on this subject in more detail and refer the reader to that
comprehensive review.

2.1.3. Unprecedented Selectivity of Zr-MOFs toward Sulfones

While studying catalytic activity of UiO-66 prepared by different methodologies
and differing in their crystallinity for the oxidative desulfurization of fuel, Granadeiro
and coworkers have found that all the samples reveal superior selectivity toward the
formation of sulfones [78]. In line with these results, Nguyen and coworkers demonstrated
a predomination of sulfone over sulfoxide in the oxidation of methyl phenyl sulfide (MPS)
over UiO-66 in CH3CN [88]. However, if CH3OH was employed as solvent instead of
CH3CN, sulfoxide became the principle oxidation product. A correlation between catalytic
activity and the number of accessible “open” sites in the crystalline structure of UiO-66
was established [88]. On the basis of kinetic and computational data, the authors suggested
that MPS oxidation involves a Zr-µ1-OOH active intermediate generated at the defect open
sites of the MOF, which are supposed to be terminated with a couple of Zr-µ1-OH and
Zr-µ1-OH2 [89,90]. The predomination of sulfone over sulfoxide was explained suggesting
a reaction mechanism where the primary oxidation product, sulfoxide, binds to a Zr site
adjacent to Zr-µ1-OOH, thereby favoring increased local concentration of sulfoxide and its
overoxidation to sulfone.

More recently, Zalomaeva et al. [91] and Maksimchuk et al. [92] investigated thioether
oxidation in aprotic solvents over a range of Zr-MOFs, including UiO-66, isoreticular UiO-
67, MOF-801, and the recently discovered Zr-abtc [54] and MIP-200 [55]. They concluded
that the unprecedentedly high selectivity toward sulfones attained with only one equiv-
alent of H2O2 (90–99% at ca. 50% sulfide conversion) is an intrinsic feature of Zr-MOFs,
regardless of their structural and morphological characteristics. Table 2 illustrates this
finding, showing a comparison of the catalytic performances of various Zr-MOFs and the
Ti-based MIL-125 under the same reaction conditions (the latter reveals predomination of
sulfoxide, which is typical of electrophilic oxidation).

Table 2. Oxidation of methyl phenyl sulfide (MPS) with H2O2 over various Zr-MOFs (adapted from
refs [91,92]) and comparison with MIL-125(Ti) [93] a.

MOF Time, h MPS Conv. (%)
Product Selectivity (%)

MPSO MPSO2

- 24 14 79 21
UiO-66 b 0.25 49 1 99
UiO-66 c 0.5 51 8 92
UiO-67 0.5 51 4 96

MOF-801 2.5 47 4 96
Zr-abtc c 2 52 8 92
Zr-abtc d 2 46 9 91
MIP-200 4 51 10 90
MIL-125 2 69 80 20

a Reaction conditions: MPS 0.1 mmol, H2O2 0.1 mmol, MOF 1.6–2.0 mg, 27 ◦C, CH3CN 1 mL; b Average particle
size 20 nm; c Average particle size 200 nm; d Average particle size 50 nm.

In contrast to selectivity, catalyst activity strongly depends on the specific Zr-MOF
nature and sample characteristics. In general, it decreased in the order UiO-66/67 > Zr-abtc
> MIP-200 (see Table 2). No direct correlation between activity and the average particle
size, which decreased in the series UiO-67 > MIP-200 > Zr-abtc > UiO-66, or the size of pore
apertures, that followed the order MIP-200 (1.3 nm hexagonal channels) > UiO-67 (0.8 nm
windows) > Zr-abtc (0.7 nm channels) > UiO-66 (0.6 nm windows), could be found [92]. At
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the same time, for a specific Zr-MOF (e.g., UiO-66), activity may strongly depend on the
size of MOF crystallites (see Table 2).

Interestingly, Zr-abtc and MIP-200 consisted of 8-connected Zr6-clusters and tetratopic
linkers showed no advantages in terms of activity over the 12-coordinated UiO-66 and
UiO-67. Moreover, termogravimetric analysis (TGA) showed that the amount of defects
corresponding to the amount of terminal Zr-OH/-OH2 groups declined in the order Zr-abtc
> MIP-200 > UiO-67 > UiO-66 and also did not correlate with the observed catalytic activity
in the MPS oxidation. MIP-200 that possesses the largest pore entrance and high amount
of Zr-OH groups showed the lowest activity among the Zr-MOFs studied, which was
attributed to its specific hydrophilicity (high H2O uptake at low P/P0) [55] disfavoring
adsorption of organic substrates and H2O2 in the presence of water.

This example shows that while MOF selectivity is mostly determined by the nature
of transition metal that constitutes its nodes, activity is a complicated function of various
factors, including structural, textural, and morphological characteristics, as well as specific
sorption properties.

We should also mention here that the excellent selectivity toward sulfones casts
doubt on the possibility of using Zr-MOFs for oxidative decontamination of mustard gas
(bis(2-chloroethyl)sulfide) because the corresponding sulfoxide is much less toxic than the
sulfone [94]. On the other hand, this feature may give benefits for ODS technologies where
the formation of sulfones is often desirable.

Post-synthetic modification of Zr-MOFs may drastically change their activity and
selectivity and lead to new opportunities in oxidation catalysis. For example, modification
of an anionic Zr-MOF, NPF-201, with a photoactive cation, [Ru(bpy)3]2+

, made possible
photocatalytic oxidation of MPS with O2 as oxidant, producing sulfoxide as the major
product [76].

2.1.4. Nucleophilic Activation of H2O2 and Mechanism of Thioether Oxidation

To understand the reasons for the unusually high sulfone selectivity over Zr-MOFs,
the reaction mechanism was investigated using specific test substrates, kinetic, adsorption,
18O labeling, and spectroscopic methods [91]. Several lines of evidence pointed to a
nucleophilic character of the peroxo species responsible for the superior formation of
sulfones. The oxidation of the test substrate thianthrene 5-oxide (Scheme 1) gave the
nucleophilic parameter XNu = 0.92, typical of nucleophilic oxidation [95,96]. The addition
of 1 equiv. of acid relative to Zr reduced this parameter down to 0.47.
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Scheme 1. Oxidation of thianthrene 5-oxide over UiO-66.

A complementary test [97], competitive oxidation of methyl phenyl sulfoxide and
p-Br-methyl phenyl sulfide, gave the sulfone to sulfoxide ratio of 24, while kinetic studies
showed significantly lower initial rates for MPS oxidation relative to methyl phenyl sul-
foxide (kS/kSO = 0.05), which also points to a nucleophilic oxidation mechanism. Finally,
a positive slope ρ = +0.42 of the Hammett plot for competitive oxidation of p-substituted
aryl methyl sulfoxides also implies nucleophilic activation of H2O2 on Zr-MOF [91]. Ki-
netic modeling on methyl phenyl sulfoxide oxidation together with adsorption studies
(the latter showed significant affinity of UiO-66 toward sulfoxide and not to sulfide and
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sulfone) implicated a mechanism that involves the interaction of H2O2 with Zr sites with
the formation of a nucleophilic oxidizing species and release of water followed by oxygen
atom transfer from the nucleophilic oxidant to sulfoxide that competes with water for Zr
sites (Scheme 2).
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Scheme 2. Proposed catalytic cycle for thioether oxidation over Zr-MOF defects. Reprinted with
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The nucleophilic peroxo species co-exists with an electrophilic one, ZrOOH, which
is responsible for the oxidation of nucleophilic sulfides (Scheme 2). This first step, most
likely, occurs through electrophilic oxygen transfer from ZrOOH to sulfide rather than
an alternative single electron transfer (SET) mechanism that involves the formation of an
intermediate thioether radical cation followed by its rapid capture by water and further
oxidation. This conclusion was drawn on the basis of isotopic (18OH2) labeling experiments,
which revealed no incorporation of 18O into the sulfone and sulfoxide products, lack of
products derived from radical cation fragmentation and/or dimerization (benzaldehyde,
benzoic acid, and dibenzyl) in the oxidation of benzyl phenyl sulfide and finally, higher
rates of diethyl sulfide oxidation relative to oxidation of MPS [91].

The prevalence of nucleophilic activation of H2O2 over electrophilic one in Zr-MOFs
is, most likely, ensured by the presence of weak basic sites. Such sites have been identified
in Zr-MOFs by FTIR spectroscopy of adsorbed CDCl3 as a probe molecule [91,92]. Mea-
surements of the adsorption of isobutyric acid on Zr-MOFs revealed that the number of
these basic sites is rather close to the amount of terminal Zr-OH groups present in the
MOF defects that can be evaluated by TGA [91]. This finding agrees well with recent
computational results, which implicated that basic sites in hydrated UiO-66 are, most likely,
the terminal ZrOH groups [98,99].

2.2. Epoxidation of C=C Bonds
2.2.1. Nucleophilic Oxidation of Electron-Deficient C=C Bonds

The capability of Zr-MOFs to accomplish nucleophilic activation of H2O2 is also
manifested in the epoxidation of electron-deficient C=C bonds in α,β-unsaturated ketones
and quinones [91,92]. This process is accompanied by oxidation of acetonitrile solvent
as evidenced by the formation of significant amounts of acetamide among the oxidation
products. The latter fact implies that peroxycarboximidic acid H3CC(=NH)OOH resulted
from the interaction of CH3CN and H2O2 under basic conditions could participate in
the epoxidation process (the so-called Payne oxidation [100]). On the other hand, the
epoxidation could also proceed if CH3CN was replaced with ethylacetate (see Table 3),
suggesting that another oxidizing species, e.g., a nucleophilic peroxo intermediate derived
from H2O2 and Zr-MOF, might be responsible for the oxygen transfer to the electron-
deficient C=C bonds.

The 8-coordinated Zr-abtc demonstrated advantages over other Zr-MOFs in both sub-
strate conversion and product selectivity for epoxidation of α,β-unsaturated ketones [92].
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A significant predomination of 1,2-epoxide in the oxidation of carvone (i.e., epoxidation
of the more electron poor C=C bond) strongly suggests a nucleophilic oxidation mecha-
nism [101]. The superior catalytic performance of Zr-abtc correlated with a larger amount
of weak basic sites found for this MOF relative to the other Zr-MOFs studied [92].

Table 3. Epoxidation of α,β-unsaturated carbonyl compounds over Zr-MOFs and ZIF-8 (adapted from references [91,92,102]) a.

Substrate Catalyst Time Substrate Conv. Epoxide Selectivity

(h) (%) (%) b
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The imidazolate framework ZIF-8 consisting of zinc atoms linked through nitro-
gen atoms of 2-methylimidazole [56] (see Figure 1) turned out another MOF capable of
epoxidizing electron-poor C=C bonds [102]. While in the oxidation of cyclohexenone
catalytic performance of ZIF-8 was comparable with that of UiO-66/67, it revealed supe-
rior properties, in terms of attainable substrate conversion and epoxide selectivity, with
2-methyl-naphthoquinone (MNQ), also known as menadione or Vitamin K3 (see Table 3).
Although the windows of ZIF-8 are able to increase their size up to 7.6 Å [103–105], the
dimensions of the MNQ molecule are too large (ca. 6 × 12 Å) to envisage their penetration
into the micropores, and the reaction, most likely, occurs on the external surface of the
ZIF-8 crystallites. This is consistent with the fact that the MNQ epoxidation rate greatly
increased with decreasing size of the catalyst particles (Figure 3).

Under optimized conditions, ZIF-8 having small crystallites (ca. 200 nm) produced
MNQ epoxide with the yield as high as 90% [102]. The reasons for such superior perfor-
mance of ZIF-8 in the MNQ epoxidation are not yet completely clear but, again, nucleophilic
activation of H2O2 is, most likely, realized owing to the presence of weak basic sites on the
MOF surface (N− moieties and OH groups located on the external surface and/or possibly
in bulk defects [106]). We may suppose that such basic sites favor polarization of the H2O2
molecule via hydrogen-bonding and facilitate its dissociation, leading to the nucleophilic
oxidant HOO−. In contrast to the epoxidation over Zr-MOFs, minor amounts of acetamide
were found for the MNQ epoxidation with ZIF-8, indicating that oxidation of CH3CN and
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contribution of peroxycarboximidic acid into the ZIF-8-catalyzed oxidation process are
insignificant.
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2.2.2. Oxidation of Electron-Rich C=C Bonds: Effect of Protons on Heterolytic Pathway
Selectivity

Epoxidation of C=C bonds in unfunctionalized alkenes is one of the most important
reaction in the organic synthesis. To accomplish alkene epoxidation selectively, two-
electron, heterolytic activation of H2O2 is required [1,2]. However, redox activity of
transition metals which constitute MOF nodes favors homolytic activation of hydrogen
peroxide (see Section 2.5), leading to the formation of one-electron oxidation products.
Cyclohexene (CyH) is a well-known test substrate that enables an easy discrimination
between one- and two-electron oxidation mechanisms (Scheme 3).
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Scheme 3. CyH oxidation products typical of homolytic and heterolytic oxidation pathways.

Heterolytic oxidation pathways give exclusively CyH epoxide and the epoxide ring
opening product trans-cyclohexane-1,2-diol (diol), whereas homolytic routes produce,
in addition to epoxide and diol, a significant amount of the allylic oxidation products,
cyclohexenyl hydroperoxide (HP), 2-cyclohexene-1-ol (enol), and 2-cyclohexene-1-one
(enone).

Nguyen et al. investigated CyH oxidation with H2O2 in the presence of UiO-66 and
MIL-125-NH2 and found relatively low activity for both MOFs with predominant formation
of the allylic oxidation products [107], which clearly indicated predomination of homolytic
oxidation pathways. Attempts to modify the Zr-MOF by Ti(IV) using different techniques
led to increasing catalytic activity but had very little impact on the product distribution:
enol and enone remained the main products [107]. The formation of the allylic oxidation
products could not be completely suppressed by grafting of Nb(V) oxide sites onto the
nodes of Nu-1000 [108].
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Maksimchuk et al., on the basis of their experience in polyoxometalate chemistry [109–115],
suggested a simple tool that allowed heterolytic pathway selectivity and attainable CyH
conversions to be considerably improved [116,117]. The addition of one equivalent of acid
relative to Ti (or Zr) led to a great reduction of the yield of allylic oxidation products in
the CyH oxidation (Table 4): from 60 to 22% for MIL-125 [116] and from 50 to only 2%
for UiO-66 [117]. This phenomenon also took place for other Zr-MOFs, regardless their
structural and morphological features (see Table 4) [92,117]. The addition of protons also
markedly enhanced the oxidation rate (e.g., turnover frequencies (TOFs), increased from
0.1 to 1.3 min−1 for UiO-66 upon addition of 1 equiv. of acid [117]. In the absence of MOF,
acid produced only minor changes in CyH conversion and oxidation product distribution
(see Table 4). The addition of extra protons (>1 equiv.) to UiO-66 led to decreasing epoxide
yield because of its transformation into diol [117].

Table 4. Effect of protons on CyH oxidation with H2O2 over Ti-MIL-125 and Zr-MOFs (adapted from references [92,116,117]) a.

Catalyst Time, min CyH conv. b (%)
Product Selectivity c (%)

Epoxide Diol Allylic d

– e 60 6 16 16 65
H+ f 60 8 25 26 47

MIL-125 60 26 25 10 60
MIL-125 + 1 eq. H+ 45 42 48 27 22

UiO-66 60 16 35 10 50
UiO-66 + 1 eq. H+ 20 30 85 13 2

UiO-67 30 17 28 25 43
UiO-67 + 1 eq. H+ 20 33 45 43 11

Zr-abtc 60 10 33 33 30
Zr-abtc + 1 eq. H+ 20 26 61 25 g 7

MIP-200 60 10 29 43 29
MIP-200 + 1 eq. H+ 20 27 70 19 h 6

MOF-801 60 10 35 20 45
MOF-801 + 1 eq. H+ 20 24 55 35 8

a Reaction conditions: CyH 0.1 mmol, H2O2 0.1 mmol, catalyst 0.01 mmol Ti or Zr, HClO4 0.01 mmol (if any), CH3CN 1 mL, 50 ◦C;
b Maximum achievable conversion. c GC yield based on CyH consumed; d Total amount of allylic oxidation products (HP + enol + enone);
e No catalyst was present; f No MOF was present; g The product of diol overoxidation, 2-hydroxycyclohexanone (ketol) was also found (7%
selectivity); h Ketol (5% selectivity) was also formed.

Importantly, XRD, Raman and FTIR studies confirmed that the acid additives pro-
duced no changes in the crystalline structure of MIL-125 and UiO-66 [116,117]. By analogy
with POMs [109–115] and metal-silicate catalysts [118–121], it was suggested that the addi-
tion of a source of protons favors the formation of active metal hydroperoxo intermediates,
MOOH, responsible for oxygen atom transfer to alkenes to afford epoxides [116,117].

2.3. Oxidation of Alkylphenols

In contrast to the epoxidation of alkenes, the propensity of MOF to homolytic activa-
tion of H2O2 can provide benefits for oxidation reactions which can be realized effectively
via one-electron mechanisms, for example, for the oxidation of alkyl-substituted phenols to
corresponding benzoquinones. Previous studies on titanium-silicate catalysts implicated
that this reaction involves two consecutive electron transfers from two adjacent Ti sites
and, notwithstanding the homolytic oxidation mechanism, excellent quinone yields can
be obtained due to a cooperative action of di(multi)nuclear Ti centers [122–124]. Bearing
this idea in mind, Ivanchikova et al. investigated catalytic performance of MIL-125 and
MIL-125_NH2 comprising Ti-oxohydroxo clusters in the oxidation of two representative
alkylphenols, 2,3,6-trimethylphenol (TMP) and 2,6-di- tert-butylphenol (DTBP), with aque-
ous H2O2 [125]. Superior selectivity toward alkyl-p-benzoquinones (nearly 100%) was
achieved with both Ti-MOFs (Table 5).
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Table 5. Oxidation of alkylphenols with H2O2 over MIL-125 and MIL-125_NH2 (adapted from [125]) a.

Catalyst Phenol Conversion (%) Quinone Selectivity (%)
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molecular oxygen and/or alkyl hydroperoxides were employed as the oxidant, and only 
few works reported about the use of hydrogen peroxide. 

A two-dimensional microporous dinuclear copper(II) trans-1,4-cyclohexanedicar-
boxylate [Cu2(OOCC6H10COO)2]·H2O was used as a heterogeneous catalyst for selective 
oxidations of various (primary, secondary, and benzylic) alcohols with hydrogen perox-
ide [127]. Although selectivity toward corresponding ketones and aldehydes was high 
(>99%), the attainable conversions were low even if a 113-fold excess of the oxidant was 
employed. The reaction was realized at room temperature, and no copper leaching was 
detected. An active peroxo copper(II) intermediate, H2[Cu2(OOCC6H10COO)2(O2)]·H2O 
was isolated and characterized by X-ray powder diffraction, spectroscopic and other tech-
niques, which implicated a structure constructed by intramolecular bridging of μ-1,2-
trans-Cu–OO–Cu species between two-dimensional [Cu2(O2CC6H10CO2)] layers. This 
peroxo complex revealed activity in the stoichiometric oxidation of 2-propanol to acetone, 
which proved its crucial role in the catalytic oxidation of alcohols.  
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Samples with different size of crystallites (0.5, 1.5, and 5 µm) showed similar reaction
rates, indicating the absence of internal diffusion limitations [125]. Even though the
crystal structure of MIL-125 was destroyed under the turnover conditions, the MOF acted
as a precursor for the highly active, selective, and recyclable catalyst (see Section 2.7).
Comparison with other types of Ti catalysts revealed that catalytic performance of MIL-
125 in TMP oxidation to trimethyl-p-benzoquinone (vitamin E precursor), in terms of the
attainable product yield, is superior to amorphous and crystalline titania but inferior to
mesoporous titanium-silicates containing di(oligo)meric Ti sites [126].

2.4. Oxidation of Alcohols and Diols
2.4.1. Alcohol Oxidation

Oxidation of alcohols is one of the most studied reactions in the MOF-based cataly-
sis [23,30,32]. Modification of MOFs with noble metal nanoparticles is often employed to
fulfill this type of oxidative transformations [17,20,23]. However, in the majority of works,
molecular oxygen and/or alkyl hydroperoxides were employed as the oxidant, and only
few works reported about the use of hydrogen peroxide.

A two-dimensional microporous dinuclear copper(II) trans-1,4-cyclohexanedicarboxylate
[Cu2(OOCC6H10COO)2]·H2O was used as a heterogeneous catalyst for selective oxidations
of various (primary, secondary, and benzylic) alcohols with hydrogen peroxide [127].
Although selectivity toward corresponding ketones and aldehydes was high (>99%), the
attainable conversions were low even if a 113-fold excess of the oxidant was employed.
The reaction was realized at room temperature, and no copper leaching was detected. An
active peroxo copper(II) intermediate, H2[Cu2(OOCC6H10COO)2(O2)]·H2O was isolated
and characterized by X-ray powder diffraction, spectroscopic and other techniques, which
implicated a structure constructed by intramolecular bridging of µ-1,2-trans-Cu–OO–Cu
species between two-dimensional [Cu2(O2CC6H10CO2)] layers. This peroxo complex
revealed activity in the stoichiometric oxidation of 2-propanol to acetone, which proved its
crucial role in the catalytic oxidation of alcohols.

Balu et al. prepared a Fe-containing MIL-101 using a microwave-assisted deposition
methodology [128]. They reported that the incorporation of ca. 2 wt.% Fe in the form of
hematite Fe2O3 led to Fe/MIL-101 with high catalytic activity in the oxidation of various
alcohols, including benzylic and aliphatic ones, using hydrogen peroxide as oxidant and
water as solvent. The reaction was accomplished under microwave irradiation. Feasible
conversions, product yields and H2O2 efficiencies were obtained for benzylic alcohols and
cyclohexanol while primary alcohols revealed relatively low conversions (<20%). Fe-free
MIL-101 activated in vacuum at 150 ◦C during 12 h to produce CUS revealed poor activity
(ca. 10% yield of benzaldehyde in the oxidation of benzylic alcohol vs. 90% yield acquired
over 2.06 wt.% Fe/MIL-101, which clearly indicates the role of iron species in the observed
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catalysis. Surprisingly, no iron leaching and MOF destruction were observed, which could
be due to the short reaction time (15 min).

Cohen and coworkers synthesized a robust Zr-based MOF bearing catechol function-
ality, UiO-66-CAT, and accomplished its metalation, resulting in a MOF decoration with
coordinatively unsaturated Fe- and Cr-monocatecholato species [129]. The Cr-metalated
UiO-66 turned out an efficient and recyclable catalyst for the selective oxidation of alcohols
to ketones using both tert-butyl hydroperoxide (TBHP) and H2O2 as oxidant. TBHP gave
fairly good yield of ketones for a wide range of secondary alcohols, including bulky sub-
strates for which the reaction was suggested to occur at the external surface of the catalyst
particles. The application of hydrogen peroxide was effective for oxidation of benzylic
alcohols (95–99% yields with 2 equiv. of the oxidant) while aliphatic alcohols gave poor
yields (e.g., ca. 39% for 2-heptanol). No chromium leaching into solution was found.

2.4.2. Propylene Glycol Oxidation

Another reaction where homolytic activation of H2O2 has led to the formation of
useful products is oxidation of propylene glycol (PG) over UiO-66 [130]. The reaction
proceeds with high regioselectivity, leading to the formation of hydroxyacetone (HA) as
the main product. Additives of radical chain scavengers produce a rate-inhibiting effect,
suggesting radical chain mechanism of the oxidation process. However, molecular oxygen
does not participate in the oxidation process as indicated by close reaction rates in air and
inert atmosphere.

The solvent nature caused a pronounced impact on HA yields and oxidant utilization
efficiency. Adsorption studies revealed that PG adsorption on UiO-66 from pure CH3CN is
significant (the adsorption constant evaluated using Langmuir model was 290 ± 60 M−1)
while practically no adsorption occurred from a mixed solvent H2O/CH3CN 3/7 (v/v)
(Figure 4) [130]. This allowed the authors to suggest that adsorbed PG molecules block Zr
active sites and thereby prevent adsorption and activation of the oxidant. In agreement
with this suggestion, the best catalytic performance (85% selectivity toward HA at ca. 10%
PG conversion) was achieved in acetonitrile containing 30 vol.% of H2O.
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Adsorption studies also allowed the authors to suggest that the low level of attainable
PG conversions is, most likely, related to the catalyst deactivation caused by adsorption of
the main reaction by-product, acetic acid (see Section 2.7).

2.5. Oxidation of Arenes and Alkanes

As can be inferred from the recent review literature [41,43], examples of C-H bond
activation with H2O2 over MOFs where the catalyst stability toward leaching has been
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proved are still very rare. A survey of the early literature in this field can be found in the
book chapter of Chang and coworkers [23].

The post-synthetic functionalization of the bridging OH-group between two metal cen-
ters of the secondary building units of the robust MOF MIL-53(Al) with 1,1′-ferrocenediyl-
dimethylsilane has led to a functionalized material active in the liquid-phase H2O2-based
oxidation of benzene to phenol [131]. Although the substrate conversion was rather low
(ca. 15%) and some destruction of the catalyst could not be excluded, this work first demon-
strated that MIL-53(Al) can be converted into a redox-active functional material. Wang
et al. reported on a highly selective hydroxylation of benzene to phenol over Fe-based
MOFs, MIL-100 and MIL-68, using hydrogen peroxide as oxidant under a visible light
irradiation [132]. With MIL-100 and a 3:4 oxidant to benzene ratio, selectivity to phenol
attained 97% at ca. 20% benzene conversion. On the basis of ESR and kinetic studies, the
authors suggested a synergy between photocatalysis of Fe-O clusters in the MOF and a
Fenton-like chemistry.

More recently, Gascon and coworkers synthesized a Fe-containing MOF, MIL-53(Al, Fe)
which comprised a spatially isolated oxo-bridged Fe2 units in a coordination environment
resembling that of the carboxylate-bridging diiron active site of methane monooxygenase
(MMO) [133]. They demonstrated that the hybrid MIL-53(Al, Fe) material is able to
catalyze methane oxidation with H2O2 in water, producing methanol as the principle
oxidation product with selectivities toward oxygenates of ca. 80% and turnover number
(TON) up to 350. The catalyst synthesized through an electrochemical route contained
no extraframework iron oxide species and was rather stable toward aqueous H2O2 at
temperatures below 60 ◦C. Pure phase MIL-53(Fe) revealed substantial iron leaching under
the reaction conditions and behaved as a typical Fenton type catalyst rather than a MMO
simulant, which proves that that the use of a nonredox scaffold, MIL-53(Al), is crucial for
both the catalyst stability and catalytic performance [133]. Based on spectroscopic studies
and DFT calculations, the authors have concluded that the observed MMO-like behavior
is mostly due to antiferromagnetically coupled, high-spin Fe sites isolated within MOF.
Computational studies also suggested that the catalytic cycle involves the replacement of
one of the carboxylate linkers by H2O2 molecule followed by a sequence of redox steps
leading to increasing the formal oxidation state of one of the Fe centers from III to V,
subsequent homolytic dissociation of the C−H bond and recombination of CH3 radical
with the terminal OH group to form methanol.

2.6. H2O2 Decomposition and Oxidant Utilization Efficiency

Most of H2O2-based oxidations over MOF catalysts suffer from relatively low sub-
strate conversions. One of possible reasons for that is a high rate of the unproductive
decomposition of H2O2 relative to the rates of the target oxidation reaction, i.e., rather low
oxidant utilization efficiency (i.e., selectivity based on the oxidant). Figure 5 shows plots of
H2O2 consumption over MIL-125 and UiO-66 in the absence of organic substrate. One can
notice that activity of the Ti-MOF is higher than that of the Zr-MOF. A hot catalyst filtration
test showed that the reaction occurs on the catalyst surface rather than in solution [117].

Various Zr-MOFs reveal very similar activity in H2O2 dismutation [92]. Interestingly,
protons produce practically no effect on this reaction over MIL-125 while they strongly
decrease the H2O2 decomposition rate in the presence of Zr-MOFs, including UiO-66
(Figure 5). Even small additives of HClO4 (e.g., 0.1 equiv. to Zr) resulted in a significant
suppression of H2O2 decomposition [117]. Therefore, protons produce opposite effect
on the alkene epoxidation rate (see Section 2.2.2) and the rate of H2O2 degradation over
Zr-MOF, which suggests that different active sites are involved in these two reactions.
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This finding gives us a tool of how we can increase the oxidant utilization efficiency
in the MOF-catalyzed oxidations. Note that this parameter strongly depends on the
substrate nature and the reaction conditions employed for its oxidation. For example,
H2O2 efficiency is usually high for the oxidation of highly reactive alkyl aryl sulfides while
it may significantly decrease for less reactive alkenes. Figure 6 shows how this important
characteristic depends on the specific substrate and catalyst system. It is noteworthy that
H2O2 utilization efficiency in the CyH oxidation increased from 45% to 75 and 63% with
MIL-125 [116] and UiO-66 [117], respectively, due to the addition of a source of protons
(Figure 6).
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2.7. Catalyst Stability and Reusability

The catalyst instability toward leaching of active species under turnover conditions is
often a critical issue of solid catalysts in the liquid-phase. Sheldon and coworkers suggested
use of a hot filtration test to verify whether the observed catalysis is truly heterogeneous
(occurs on the catalyst surface) or homogeneous (caused by active species leached into
solution) [134]. Additionally, the absence of leaching should be confirmed by elemental
analysis of the filtrate. In this short review, we cited almost exclusively works for which
the nature of catalysis was validated.

Figure 7 shows examples of hot filtration tests for TMP oxidation over MIL-125 and
CyH oxidation over UiO-66 in the presence of 1 equiv. HClO4. In both cases, the reaction
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stopped after separation of the catalyst, pointing to the truly heterogeneous nature of the
catalytic reactions [117,125].
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Nevertheless, the heterogeneous nature of catalysis does not necessarily mean that the
structure of MOF remains intact. XRD patterns in Figure 8 demonstrate that the structure
of both MIL-125 and UiO-66 was maintained after the CyH oxidation. Meanwhile, the
crystalline structure of MIL-125 was completely destroyed under the conditions of TMP
oxidation (Figure 8a, curve C).
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Studies by high-resolution transmission electron microscopy (HRTEM) revealed that,
during alkyl phenol oxidation, the structure of MIL-125 collapsed into disordered meso-
porous amorphous particles composed of small (ca. 1 nm) dense Ti-based corpuscles
connected into globules and surrounded with one or several concentric Ti-containing lay-
ers [126]. Bulk elemental analysis and EDX spectra showed reduction of carbon content in
MIL-125 after the TMP oxidation, indicating that leaching of the organic linker rather than
Ti occurs.

In spite of the structural changes, the MIL-125-derived catalyst could be recovered
by simple filtration and reused without loss of the yield of the target quinone (Figure 9a).
No catalyst regeneration was required before reuse. Catalytic activity expressed in TOF
values decreased after the first use but then remained stable, which implies that the catalyst
transformation occurs during the first operation cycle.
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On the contrary, no decrease in the CyH oxidation rate was observed during recy-
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On the contrary, no decrease in the CyH oxidation rate was observed during recycling
of the same MOF, MIL-125 (Figure 9b). This is consistent with the absence of metal or linker
leaching and preservation of the MOF structure and morphology, which was confirmed
by SEM, N2 adsorption, XRD and FTIR techniques [116]. Therefore, the difference in
the reaction conditions employed for the alkylphenol oxidation (0.4 M H2O2, 80 ◦C) and
cyclohexene oxidation (0.1 M H2O2, 50 ◦C) was critical for the catalyst stability.

Blockage of MOF micropores or active sites by the reaction products, including water
that is introduced with H2O2 and additionally generated during the oxidation process, is
most often the reason for fast catalyst deactivation in the liquid-phase oxidations, leading to
incomplete substrate conversions. Nevertheless, the development of effective methods for
catalyst regeneration may result in a good recycling performance, which in turn, partially
compensates the relatively low conversions achieved during one operation cycle and
increases the catalyst productivity. Kinetic studies with product additives and/or studies
on adsorption of products/reagents help to elucidate the reasons for catalyst deactivation
and suggest a regeneration procedure. Thus UiO-66 could be easily recycled without
significant loss of catalytic properties, provided proper catalyst regeneration was employed
before reuse [117,130].

Figure 10a shows how the addition of oxidation products, epoxide and water, retarded
the overall CyH oxidation process over UiO-66, thereby indicating that adsorption of both
products could be the reason for the catalyst deactivation. Indeed, washing of the spent
UiO-66 with hot methanol and then acetone followed by drying at room temperature
allowed the catalyst to restore its activity (Figure 10b).

In the case of PG oxidation over UiO-66, where the catalyst was deactivated by
adsorption of the main by-product acetic acid, complete regeneration and recycling without
loss of activity was possible if the catalyst was thoroughly washed with acetone before
reuse [130].
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3. Conclusions and Outlook

Less than 20 years have passed since the first demonstrations of the application of
MOFs in liquid-phase oxidation catalysis. During these years various synthetic method-
ologies for the synthesis of chemically and thermally robust MOFs and engineering of
catalytically active sites in their structure have been developed, which have opened up new
opportunities for use of this class of materials in catalysis and, in particular, in selective
oxidations with the green oxidant aqueous hydrogen peroxide. In this short review, we
tried to survey recent developments in this field based, first of all, on our own research
experience.

So far, oxidation of thioethers and thiophenes into corresponding sulfoxides and
sulfones remains the most investigated oxidative transformation accomplished using
various MOFs and H2O2. We demonstrated here that the choice of metal in the MOF nodes
completely determines the selectivity of these oxidations, leading to either formation of
sulfoxide or sulfone depending on the H2O2 activation mechanism. While Zn(II)-, Cr(III)-
and Ti(IV)-based MOFs fulfill electrophilic activation of H2O2 and produce sulfoxides as
the major oxidation products, Zr(IV)-based MOFs realize nucleophilic activation of this
oxidant and afford sulfones even at low substrate conversions. This characteristic feature
of Zr-MOFs is related to the presence of weak basic sites in their structure and also enables
epoxidation of electron-deficient C=C bonds in α,β-unsaturated carbonyl compounds.
Therefore, one might expect that other MOFs having weak basic centers would show this
type of oxidative transformations. The superior catalytic performance of ZIF-8 in the
epoxidation of menadione clearly confirmed this suggestion.

The selective H2O2-based epoxidation of unfunctionalized alkenes, especially those
with highly reactive allylic H atoms, still remains a challenging goal for oxidation catalysis
with MOFs because most of them possess significant activity in homolytic activation of
hydrogen peroxide favoring the formation of allylic oxidation products rather than epox-
ides. The discovery of a simple tool that greatly improves heterolytic pathway selectivity
without evident changes in the MOF crystalline structure, namely, the in situ addition of a
source of protons, created a basis for the rational design and exploitation of MOF-based
catalyst systems in selective oxidation. Importantly, this simple approach also allows one
to control unproductive decomposition of the oxidant, thereby improving such important
characteristic as oxidant utilization efficiency.

Homolytic oxidation routes may become useful for the selective oxidation of a range
of organic substrates, e.g., phenols, alcohols (in some cases), alkanes, and some others.
However, specific sorption properties favoring adsorption of both substrate and oxidant
molecules in a close proximity to each other and the structure of active sites become crucial
factors governing both catalyst activity and selectivity. The cluster-based structures of
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MOFs may provide advantages for realization of a sequence of one-electron transforma-
tions leading to the target oxidation products. Adsorption and mechanistic studies are
indispensable in the way to designing new efficient MOF-based catalyst systems.

The development of new synthetic approaches for post-synthetic modification of
MOFs may expand significantly the capabilities of catalyst selectivity control and create
new opportunities for MOF applications in the field of oxidation catalysis, in particular,
selective oxidations with H2O2.

One of the main problems that arise in the field of the oxidation catalysis with MOFs
is catalyst deactivation during the catalytic process leading to incomplete substrate con-
versions. Most often, the reason for that is adsorption of the reaction products, including
organic by-products and water, the amount of which always increases if we use H2O2
as the oxidant. Kinetic and adsorption studies help to understand the specific reason
for catalyst deactivation and suggest regeneration procedure. Although good recycling
performance may partially compensate incomplete substrate conversions attained during
one operation cycle, the development of larger pores hydrophobic MOFs would, probably,
help to increase catalyst productivity.

With the discovery of MOFs having high chemical and thermal stability a great
progress has been achieved in solving the problem of MOF destruction and metal leaching
during catalytic oxidations with H2O2. However, as we demonstrated here, some restric-
tions may exist with regards to the operation conditions (concentrations, temperature,
and/or reaction time). Consequently, even robust MOFs should be used with a caution.
At the moment, it is not always easy to decide which type of catalysts is superior in terms
of activity and stability because direct comparative studies are still a rare case, while the
reaction conditions employed may differ considerably. Moreover, samples of the same
MOF quite often reveal very different activity and stability, depending on the specific
method of their synthesis that may strongly affect the particle size, amount of defects,
and other characteristics. Therefore, exchange of MOF samples between teams is very
important for elucidation of structure/activity relationships.

So far, synthetic chemists working in the field of MOFs certainly outnumber re-
searchers engaged in oxidation catalysis by MOFs, and the catalytic potential of many new
MOFs still remains unexplored. Even fewer teams are immersed in a detailed elucidation
of the mechanisms of oxidation reactions occurring on MOFs, although this is necessary
for the rational design of catalytic centers and optimization of their operating conditions.
Collaborative efforts of specialists from different fields would certainly lead to a rapid
progress in this area.
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