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Abstract: Photocatalysis has been considered future technology for green energy conversion and
environmental purification, including carbon dioxide reduction, water splitting, air/water treatment,
and antimicrobial purposes. Although various photocatalysts with high activity and stability have
already been found, the commercialization of photocatalytic processes seems to be slow; it is thought
that the difficulty in scaling up photocatalytic processes might be responsible. Research on the design
of photocatalytic reactors using computer simulations has been recently intensive. The computer
simulations involve various methods of hydrodynamics, radiation, and mass transport analysis,
including the Monte Carlo method, the approximation approach–P1 model, and computational fluid
dynamics as a complex simulation tool. This review presents all of these models, which might be
efficiently used for the scaling-up of photocatalytic reactors. The challenging aspects and perspectives
of computer simulation are also addressed for the future development of applied photocatalysis.

Keywords: photocatalytic reactors; reactor design; reactor scaling-up; reactor modeling; radiation
transport; computational fluid dynamics; heterogeneous photocatalysis

1. Introduction

Semiconductor photocatalysis, especially based on TiO2, has been known for over
40 years as a promising strategy to achieve aims such as environmental remediation (e.g.,
water treatment and air purification) and renewable energy (e.g., hydrogen production
and carbon dioxide conversion to methane and light hydrocarbons) [1–3]. There have been
many studies on photocatalysis, which can be divided into three main fields: development
of new photocatalysts, fundamental studies on photocatalysis, and design of photocatalytic
reactors [4–9].

Despite the constantly growing number of research studies in photocatalysis and some
successful applications [10–13], a gap remains between research and commercialization.
One of the main problems is the scaling-up of photocatalytic reactors [14]. Although some
semi-pilot photoreactors exhibit similar or even better performance than laboratory ones,
e.g., air-sparged hydrocyclone (ASH), due to irradiation of a thin and highly aerated liquid
layer [8,15–18], the broad application of photocatalytic reactions needs a more systematic
approach. This process requires the development of mathematical models such as the
radiation absorption–scattering model, the radiation emission model, the kinetic model,
and the fluid-dynamic model [19–21]. These models are the subdomains of a closely
linked, complex numerical system based on differential equations [20]. The main point
of the modeling procedure is the solution of the radiation transport equation (RTE). This
equation depends on the specific geometry of the photocatalytic reactor and the type of
light source [22,23]. The RTE solution requires the application of a proper mathematical
model, such as the statistical Monte Carlo method [24–27] or approximation approach–P1
model [28–30]. Another important procedure is the discrete ordination method (DOM),
which is recognized as an accurate and flexible procedure [19,22,31–38]. As a consequence
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of the increase in computing power, more research on the modeling of photocatalytic
reactors also involves the concept of computational fluid dynamics (CFD). In general, the
CFD method is widely used in the development of catalytic reactors and analysis of the
systems involving fluid flows and heat transfer to understand the interactions of the catalyst
with the surrounding reactive flow field in catalytic reactors (gas–solid, liquid–solid, and
gas–liquid–solid) [39,40]. In the case of photocatalytic reactors, the CFD-aided modeling
procedure also introduces the simulation of fluid flows (single- and multi-phase) and solves
the RTE [32,37,41–57]. In the case of slurry photoreactor systems, there is the concept of
local volumetric rate of energy absorption (LVREA), defined as the energy required by
photons absorbed per time and volume inside the photoreactor. The photocatalytic reaction
rate is the function of the LVREA [23,41]. The solution of the LVREA equation requires
the analytical solution of RTE [58]. The commonly applied methods of RTE solution have
already been mentioned above.

This review analyzes the present state of knowledge on computing methods in the
design of photocatalytic reactors. The continuous development of computer-aided methods
seems to be a necessary step to increase the number of successful large-scale applications
of technologies based on photocatalytic processes. The aim of this work is to indicate
the currently considered numerical methods and corresponding software solutions dedi-
cated to the design of photocatalytic reactors. Notably, the most important advantages of
computer-aided design are the substantial reduction in time and costs (less experimental
trials) and the ability to study systems in which experiments are difficult or impossible to
carry out.

2. Numerical Approaches Supporting Scaling-up of Photocatalytic Reactors
2.1. Scaling-up Methodology of Photocatalytic Reactors

The traditional approach of the scaling-up procedure is based mostly on the empirical
methodology, i.e., it starts from the laboratory set-ups, and then gradually, the photoreactor
dimensions increase until it reaches the destination size specified for the particular practical
application. This approach is, unfortunately, time-consuming and requires significant
investments. Therefore, there is a consensus that the photoreactor design based on the
mathematical models and the increased computing power of hardware might be useful
in supporting the conventional scaling-up methodology [41,58–61]. Another approach for
semi- and pilot-plan photoreactors has been applied, i.e., the use of other types of reactors
as photoreactors after the addition of irradiation sources, e.g., an immersion of lamp(s)
inside the reactor or an application of outside irradiation (both artificial and natural) [14].
For example, ASH, an efficient gas–liquid contactor used successfully for aeration, SO2
removal, flotation, and stripping [17,62,63], has shown high efficiency for oxidative decom-
position of organic compounds when equipped with an immersed mercury lamp for both
photolysis (UV and UV/H2O2) and photocatalytic (UV/TiO2) reactions [8,15,16]. Although
this approach might result in the discovery of an efficient photocatalytic reactor, it is ran-
dom, and more studies are needed for detailed characterization and further scaling-up of
such photoreactors.

Satuf et al. proposed a methodology for scaling-up slurry photocatalytic reactors (the
example of 4-chlorophenol photodegradation) [58]. A similar conception was formulated
by the same research group for the photocatalytic reactor with TiO2 immobilized on the
reactor walls for the removal of air pollutants [61]. Figure 1 shows the flow chart illustrating
this scaling-up methodology, which consists of two main parts. The first (upper part of the
scheme) relates to the derivation of an intrinsic kinetic expression that is independent of
the present state of reactor configuration, radiation source, and experimental conditions,
and corresponds to photocatalytic degradation of model compound in a laboratory scale
reactor. The intrinsic kinetics is based on a detailed photocatalytic reaction scheme and
introduces the factors resulting from irradiation conditions, the amount of photocatalyst,
and initial compound concentration [58]. Furthermore, it would be stated as the rule that a
carefully considered laboratory photoreactor could render a reaction kinetics expression



Catalysts 2021, 11, 198 3 of 15

without time dependence and with validity for the whole reactor, as long as it is possible
by the provided method to safely extrapolate the results to more complex conditions.
The estimation of kinetics parameters should be performed by introducing a nonlinear
optimization program to adjust model predictions to the experimental data [61].
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In the radiation model, the key point is to determine the effect of radiation absorption
on the photocatalytic reaction rate. The simultaneous existence of absorption and scat-
tering is important for radiation modeling (the RTE method). The mass balances of the
photodegraded compound and the intermediate reaction products are considered to show
the theoretical evolution of the involved species. They should include the data from the
kinetic and radiation models [58]. In the second step (lower part of Figure 1), changing
the process scale requires the usage of the same kinetic model for the reaction that was
reported in the laboratory experiments. It is important to consider that the local volumetric
rate of photon absorption (LVRPA) must be calculated from a different radiation balance,
estimated for the larger photoreactor. Therefore, RTE should be applied to the new reactor
to predict the LVRPA in a reaction space. The resulting expression should be included in
the mass balance and, by the conduction of simulation procedure, to form the basis for
calculating the reactor output variables. Subsequently, the validation of obtained results
from the modeling procedure is necessary by comparing the experiments conducted in a
larger (e.g., pilot) scale photoreactor [61].

2.2. Hydrodynamics Modeling

The complex (integrated) photoreactor model should also consider the role of hydro-
dynamic conditions expressed by the momentum balance. For photocatalytic reactors, two
types of conditions should be considered: (i) free-flow through the reaction system and (ii)
the flow through the porous system [21,23,37]. The Navier–Stokes equations are used for
the description of momentum balance at steady-state conditions. For the constant density
and viscosity of the fluid, the continuity equation and the balance equation for momentum
can be formulated [23,33]. The computational fluid dynamics method (CFD) is increasingly
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used to estimate the hydrodynamics and mass transfer to predict the velocity and concen-
tration fields in photoreactors. Just as it underlies the CFD method, the Navier–Stokes
equations as a set of differential equations describe the motion of viscous fluids [39]. These
equations should be solved first before procuring the solution to the RTE [37].

There are different hydrodynamic models depending on the flow character (lami-
nar/turbulent). If the fluid is assumed to be Newtonian, incompressible, non-reactive, with
constant physical properties, and under laminar steady-state flow, it is possible to express
the following equations [47]:

The continuity equation:
∇× (U) = 0 (1)

The equation of momentum conservation:

∇× (ρUU) = −∇P−∇× τ (2)

With the stress tensor:

τ = µ
(
∇U +∇UT

)
− 2

3
µ∇×UI (3)

The equation of species conservation:

∇× (ρUmi) = −∇× Ji, i = 1, 2, . . . , N− 1 (4)

The diffusive flux of species Ji can be estimated using Fick’s first law of diffusion:

Ji = −Dm∇(ρmi) (5)

In the above-mentioned equations, ρ is density, U is velocity, P is pressure, τ is viscous
stress tensor, µ is molecular viscosity, I is unit tensor, mi is the mass fraction of species
i, N is the total number of species, and Dm is the molecular diffusivity of species i in
the mixture [47]. This model has been successfully applied in the CFD simulations of
photocatalytic reactors [43,45,46,49,50,53,64–68]. This model is preferred for gas-phase
photocatalytic reactions.

Considering the case of turbulent flow, under the same assumptions that were stated
for laminar flow, the Reynolds-averaged Navier–Stokes (RANS) turbulence modeling
approach requires to solve the following time-average equations [33]:

Mass conservation equation:
∇×

(
U
)
= 0 (6)

Momentum conservation equation:

∇×
(
ρUU + ρuu

)
= −∇P−∇× τ (7)

Species conservation equation:

∇×
(
ρUmi + ρum′i

)
= −∇× Ji i = 1, 2, . . . , N− 1 (8)

The overbar indicates a time-average value, and u and m′i are fluctuating flow velocity
and mass fraction of species i. The specification of the apparent stress gradient (ρUU) is
related to the adapted turbulence model [33]. Four hydrodynamic models are most often
considered for modeling photoreactors: (a) standard k–ε model (S k–ε) [36,38,45,69,70],
(b) the realizable k–ε model (R k–ε) [45,69], (c) the Reynolds stress model (RSM) [45,69],
and (d) the low Reynolds number k–ε model (AKN—developed by Abe, Kondoh, and
Nagano [21,45,71]). Duran et al. performed the CFD for a single-phase flow mass transfer
prediction in annular reactors using different hydrodynamic models. Figure 2 shows fluid
velocity magnitude differences between U- and L-type annular reactors [45].
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For single-phase photoreactor systems, classical Navier–Stokes equations are efficient
to calculate the hydrodynamic properties, but in the case of multi-phase flows, two main
models are considered [72]: (a) Eulerian–Eulerian (E–E) and (b) Eulerian–Lagrangian
(E–L) models. In the E–E model, the multiple phases are described as interpenetrating
continua for which equations representing the conservation mass and momentum are
solved. This model should be preferred due to its ability to simulate large-scale systems
without excessive computational requirements. For the E–L approach, the trajectories of
dispersed phase particles are simulated by solving an equation motion for each dispersed
phase particle. The motion of the continuous phase is simulated by a conventional Eulerian
approach [72]. Pareek et al. performed the simulation with an integrated model for a
pilot-scale annular bubble column photocatalytic reactor using the CFD method [42]. They
applied the conventional Eulerian model to simulate three-phase flow in the photoreactor.
The model was verified using experimental data for photodegradation of Bayer liquor,
and the adequacy of the adapted model was proven. Figure 3 shows the results of the
simulation of this three-phase modeling study.
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Another point is the aspect of stirring as one of the most important factors that is
still underrated in the available computational studies. The performance of especially
immobilized photocatalytic reactors is limited by the rate of mass transfer of the compounds
to the photocatalyst layer. For example, Duran et al. [21] applied mass transfer promoters
that increase the turbulence effect, such as repeated ribs on the internal wall of the reactor
and static delta wing mixers placed in the middle of the reactor. A CFD simulation showed
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that repeated ribs improve the turbulence within the near-wall region, whereas delta wing
mixers are responsible for increasing turbulence in the core flow [21].

An interesting example of CFD-aided studies on mass transfer improvement is the
work concerning the Taylor vortex photocatalytic reactor [73,74]. The flow instability
created in this type of reactor enhances the photocatalytic efficiency, as confirmed in both
experimental and computational simulation studies.

2.3. Lamp Emission and Radiation Modeling

It is possible to distinguish three types of illumination in photocatalytic reactors: (i)
direct illumination, such as in immobilized photoreactors; (ii) with the lamp immersed in
the reaction environment (slurry reactors); and (iii) with reflecting devices (parabolic or
elliptical). This determines the necessity to create lamp emission models [72]. Adequately,
three main emission models are considered: (a) the line source model, (b) the surface source
model, and (c) the volume source model. The schematic presentations of these models are
shown in Figure 4 [75].
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The significance of lamp emission models is connected to the effects of reflection, re-
fraction, and absorption of radiation prior to entering the reaction space being incorporated
as boundary conditions during CFD-aided radiation modeling [72].

As already mentioned in the Introduction, the solution of the radiative (photon) trans-
fer equation (RTE) is important for the modeling of the radiation field. For monochromatic
radiation, this equation is defined as [33]:

dL(r, s)
dz

+ (κ+ σ)L(r, s) = je(r) +
σ

4π

∫
4π

L(r, s ′)p( s ′ → s)d Ω ′, (9)

where L is the photon radiance, r is the position vector, s is the propagation direction
vector, z is the path length, κ is the absorption coefficient, σ is the scattering coefficient,
je is the emission term, p is the phase function for the inscattering of photons, and Ω′ is
the solid angle about the scattering vector s′. For photocatalytic reactors (slurry systems),
due to light scattering in the presence of the photocatalyst, it is impossible to find an
analytical solution for the RTE; therefore, the proper mathematical model is needed. The
RTE solution provides the opportunity to calculate the local volumetric rate of energy
absorption (LVREA) and the local volumetric rate of photon absorption (LVRPA). LVREA
depends on the photon distribution in the reaction medium and is useful for the description
of slurry-mode photoreactors. As defined in the photocatalytic process, photocatalytic
reaction might proceed as the consequence of photocatalyst excitation by the light of a
specified wavelength. The number of reacted molecules is proportional to the number of
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absorbed photons, which can be evaluated by LVREA. Therefore, this is a linkage between
LVREA and photocatalytic efficiency.

The first common approach to solve RTE is the application of the Monte Carlo method.
This is the class of methods involving statistical sampling to model complex chemical and
physical phenomena. During the Monte Carlo simulation, RTE is not solved explicitly, but
the trajectories and fates of all photons emitted from the lamp are traced. They are both
decided with the usage of random numbers. Depending on the underlying hypotheses,
various versions of the Monte Carlo method can be distinguished [76]. This method is
often used to provide simulations of photoreactors [24–27]. For example, Akach et al.
performed simulations of the light distribution in a solar photocatalytic bubble column
reactor [27]. Figure 5 shows the polar plots of LVREA depending on photocatalyst loading.
Computational simulations might help adjust optimal photocatalyst loading without
performing appropriate experiments.
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The P1 approximation method is another approach, which assumes that the angular
distribution of radiation intensity is almost isotropic within the medium. Accordingly,
the radiative energy that reaches any given point inside the reactor comes almost equally
from all possible directions. This assumption is important in the view of the scattering
phenomenon because it is possible to eliminate the directional behavior (from the radi-
ation field) that originated from its sources [29]. This method has also been applied in
photoreactor simulations [28–30].
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The third important numerical method of RTE solution is the discrete ordination
method (DOM). The DOM discretizes the infinite number of directions involved in Equation
(9) to a finite number of directions, si, customized to the geometry of the system [29]. The
presented description is too simplified because an important issue is to establish the
proper boundary conditions, directions, and spatial discretization for any change in the
reactor geometry. This flexible and accurate method has also been extensively studied for
photocatalytic reactors [19,22,31–38].

2.4. Kinetic Modeling

Most kinetic models are based on the Langmuir–Hinshelwood (L–H) rate form, which
includes the phenomenon of the adsorption of the reagent (usually pollutant) on the photo-
catalyst surface [76,77]. In slurry photocatalytic systems, degradation of the compound
depends on the operating conditions, such as pH, temperature, irradiance, oxygen concen-
tration, initial concentration of the compound, and photocatalyst loading (Wcat) [72,78–82]:

− r = k(f[P]), (10)

k = f(pH, T, E, [O2], Wcat), (11)

where f[P] is the function of the compound concentration and is usually of the first-order
or L–H form. The following issue is to consider the effect of light intensity on the reaction
rate. When the value of LVREA (corresponding to La) and its relation to light intensity are
considered, then Equation (10) can be modified as follows [72,76]:

− r = k(La)m(f[P]). (12)

At large photocatalyst loading, the reaction rate usually decreases due to a higher
electron-hole recombination rate. As a result, the volumetric rate of recombination is
directly proportional to photocatalyst loading (Wcat). Then, the final form of the kinetic
equation can be presented as [42,72]:

− r = k1(f[P])[La − k2Wcat]. (13)

3. Complex Photocatalytic Reactor Modeling Systems—The Available Software Tools

The above-described steps of photoreactor modeling might be presented as shown in
Figure 6. The CFD method is an important tool to proceed with the complex modeling of
photocatalytic reactors. It might combine all physicochemical phenomena involved in the
process: fluid dynamics, species transport, radiation transport, and including its coupling
with the chemical reaction rate, which has been described above. There are various CFD
simulation frameworks available. Some of them are commercial, such as ANSYS® Fluent
(ANSYS Inc., USA) and COMSOL Multiphysics® (COMSOL Inc., USA), and others are
open-source CFD software, e.g., OpenFOAM and FEATFLOW.

A suitable example of complex modeling of photocatalytic reactors by available general-
purpose CFD software (ANSYS® Fluent) is presented in the work of Casado et al. [83]. The
simulation relates to the annular photocatalytic reactor. The analyzed model includes the
description of hydrodynamics, radiation transfer, mass transport, and chemical reaction rate
based on a mechanistic kinetic model. The results of photocatalytic activity, using methanol
as a model compound, show agreement between model predictions and experimental data,
with errors between 2% and 10%, depending on the photocatalyst loading (Figure 7) [83].

In the newest research performed by Moreno-SanSegundo et al., numerical simulations
of three photocatalytic reactors were demonstrated: an annular reactor illuminated by a
mercury fluorescent lamp, a tubular reactor coupled to a compound parabolic collector
illuminated by sunlight, and a tubular photoreactor illuminated by LEDs [84]. The authors
proposed a novel discrete ordinate model integrated with open-source OpenFOAM CFD
software. The model predictions were successfully validated by comparing simulations
conducted by commercial ANSYS® Fluent software (Figure 8). The proposed simulation
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method allows for substantial improvements, particularly in the modeling of the LED
photoreactor. This is especially important from the point of view of the rapid development
of this type of light source-driven photocatalytic reactors.
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The application of available CFD software to perform the simulations of photocatalytic
reactors is based on an adaptation of the existing simulation modules to conduct simula-
tions of photoreactors. This configuration must be operated by a user familiar with CFD
software; therefore, this might generate problems for non-experts in the design of photore-
actors. Another approach is to create the complex simulation tool by direct programming of
the proposed mathematical photocatalytic reactor models, but it can be difficult to perform
for researchers because of the complexity of the project and the extended knowledge of
programming languages. On the market, it is possible to find commercial simulation
packages dedicated for the chemical industry, such as Aspen HYSYS® (Aspen Technology
Inc., USA), but they do not have implemented modules for photocatalytic reactors.
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Figure 8. Incident radiation contours in a central plane in a CPC (compound parabolic collector) solar photoreactor;
OpenFOAM (top) and ANSYS® Fluent (bottom) simulations; emission to normal surface (A,B) and at 45◦ (C,D). No
adsorption or scattering (A,C) and 0.25 g L−1 TiO2 (B,D). (E) Schematic representation of the analyzed plane. (F) Quadrature
rotation in parallel sources. Reprinted with permission from [84]. Copyright Elsevier, 2020.

Therefore, there is huge potential for complex simulation tools dedicated only for
photocatalytic reactors. A promising example in this direction is PHOTOREAC, established
as an open-access application developed in the graphical user interface of MATLAB®

software [85]. Acosta-Herazo et al. performed the simulations with the PHOTOREAC envi-
ronment, which includes three configurations of pilot-scale solar photoreactors: a flat plate
photoreactor (FPP), a compound parabolic collector photoreactor (CPCP), and the offset
multi-tubular photoreactor (OMTP). Each photoreactor system operates in recirculation
with a flow-through mode with water passing through an external tank [85]. As a model
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photocatalyst, Evonik P25 TiO2 was selected [83], as it is commonly used as a standard due
to one of the highest photocatalytic activities among titania photocatalysts [86–89].

The PHOTOREAC system consists of two main modules: (i) the photon absorption-
scattering module (radiation field modeling) and (ii) the kinetic module (estimation of
the radiation-independent kinetic parameters). In the case of the first module, a six-flux
absorption-scattering model (SFM) was implemented. This is a simplified model, in which
the main hypothesis is that scattering only occurs in the six Cartesian directions. Its
application allows for short computational time and low mathematical complexity. The
authors incorporated the SFM variant coupled with the Henyey–Greenstein scattering
phase function (SFM-HG). Figure 9 shows a screenshot of the PHOTOREAC application
window with a working photon absorption-scattering module [85,90].
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It is thought that this promising open-access software approach, according to the au-
thors’ recommendations [85], might be useful for introduction to photoreactor engineering
in situations when a quantitative margin of error is still acceptable or qualitative results
are the main aim of the work, and when the parametric space in the study is extensive.
The authors are aware of the software limitations; thus, a plan to extend the capabilities of
this CFD tool, dedicated for photocatalytic reactors, was proposed, e.g., the extension of
simulation possibility to other photocatalysts and user-defined kinetics expressions [85].

4. Concluding Remarks

Heterogeneous photocatalysis, especially under natural solar radiation, seems to be
the Earth’s future for energy conversion and environmental purification. Therefore, novel
technologies of photocatalyst use must be developed for broad and easy application. Ac-
cordingly, the scaling-up of photocatalytic reactors is an important step to commercialize
photocatalytic processes. The design of photocatalytic reactors with their particular com-
plexity should be strictly interlinked with the proper computational tools for scaling-up.
There are many processes and parameters that must be considered during the scaling-up
procedure. Therefore, methods with a properly constructed system of mathematical models
(hydrodynamics, radiation, and kinetics) based on the fundamentals of chemical engineer-
ing with an efficient algorithm should be constructed to provide reliable predictions of the
performance of designed photoreactors. Furthermore, the constantly growing computing
power of available hardware is another factor that should favor the development of these
methods. Currently, the computational methods used in research on photoreactors are
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mainly based on general-purpose CFD tools, which are not strictly dedicated for this
application. These simulations require much time and specific knowledge to be adopted
in given conditions, to introduce the data, to launch proper models, and to perform the
simulations. Nevertheless, the available research papers show that these computational
tools provide increasingly accurate results. The latest successful and promising example of
the PHOTOREAC MATHLAB®-based application outlines the recommended direction of
research in this field, which is to design computational tools taking into account the specific
character of photoreactors to make the simulation procedure simpler with an appropriate
level of accuracy.
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