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Abstract: We report here the use of eucalyptol as a bio-based solvent for Hiyama coupling, cyanation,
and multicomponent reactions on O,S,N-heterocycles. These heterocycles were chosen as targets or
as starting materials given their biological potential; they play an important role in therapeutically
active compounds. Once again, eucalyptol proved to be a credible and sustainable alternative to
common solvents.

Keywords: eucalyptol; sustainable chemistry; O,S,N-Heterocycles; Hiyama coupling; cyanation
reaction; multicomponent reaction

1. Introduction

The solvents used in chemistry are a fundamental element of the environmental
performance of processes in industrial and academic laboratories. Their influence on costs,
safety, and health cannot be neglected. Even if solvent-free reactions are possible to a
certain extent, they are not applicable to a large spectrum of chemical reactions and starting
materials, and they may impair overall yield and product purity. Equally important,
multiphasic reactions involving solid catalysts and gaseous and/or liquid reagents, which
are common practice in the petrochemical and refining industry, are not easily transposable
to pharmaceutical active ingredients or fine chemical syntheses.

Solvents are the most abundant constituents of chemical transformations, so acting
thereon and replacing standard solvents with safer alternatives can have a great ecological
impact. Nitrogen heterocyclic compounds represent an important class of compounds
in the pharmaceutical industry. Therefore, it is important to provide new methods and
greener approaches for their synthesis [1–7].

Pursuing our objective of developing new practices in the synthesis of heterocycles
containing oxygen, sulfur, and nitrogen [8–17], we explored the potential of eucalyptol [15]
(Figures 1 and 2) as solvent in Hiyama coupling, cyanation, and multicomponent reactions.

Eucalyptol or 1,8-cineole (Figure 2) is a saturated oxygenated terpene that is widely
distributed in some plants and their essential oil fractions, and depending on the species, it
is contained in up to 90% in eucalyptus’ essential oils isolated from fresh foliage. Its use as
a solvent is also very interesting from an environmental point of view, since in addition to
the fact that this solvent is recyclable by simple distillation, it comes from the waste (leaves)
of the paper and wood industry, which cultivates eucalyptus trees because of their rapid
growth (7 to 10 years).

Catalysts 2021, 11, 222. https://doi.org/10.3390/catal11020222 https://www.mdpi.com/journal/catalysts

https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0001-7346-3143
https://orcid.org/0000-0002-4577-4988
https://doi.org/10.3390/catal11020222
https://doi.org/10.3390/catal11020222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/catal11020222
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/2073-4344/11/2/222?type=check_update&version=3


Catalysts 2021, 11, 222 2 of 13Catalysts 2021, 11, x FOR PEER REVIEW 2 of 14 
 

 

H

O

NC CNR
R

H
N

N NH2

CN

N

NC

R

R

N

N

S

CN

N

S

CN N

N

S

NC

N

S

Cl

+
R

Si

N

S

R

+ +

Hiyama Coupling

Cyanation

Multicomponent reaction
This work

Previous work
Suzuki–Miyaura coupling
Sonogashira –Hagihara coupling
Buchwald–Hartwig coupling
Migita–Kosugi–Stille coupling

 
Figure 1. Eucalyptol as bio-based solvent: application to Hiyama coupling, cyanation and multi-
component reactions. 

 
Figure 2. Structure and data of Eucalyptol. Synonyms: 1,8-Cineole, 1,3,3-trimethyl-2-oxabicy-
clo[2.2.2]octane. 

Eucalyptol or 1,8-cineole (Figure 2) is a saturated oxygenated terpene that is widely 
distributed in some plants and their essential oil fractions, and depending on the species, 
it is contained in up to 90% in eucalyptus’ essential oils isolated from fresh foliage. Its use 
as a solvent is also very interesting from an environmental point of view, since in addition 
to the fact that this solvent is recyclable by simple distillation, it comes from the waste 
(leaves) of the paper and wood industry, which cultivates eucalyptus trees because of 
their rapid growth (7 to 10 years).  

2. Results and Discussion 
2.1. Multicomponent Reaction 

While the chemistry community has made significant efforts toward identifying 
greener processes that minimize the quantity of catalysts or using multicomponent reac-
tions and one-pot processes, solvents remain a major portion of the environmental perfor-
mance of a process and have an influence on safety and health [18–21]. One of the goals 
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oxabicyclo[2.2.2]octane.

2. Results and Discussion
2.1. Multicomponent Reaction

While the chemistry community has made significant efforts toward identifying
greener processes that minimize the quantity of catalysts or using multicomponent re-
actions and one-pot processes, solvents remain a major portion of the environmental
performance of a process and have an influence on safety and health [18–21]. One of the
goals of the present study was to assess the potential of associating a multicomponent
reaction with a more eco-compatible solvent. The class of molecules chosen for synthesis
was highly functionalized pyridines [22]. In this specific case, to the best of our knowledge,
only three teams have reported their synthesis; however, the reactions were performed
using conventional solvents, namely chloroform [23], ethanol [24], and methanol [25]. After
ascertaining the most widely used reaction conditions and stoichiometry, we performed
the reactions using eucalyptol as solvent (Table 1).



Catalysts 2021, 11, 222 3 of 13

Table 1. Optimization of the multicomponent reaction.
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Entry A
(equiv.)

B
(equiv.)

C
(equiv.)

Cat
(equiv.) T (◦C) t (h) Yield a

(%)

1 1 1 2 - 100 12 39
2 1 2 2 - 100 24 54
3 1 1 2 - 80 24 46
4 1 2 2 - 80 24 49
5 1 1 2 - r.t. 24 50
6 1 2 2 - r.t. 24 38
7 1 1 2 DMAP r.t. 24 28
8 1 2 2 DIPEA 100 24 47
9 1 2 2 Cs2CO3 100 24 42

10 1 1 2 - 100 24 46 b

11 1 2 2 - 100 24 43 b

a isolated yield after purification via flash chromatography. b reaction performed in MeOH.

The expected compound (1) was obtained in 28 to 54% yield. Adding a catalyst to the
reaction was always detrimental to the yield when compared to a catalyst-free reaction
performed with the same stoichiometry and temperature. The best result was obtained
without catalyst using one equivalent of benzaldehyde and two equivalents of pyrrolidine
and malonitrile (Table 1, Entry 2). For the synthesis of compound 1, this solvent substitu-
tion proved to be advantageous over the above-mentioned studies that used chloroform
(32%) [23] and ethanol (52%) [24]. However, our yield was lower when compared to that
of the team that performed the reaction in methanol (79%) [25]. Nevertheless, it should
be highlighted that the 79% yield was obtained with the addition of DMAP (20 mol%)
as catalyst. To test which parameter influenced the yield, we performed the reaction in
methanol without catalyst and then verified that the use of eucalyptol resulted in a higher
yield when the reaction mixture was catalyst-free. With the best reaction conditions in
hand, we proceeded to analyze the scope and limitations of the reaction.

The derivatives (1–6) were synthesized in 45 to 68% yield (Figure 3). The nature of
the aldehyde did not cause major disparities in the yield of the different final compounds.
Then, considering the aldehyde that presented the highest yield, the potential of eucalyptol
using other sources of amines (piperidine, thiomorpholine, 2,6-dimethylmorpholine, and 1-
phenylpiperazine) was evaluated: the final compounds 7–10 were synthesized in moderate
to good yields (Figure 4).
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2.2. Palladium Catalyzed Cyanation

The second reaction explored with eucalyptol as solvent was palladium-catalyzed cya-
nation. This reaction offers an appropriate alternative to the Rosenmund–Von Braun reac-
tion [26–30], which frequently employs severe reaction conditions and sometimes needs an
intensive work up. Due to all of these features and properties, efforts were made to find
greener conditions. For this study, we used three compounds commonly used in our team to
build molecules of interest with biological potential [15,31,32]. Each compound underwent
an optimization study in order to find the ideal conditions. To the best of our knowledge,
here, we present the first cyanation process of these scaffolds. After reviewing previously
reported information [33–39] related to the cyanation of O,S,N-containing heterocycles, we per-
formed the optimization on 4-chlorothieno[3,2-d]pyrimidine, 7-chlorothieno[3,2-b]pyridine,
and 7-bromo-6-phenyl-thieno[2,3-b]pyrazine.

In the literature, Zn(CN)2 is often used as cyanide source. The reaction can occur
because, as the cyanide nucleophile is a strong σ-donor and can be fatal to the catalytic
system, it is essential to keep its concentration low in the reaction. An unfavorable point
is its limited solubility in DMF (1.8 × 10−4 g/mL at 80 ◦C), which is a solvent commonly
used in these reactions [40].

Another source of cyanide (non-toxic), K4[Fe(CN)6], has also been described and can
be used in a mixture with palladium catalysts to obtain aryl nitriles from their correspond-
ing halides [41]. From this background, we tested reaction conditions using eucalyptol as
solvent. Compound 11 was obtained in a yield from 7 to 56% (Table 2).

Table 2. Optimization of cyanation.
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Entry Pd (eq.) Lig (eq.) CN (eq.) T (°C) t (h) Yield a (%) 
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3 c Pd2(dba)3 (0.05) dppf (0.05) Zn(CN)2 (0.6) 140 44 55 
4 Pd(PPh3)4 (0.05) - KCN (1.5) 140 61 0 
5 PdCl2(PPh3)2 (0.05) - KCN (2) 140 61 0 

6 d Pd(OAc)2 (0.05) dppe (0.1) KCN (1) 140 61 0 
7 d Pd(OAc)2 (0.05) dppe (0.1) KCN (1) 140 61 0 
8 d Pd(OAc)2 (0.05) dppe (0.1) KCN (1) 140 61 0 
9 d Pd(OAc)2 (0.05) dppe (0.1) KCN (1) 140 61 0 
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Entry Pd (eq.) Lig (eq.) CN (eq.) T (◦C) t (h) Yield a (%)

1 Pd(PPh3)4 (0.07) - Zn(CN)2 (0.6) 100 96 7
2 c Pd2(dba)3 (0.05) dppf (0.05) Zn(CN)2 (0.6) 100 96 11
3 c Pd2(dba)3 (0.05) dppf (0.05) Zn(CN)2 (0.6) 140 44 55
4 Pd(PPh3)4 (0.05) - KCN (1.5) 140 61 0
5 PdCl2(PPh3)2 (0.05) - KCN (2) 140 61 0

6 d Pd(OAc)2 (0.05) dppe (0.1) KCN (1) 140 61 0
7 d Pd(OAc)2 (0.05) dppe (0.1) KCN (1) 140 61 0
8 d Pd(OAc)2 (0.05) dppe (0.1) KCN (1) 140 61 0
9 d Pd(OAc)2 (0.05) dppe (0.1) KCN (1) 140 61 0
10 Pd2(dba)3 (0.1) dppf (0.4) KCN (2) 140 44 24

11 e Pd(OAc)2 (0.03) cataCXium (0.09) K4[Fe(CN)6] b (0.2) 140 41 traces
12 Pd2(dba)3 (0.03) cataCXium (0.09) K4[Fe(CN)6] b (0.2) 140 41 traces

13 e Pd(TFA)2 (0.03) TTBP·HBF4 (0.09) K4[Fe(CN)6] b (0.2) 140 41 traces
14 e PdCl2 (0.03) TTBP·HBF4 (0.09) K4[Fe(CN)6] b (0.2) 140 41 traces
15 c Pd2(dba)3 (0.05) dppf (0.05) Zn(CN)2 (0.6) 140 96 43

16 e Pd(OAc)2 (0.05) X-Phos (0.1) K4[Fe(CN)6] b

(0.25)
140 60 56

17 c Pd2(dba)3 (0.05) PCy3 (0.05) Zn(CN)2 (0.6) 140 48 48
18 e Pd(OAc)2 (0.05) dppf (0.1) K4[Fe(CN)6] b (0.2) 140 60 43
19 c Pd2(dba)3 (0.05) dppf (0.1) Zn(CN)2 (0.6) 170 26 39
20 - - NaCN (5) rt 26 0
21 - - NaCN (5) 170 24 0

a isolated yield after purification via flash chromatography. b K4[Fe(CN)6]·3H2O. c 0.2 equivalent of Zn was added. d 0.2 equivalent of
amine co-catalyst was added. Entry 6: TMEDA; Entry 7: Sparteine; Entry 8: 2,2-bipyridine; Entry 9: 1-adamantylamine. e 0.2 equivalent of
base was added. Entry 11, 13, 14 and 18: Na2CO3; Entry 16: K2CO3.
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Starting from 7-chlorothieno[3,2-b]pyridine and based on our results with 4-
chlorothieno[3,2-d]pyrimidine (Table 2), we looked for the conditions that would
result in the highest yield. The best outcome was achieved when the reaction was per-
formed using eucalyptol as solvent with Pd2(dba)3 (5 mol%), dppf (10 mol%), Zn(CN)2
(60 mol%), Zn (20 mol%) at 170 ◦C for 26 h (Table 3).

Table 3. Optimization of cyanation.
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Figure 5. Palladium catalyzed cyanation of 7-bromo-6-phenyl-thieno[2,3-b]pyrazine.

The desired product 13 was obtained in good yield using eucalyptol as solvent at
140 ◦C for 27 h with Pd2(dba)3/dppf as catalytic system and Zn(CN)2 as cyanide source.

2.3. Hiyama Coupling

Hiyama coupling is a palladium-catalyzed C-C bond formation between aryl, alkenyl,
or alkyl halides or pseudohalides and organosilanes. Its particularity lies in the requirement
for a fluoride ion or a base as activating agent [42,43]. This coupling was chosen in order
to compare it with the results obtained and reported previously by our team [15] on the
performance of Sonogashira coupling using eucalyptol as solvent on O,S,N-heterocycles.

As with the previous two reactions reported above, this work started with a literature
review [43–47] to test the conditions for our scaffold and identify the best coupling conditions.

Optimization was achieved starting from 7-chlorothieno[3,2-b]pyridine and 1-phenyl-
2-trimethylsilylacetylene and by varying the amount and type of Pd source with or without
ligand as well as the type and amount of activating agent (fluoride ion or a base). Reactions
with eucalyptol were conducted at 100 ◦C for durations summarized in Table 4.
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Table 4. Optimization of Hiyama coupling.
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Entry Pd (eq.) Lig (eq.) CN (eq.) T (◦C) t (h) Yield a (%)

1 Pd(OAc)2 (0.025) X-Phos (0.05) TBAF·3H2O (2.5) 100 72 67
2 PdCl2(PPh3)2 (0.1) Ph3As (0.4) - 100 48 0
3 Pd(OAc)2 (0.1) P(Cy3) (0.4) CsF (1.5) 100 30 42
4 Pd(OAc)2 (0.1) DABCO (0.2) TBAF·3H2O (2.5) 100 48 0
5 Pd(PPh3)4 (0.1) - CsF (4) 100 30 30
6 [PdCl(allyl)]2 (0.05) P(Cy3) (0.1) TBAF in THF (3) 100 96 0
7 [PdCl(allyl)]2 (0.05) X-Phos (0.2) TBAF·3H2O (5) 100 48 51
8 PdCl2(PPh3)2 (0.1) - KF (5) 100 96 43
9 Pd2(dba)3 (0.05) X-Phos (0.1) TBAF·3H2O (5) 100 48 56

10 Pd(CH3CN)2Cl2 (0.05) X-Phos (0.1) TBAF·3H2O (5) 100 48 65
11 Pd(CH3CN)2Cl2 (0.05) PPh3 (0.15) Cs2CO3 (2) 100 48 80

a isolated yield after purification via flash chromatography.

Process optimization led to the isolation of compound 14 in a yield ranging from 30 to
80%. The best reaction conditions using eucalyptol as solvent were achieved at 100 ◦C for
48 h with Pd(CH3CN)2Cl2/PPh3 as a catalytic system and Cs2CO3 as a base.

Based on our results (Table 4, Entry 11), the scope and limitations of the Hiyama
coupling on 7-chlorothieno[3,2-b]pyridine were assessed using several silylacetylenes
(Table 4).

Compounds 14–19 substituted in position 7 were synthesized in moderate to good yield,
demonstrating the generalizability of this method using eucalyptol as solvent (Figure 6).
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From these results, we explored the same conditions on 4-chlorofuro[3,2-c]pyridine.
Two examples (20–21) were synthesized in low yield by Hiyama coupling (Figure 7).

This scaffold showed lower reactivity. This aspect had already been observed when we
synthesized the same products by Sonogashira coupling using eucalyptol [15].
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2.4. Recyclability of the Solvent

As the reusability of the solvent is essential from an economic and environmental
perspective, we have already shown its feasibility in Pd-mediated cross-coupling reactions
in our previous work [15–17], wherein an average 70% solvent recovery (using a rotary
evaporator system) was observed for each reaction series without noticeable loss of proper-
ties. Although the boiling point of eucalyptol is relatively high, it is possible to evaporate
it, in a few minutes, with a normal pump and recirculating chiller in a classical rotary
evaporator system.

3. Materials and Methods
3.1. General Methods

All reagents used herein were purchased from commercial suppliers Sigma Aldrich, St
Quentin Fallavier Cedex, France; Fluorochem, Derbyshire, SK131QH, UK. All the reactions
were monitored by thin-layer chromatography (TLC) using silica gel (60 F254) plates. Flash
column chromatographies were performed on silica gel 60 (230–400 mesh, 0.040–0.063 mm).
1H and 13C NMR spectra were recorded on a Bruker avance II spectrometer (Bruker,
Wissembourg, France) at 250 MHz (13C, 62.9 MHz) and on a Bruker avance III HD nanobay
(Bruker, Wissembourg, France) 400 MHz (13C 100.62 MHz). The following abbreviations:
b: broad, s: singlet, d: doublet, t: triplet, q: quartet, p: pentuplet, m: multiplet are used
for the proton spectra multiplicities. Coupling constants (J) are reported in Hertz (Hz).
Multiplicities were determined by the DEPT 135 sequence and chemical shifts are given
from tetramethylsilane (TMS) or deuterated solvent (MeOH-d4, Chloroform-d) as internal
standard. High-resolution mass spectra (HRMS) were carried out on a Maxis UHR-q-TOF
mass spectrometer (Bruker, Wissembourg, France) Bruker 4G in electrospray ionization
(ESI) mode (Bruker, Wissembourg, France). Melting points (mp [◦C]) were determined in
open capillary tubes and are uncorrected.

3.2. Multicomponent Reaction: General Procedure for Synthesis of Compounds 1–10

A mixture of aldehyde (50 mg; 1 eq.), amino derivative (2 eq.), malonitrile (2 eq.) in
Eucalyptol (2 mL) was stirred at 100 ◦C for 24 h. The reaction was followed by TLC. After
completion, the reaction was cooled to room temperature and the mixture was concentrated
under vacuum. The solid obtained was purified by flash chromatography using a mixture
of AcOEt/petroleum ether.

2-amino-4-phenyl-6-(pyrrolidin-1-yl)pyridine-3,5-dicarbonitrile (1). Yellow solid (74 mg,
54%) 1H NMR (400 MHz, CDCl3) δ 1.97 (t, J = 6.7 Hz, 4H), 3.81 (s, 4H), 5.31 (d, J = 17.5 Hz,
2H), 7.49 (dtt, J = 10.0, 6.3, 2.9 Hz, 5H) ppm. 13C NMR (101 MHz, CDCl3) δ 25.4 (2xCH),



Catalysts 2021, 11, 222 9 of 13

49.6 (2xCH), 81.1 (C), 82.0 (C), 116.8 (C), 118.2 (C), 128.5 (2xCH), 128.7 (2xCH), 130.2 (CH),
135.0 (C), 157.5 (C), 159.3 (C), 162.1 (C) ppm. [CAS: 77034-27-6].

2-amino-6-(pyrrolidin-1-yl)-4-(p-tolyl)pyridine-3,5-dicarbonitrile (2). Yellow solid (86 mg,
68%), m.p. 234 –236 ◦C. 1H NMR (400 MHz, CDCl3) δ 1.97 (t, J = 6.4 Hz, 4H), 2.41 (s, 3H),
3.80 (s, 4H), 5.31 (d, J = 11.2 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H) ppm.
13C NMR (101 MHz, CDCl3) δ 21.5 (CH), 25.4 (2xCH), 49.6 (2xCH), 81.0 (C), 82.0 (C), 117.0
(C), 118.4 (C), 128.4 (2xCH), 129.4 (2xCH), 132.0 (C), 140.4 (C), 157.6 (C), 159.4 (C), 162.2 (C)
ppm. HRMS: calcd for C18H18N5S [M + H]+ 336.1277, found 336.1280.

2-amino-4-(4-cyanophenyl)-6-(pyrrolidin-1-yl)pyridine-3,5-dicarbonitrile (3). Yellow solid
(54 mg, 45%), m.p. 258–260 ◦C. 1H NMR (400 MHz, CDCl3) δ 1.99 (s, 4H), 3.81 (s, 4H),
5.37 (s, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.81 (d, J = 8.1 Hz, 2H) ppm. 13C NMR (101 MHz,
CDCl3) δ 25.3 (2xCH), 49.6 (2xCH), 80.6 (C), 81.6 (C), 114.2 (C), 116.1 (C), 117.7 (C), 118.0
(C), 129.4 (2xCH), 132.6 (2xCH), 139.4 (C), 157.1 (C), 159.1 (C), 159.9 (C) ppm. HRMS: calcd
for C18H15N6 [M + H]+ 315.1353, found 315.1352.

2-amino-4-(4-fluorophenyl)-6-(pyrrolidin-1-yl)pyridine-3,5-dicarbonitrile (4). Yellow solid
(79 mg, 64%), m.p. 253–255 ◦C. 1H NMR (400 MHz, CDCl3) δ 1.98 (t, J = 6.4 Hz, 4H), 3.80
(s, 4H), 5.35 (s, 2H), 7.19 (t, J = 8.6 Hz, 2H), 7.47 (dd, J = 8.4, 5.3 Hz, 2H), ppm. 13C NMR
(101 MHz, CDCl3) δ 25.4 (2xCH), 49.6 (2xCH), 81.5 (d, J = 94 Hz, C), 115.9 (CH), 116.7
(C), 116.1 (CH), 118.1 (C), 130.6 (CH), 130.7 (CH), 131.0 (C), 157.5 (C), 159.3 (C), 161.0 (C),
163.8 (d, J = 250Hz, C), ppm. 19F NMR (376 MHz, CDCl3) δ -110.05 ppm. HRMS: calcd for
C17H15FN5 [M + H]+ 308.1306, found 308.1309.

2-amino-4-(4-methoxyphenyl)-6-(pyrrolidin-1-yl)pyridine-3,5-dicarbonitrile (5). Yellow solid
(60 mg, 51%) 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.5 Hz, 2H),
5.31 (s, 2H), 3.83 (d, J = 21.4 Hz, 7H), 1.97 (t, J = 6.4 Hz, 4H) ppm. 13C NMR (101 MHz,
CDCl3) δ 25.4 (2xCH), 49.6 (2xCH), 55.3 (CH), 81.0 (C), 81.9 (C), 114.1 (2xCH), 117.1 (C),
118.5 (C), 127.0 (C), 130.2 (2xCH), 157.8 (C), 159.43 (C), 161.1 (C), 161.8 (C) ppm. [CAS:
77034-28-7].

2-amino-4-cyclohexyl-6-(pyrrolidin-1-yl)pyridine-3,5-dicarbonitrile (6). Yellow solid (71 mg,
54%), m.p. 199–201 ◦C. 1H NMR (400 MHz, CDCl3) δ 1.36 (q, J = 13.2 Hz, 3H), 1.71 (d,
J = 12.2 Hz, 3H), 1.95–1.85 (m, 5H), 2.10 (q, J = 12.2 Hz, 2H), 3.07 (t, J = 12.4 Hz, 1H), 3.73 (s,
4H), 5.29 (s, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.4 (C), 160.2 (C), 158.2 (C), 118.2
(C), 117.6 (C), 81.5 (C), 79.2 (C), 60.4 (C), 49.6 (2xCH), 44.3 (CH), 29.7 (2xCH), 26.5 (2xCH),
25.4 (CH), 25.3 (CH) ppm. HRMS: calcd for C17H22N5 [M + H]+ 296.1870, found 296.1871.

2-amino-6-(piperidin-1-yl)-4-(p-tolyl)pyridine-3,5-dicarbonitrile (7). Yellow solid (75 mg,
57%) 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 5.36
(s, 2H), 3.79 (s, 4H), 2.41 (s, 3H), 1.70 (s, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 162.4
(C), 161.3 (C), 159.5 (C), 140.7 (C), 131.9 (C), 129.5 (CH), 129.0 (CH), 128.6 (CH), 117.9 (C),
116.7 (C), 83.6 (C), 81.6 (C), 49.2 (2xCH), 26.0 (2xCH), 24.4 (2xCH), 21.5 (CH) ppm. [CAS:
1268160-67-3].

2-amino-6-thiomorpholino-4-(p-tolyl)pyridine-3,5-dicarbonitrile (8). Yellow solid (88 mg,
63%), m.p. 223–225 ◦C. 1H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 8.2 Hz, 2H), 7.31 (d,
J = 8.0 Hz, 2H), 5.46 (s, 2H), 4.11–4.06 (m, 4H), 2.76 (dd, J = 7.4, 2.8 Hz, 4H), 2.41 (s, 3H)
ppm. 13C NMR (101 MHz, CDCl3) δ 162.5 (C), 161.7 (C), 159.5 (C), 140.9 (C), 131.6 (C), 129.6
(2xCH), 128.6 (2xCH), 117.6 (C), 116.3 (C), 84.2 (C), 82.6 (C), 50.8 (2xCH), 27.4 (2xCH), 21.5
(CH) ppm. HRMS: calcd for C18H18N5S [M + H]+ 336.1277, found 336.1280.

2-amino-6-(2,6-dimethylmorpholino)-4-(p-tolyl)pyridine-3,5-dicarbonitrile (9). Yellow solid
(95 mg, 66%), m.p. 238–240 ◦C. 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 8.2 Hz, 2H), 7.31
(d, J = 7.9 Hz, 2H), 5.46 (s, 2H), 4.41 (d, J = 13.3 Hz, 2H), 2.78 (dd, J = 13.3, 10.5 Hz, 2H),
2.41 (s, 3H), 1.23 (d, J = 6.3 Hz, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 162.4 (C), 161.1 (C),
159.5 (2xC), 140.9 (2xC), 131.6 (C), 129.5 (2xCH), 128.6 (2xCH), 117.7 (C), 116.4 (C), 83.9 (C),
82.4 (C), 71.7 (CH), 53.2 (CH), 21.5 (CH), 18.7 (2xCH) ppm. HRMS: calcd for C20H22N5O
[M + H]+ 348.1819, found 348.1818.

2-amino-6-(4-phenylpiperazin-1-yl)-4-(p-tolyl)pyridine-3,5-dicarbonitrile (10). Yellow solid
(109 mg, 75%), m.p. 220–222 ◦C. 1H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 8.2 Hz, 2H),
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7.35–7.28 (m, 4H), 6.97–6.89 (m, 3H), 5.46 (s, 2H), 4.05–3.98 (m, 4H), 3.35–3.30 (m, 4H), 2.43
(s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 162.4 (C), 161.3 (C), 159.5 (C), 150.8 (C), 140.9
(C), 131.6 (C), 129.6 (2xCH), 129.3 (2xCH), 128.6 (2xCH), 120.4 (CH), 117.7 (C), 116.4 (C),
116.3 (2xCH), 84.0 (C), 82.5 (C), 49.2 (2xCH), 47.7 (2xCH), 21.5 (CH) ppm. HRMS: calcd for
C24H23N6 [M + H]+ 395.1979, found 395.1978.

3.3. Palladium Catalyzed Cyanation: General Procedure for Synthesis of Compounds 11–13

A mixture of halo derivative (50 mg; 1 eq.), Pd2(dba)3 (0.05 eq.), dppf (0.1 eq.), Zn(CN)2
(0.6 eq.), Zn (0.2 eq.) in eucalyptol (2 mL) was stirred at 140–170 ◦C for 26–44 h. The reaction
was followed by TLC. After completion, the reaction was cooled to room temperature, and
the mixture was concentrated under vacuum. The solid obtained was purified by flash
chromatography using a mixture of AcOEt/petroleum ether.

Thieno[3,2-d]pyrimidine-4-carbonitrile (11). White solid (26 mg, 56%) 1H NMR (400 MHz,
CDCl3) δ 7.69 (d, J = 5.5 Hz, 1H), 8.23 (d, J = 5.5 Hz, 1H), 9.34 (s, 1H) ppm. 13C NMR (101
MHz, CDCl3) δ 114.3 (C), 125.0 (CH), 133.5 (C), 135.6 (C), 138.8 (CH), 154.6 (CH), 162.5 (C)
ppm. [CAS: 1057249-33-8].

Thieno[3,2-b]pyridine-7-carbonitrile (12). White solid (29 mg, 61%) 1H NMR (400 MHz,
CDCl3) δ 8.84 (d, J = 4.7 Hz, 1H), 7.93 (d, J = 5.5 Hz, 1H), 7.67 (d, J = 5.5 Hz, 1H), 7.53 (d,
J = 4.7 Hz, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 157.2 (C), 147.3 (CH), 133.9 (C), 132.5
(CH), 125.7 (CH), 121.0 (CH), 115.2 (C), 114.8 (C) ppm. [CAS: 1239505-20-4].

6-phenylthieno[2,3-b]pyrazine-7-carbonitrile (13). Brown solid (29 mg, 72%) 1H NMR
(400 MHz, CDCl3) δ 8.79 (d, J = 2.4 Hz, 1H), 8.60 (d, J = 2.4 Hz, 1H), 8.01–7.96 (m, 2H),
7.62–7.57 (m, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 159.0 (C), 153.5 (C), 149.4 (C), 143.4
(CH), 142.0 (CH), 131.8 (CH), 130.8 (C), 129.7 (2xCH), 128.4 (2xCH), 113.5 (C), 101.8 (C)
ppm. [CAS: 1369884-57-0].

3.4. Hiyama Coupling: General Procedure for Synthesis of Compounds 14–21

A mixture of halo derivative (50 mg; 1 eq.), Pd(CH3CN)2Cl2 (0.05 eq.), PPh3 (0.15 eq.),
Cs2CO3 (2 eq.) in eucalyptol (2 mL) was stirred at 100 ◦C for 30–48 h. The reaction was
followed by TLC. After completion, the reaction was cooled to room temperature, and
the mixture was concentrated under vacuum. The solid obtained was purified by flash
chromatography using a mixture of AcOEt/petroleum ether.

7-(phenylethynyl)thieno[3,2-b]pyridine (14). Yellow solid (55 mg, 80%), m.p. 139–141 ◦C.
1H NMR (400 MHz, CDCl3) δ 8.69 (d, J = 4.8 Hz, 1H), 7.79 (d, J = 5.5 Hz, 1H), 7.64 (dd,
J = 6.3, 2.7 Hz, 2H), 7.59 (d, J = 5.5 Hz, 1H), 7.44–7.39 (m, 3H), 7.36 (d, J = 4.8 Hz, 1H) ppm.
13C NMR (101 MHz, CDCl3) δ 156.1 (C), 147.3 (CH), 134.9 (C), 132.0 (2xCH), 130.9 (CH),
129.5 (CH), 128.6 (2xCH), 126.1 (C), 125.6 (CH), 121.9 (C), 120.3 (CH), 97.9 (C), 84.8 (C) ppm.
HRMS: calcd for C15H10NS [M + H]+ 236.0528, found 236.0528.

7-allylthieno[3,2-b]pyridine (15). Yellow solid (27 mg, 53%), m.p. 136–138 ◦C. 1H NMR
(400 MHz, CDCl3) δ 8.63 (d, J = 4.9 Hz, 1H), 7.73 (d, J = 5.6 Hz, 1H), 7.58 (d, J = 5.6 Hz, 1H),
7.20 (d, J = 4.9 Hz, 1H), 6.77–6.59 (m, 2H), 2.05–2.03 (m, 3H) ppm. 13C NMR (101 MHz,
CDCl3) δ 157.0 (C), 147.6 (CH), 140.1 (C), 133.5 (CH), 130.4 (C), 129.8 (CH), 127.7 (CH), 125.6
(CH), 115.3 (CH), 19.0 (CH) ppm. HRMS: calcd for C10H10NS [M + H]+ 176.0528, found
176.0530.

7-((4-(trifluoromethyl)phenyl)ethynyl)thieno[3,2-b]pyridine (16). Yellow solid (45 mg, 50%),
m.p. 161–163 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.71 (d, J = 4.8 Hz, 1H), 7.81 (d, J = 5.5
Hz, 1H), 7.74 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 5.6 Hz, 1H), 7.38 (d,
J = 4.8 Hz, 1H) ppm.

13C NMR (101 MHz, CDCl3) δ 156.2 (C), 147.3 (CH), 134.9 (C), 132.3 (3xCH), 131.3
(C), 131.0 (CH), 125.7 (2xCH), 125.5 (CH), 125.3 (C), 122.4 (C), 120.4 (C), 95.9 (C), 86.8 (C)
ppm. 19F NMR (376 MHz, CDCl3) δ −62.95 ppm. HRMS: calcd for C16H9F3NS [M + H]+

304.0402, found 304.0403.
7-(furan-3-ylethynyl)thieno[3,2-b]pyridine (17). White solid (46 mg, 69%), m.p. 103–105 ◦C.

1H NMR (400 MHz, CDCl3) δ 8.67 (d, J = 4.8 Hz, 1H), 7.83–7.76 (m, 2H), 7.59 (d, J = 5.5 Hz,
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1H), 7.46 (t, J = 1.7 Hz, 1H), 7.32 (d, J = 4.8 Hz, 1H), 6.61 (d, J = 1.7 Hz, 1H) ppm. 13C NMR
(101 MHz, CDCl3) δ 156.0 (C), 147.2 (CH), 146.8 (CH), 143.3 (CH), 134.6 (C), 130.9 (CH),
126.1 (C), 125.5 (CH), 120.2 (CH), 112.5 (CH), 106.7 (C), 89.3 (C), 86.7 (C) ppm. HRMS: calcd
for C13H8NOS [M + H]+ 226.0321, found 226.0322.

7-((4-methoxyphenyl)ethynyl)thieno[3,2-b]pyridine (18). White solid (63 mg, 81%), m.p.
142–144 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.66 (d, J = 4.8 Hz, 1H), 7.76 (d, J = 5.5 Hz, 1H),
7.60–7.53 (m, 3H), 7.31 (d, J = 4.8 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H) ppm. 13C
NMR (101 MHz, CDCl3) δ 160.6 (C), 156.0 (C), 147.2 (CH), 134.8 (C), 133.7 (2xCH), 130.7
(CH), 126.5 (C), 125.6 (CH), 120.0 (CH), 114.2 (2xCH), 113.9 (C), 98.3 (C), 83.9 (C), 55.4 (CH)
ppm. HRMS: calcd for C16H12NOS [M + H]+ 266.0634, found 266.0638.

7-(thiophen-3-ylethynyl)thieno[3,2-b]pyridine (19). White solid (36 mg, 51%), m.p. 99–101 ◦C.
1H NMR (400 MHz, CDCl3) δ 8.67 (d, J = 4.8 Hz, 1H), 7.77 (d, J = 5.5 Hz, 1H), 7.68 (dd, J = 2.9,
1.1 Hz, 1H), 7.58 (d, J = 5.5 Hz, 1H), 7.37–7.31 (m, 2H), 7.28 (dd, J = 5.0, 1.0 Hz, 1H) ppm. 13C
NMR (101 MHz, CDCl3) δ 156.1 (C), 147.2(CH), 134.8 (C), 130.8 (CH), 130.6 (CH), 129.9 (CH),
126.1 (C), 125.9 (CH), 125.6 (CH), 121.0 (C), 120.2 (CH), 93.0 (C), 84.5 (C) ppm. HRMS: calcd
for C13H8NS2 [M + H]+ 242.0093, found 242.0094.

4-(phenylethynyl)furo[3,2-c]pyridine (20). White solid (21 mg, 30%) 1H NMR (400 MHz,
CDCl3) δ 8.51 (d, J = 5.7 Hz, 1H), 7.70 (d, J = 1.9 Hz, 1H), 7.66 (dd, J = 6.2, 2.7 Hz, 2H),
7.43–7.38 (m, 4H), 7.03 (s, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 159.2 (C), 146.0 (CH),
144.9 (CH), 137.5 (C), 132.1 (2xCH), 129.2 (CH), 128.5 (2xCH), 127.0 (C), 122.2 (C), 106.9
(CH), 105.5 (CH), 92.7 (C), 86.5 (C) ppm. [CAS: 2098141-91-2].

4-((4-methoxyphenyl)ethynyl)furo[3,2-c]pyridine (21). Yellow solid (39 mg, 48%) 1H NMR
(400 MHz, CDCl3) δ 8.49 (d, J = 5.7 Hz, 1H), 7.69 (d, J = 2.2 Hz, 1H), 7.61–7.57 (m, 2H),
7.40 (d, J = 6.6 Hz, 1H), 7.01 (dd, J = 2.2, 0.9 Hz, 1H), 6.93–6.89 (m, 2H), 3.84 (s, 3H) ppm.
13C NMR (101 MHz, CDCl3) δ 160.4 (C), 159.2 (C), 145.8 (CH), 144.8 (CH), 137.9 (C), 133.7
(2xCH), 126.7 (C), 114.2 (C), 114.1 (2xCH), 106.6 (CH), 105.6 (CH), 93.1 (C), 85.5 (C), 55.3
(CH) ppm.

4. Conclusions

Simple conditions to generate several O,S,N-Heterocycles by Hiyama coupling, cyana-
tion and multicomponent reactions, which may show interesting biological properties, have
been presented in this paper. Methods of preparation were optimized using eucalyptol as
a biobased solvent.
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