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Abstract: The present study describes a two-step synthesis process for the cobalt complex of tetra-
2,3-(5,6-di-tert-butyl-pyrazino) porphyrazine (tBu-TPyzPzCo). The product was ultrasonically im-
pregnated onto carbon black (CB) to prepare a supported catalyst (tBu-TPyzPzCo/CB). We built a
split photoelectric catalytic device to test the performance of photocatalytic, electrocatalytic and pho-
toelectrocatalytic degradation of partially hydrolyzed polyacrylamide (HPAM). The results confirm
that HPAM exhibited more efficient degradation in the presence of a supporting catalyst using the
photoelectrocatalytic process than by photocatalytic or electrocatalytic oxidation—or even the sum of
the two in saline water. The photoelectrocatalytic reaction confirmed that the process conforms to
quasi-first order reaction kinetics, while the reaction rate constants were 6.03 times that of photocatal-
ysis and 3.97 times that of electrocatalysis. We also compared the energy consumption of the three
processes and found that the photoelectrocatalytic process has the highest energy efficiency.

Keywords: cobalt azaphthalocyanine; catalytic processes; degradation; polyacrylamide; comparison

1. Introduction

The sewage treatment technologies most commonly used in current production and
life practices mainly include physical, chemical, and biological methods. Among them,
biological methods are the primary technology, and the other two are supplementary. In
practical applications, the three have some shortcomings. The application of photoelectro-
catalytic oxidation technology is less limited, and it is more suitable for the treatment of
refractory organic wastewater [1–5]. The actual operation of photoelectrocatalytic oxidation
technology can be subdivided into photocatalytic oxidation technology, electrocatalytic
oxidation technology and photoelectrocatalytic oxidation technology [6–8].

Research on photocatalysis and electrocatalysis technology is quite mature. In recent
years, researchers have found that when light-activated semiconductor particles are im-
mersed in an electrolyte containing redox potential components, the electric field of the
Schottky barrier formed can make photoelectrons and holes move in opposite directions
by means of electron migration, thereby achieving separation of the two [9,10]. Based on
this, researchers began to use electrochemical methods to understand the surface charac-
teristics and reaction mechanisms of semiconductors in the photocatalytic degradation
process. Within a few years, this research developed into an electrochemically assisted
photocatalytic method, called the photoelectrocatalytic method [10,11].

Most previous studies looking at what happens in a specific catalytic process have
used new catalysts, so they have mainly focused on the preparation of catalysts and
neglected the study of the catalytic process. In this paper, a split photoelectrocatalytic
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reactor was designed, using tert-butyl substituted cobalt octaazaphthalocyanine supported
by conductive carbon black (tBu-TPyzPzsCo/CB) as the catalyst, to study the degradation
effects of hydrolytic polyacrylamide (HPAM) in different catalytic processes, and to analyze
the reaction processes and mechanisms.

2. Results and Discussions
2.1. Catalyst Characterization

The UV-visible absorption spectra for tBu-TPyzPzCo and unsubstituted TPyzPzCo
are shown in Figure 1, wherein N,N-Dimethyl Formamide (DMF) was employed as the
solvent within the range of 300–800 nm. The compounds exhibited two evident absorption
bands at 330 nm, 308 nm, 615.5 nm and 633.5 nm, respectively, which corresponded
to the B and Q bands of the phthalocyanine azaanalogues [12,13]. A comparison of
the two spectra indicated the presence of tBu-TPyzPzCo absorption peaks, which are
represented by a red shift in the UV region and a blue shift in the visible region, possibly
due to the larger π structure. In addition, several weak peaks near the Q band in the
spectrum of the unsubstituted TPyzPzCo that were more intense than tBu-TPyzPzCo
were observed. The peaks were attributed to the polymerization-produced dimer [14]
and affected the compounds’ properties, thereby allowing the presence of peripheral
substituents to suppress dimer generation.
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Figure 1. UV-visible absorption spectra of unsubstituted TPyzPzCo (blue) and tBu-TPyzPzCo 
(red) in DMF solution. 

The FTIR spectra of tBu-TPyzPzCo before and after loading are presented in Figure 
2. They were recorded for the fundamental region of 400–4000 cm−1 and used the KBr disk 
technique. The two spectra exhibited particularly similar absorption peaks around 769, 
964, 1122 and 1329 cm−1, which may have presented the phthalocyanine skeletal vibrations 
[15]. Due to the presence of the tert-butyls, the spectra also exhibited absorption peaks in 
the range around 1375 cm−1. Specifically, two peaks were observed at 1371 cm−1 and 1386 
cm–1, and the strength of the former was about two-fold that of the latter. In addition, two 
absorption peaks were observed around 1456 cm−1 and 1682 cm−1, which represented the 
C=C and C=N bonds stretching vibration of the pyrazine macrocycles. 

Figure 1. UV-visible absorption spectra of unsubstituted TPyzPzCo (blue) and tBu-TPyzPzCo (red)
in DMF solution.

The FTIR spectra of tBu-TPyzPzCo before and after loading are presented in Figure 2.
They were recorded for the fundamental region of 400–4000 cm−1 and used the KBr disk
technique. The two spectra exhibited particularly similar absorption peaks around 769, 964,
1122 and 1329 cm−1, which may have presented the phthalocyanine skeletal vibrations [15].
Due to the presence of the tert-butyls, the spectra also exhibited absorption peaks in
the range around 1375 cm−1. Specifically, two peaks were observed at 1371 cm−1 and
1386 cm−1, and the strength of the former was about two-fold that of the latter. In addition,
two absorption peaks were observed around 1456 cm−1 and 1682 cm−1, which represented
the C=C and C=N bonds stretching vibration of the pyrazine macrocycles.

Figure 3 displays the morphology of tBu-TPyzPzCo before and after loading, and the
energy dispersive X-ray analysis (EDAX) of tBu-TPyzPzCo/CB. The SEM image exhibited
random pore size distributions and interconnected pore systems in the compound, wherein
a sheet structure with a thickness of about 1 µm was observed. After loading, the loose
holes in the carbon black were covered to some extent by the catalyst. In addition, the
catalyst was well loaded on the conductive carrier, and the presence of the cobalt element
on the EDAX spectrum was observed.
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Figure 2. FTIR spectroscopy results of tBu-TPyzPzCo before and after loading.

Figure 3. SEM images of tBu-TPyzPzCo before and after loading and the energy dispersive X-ray anal-
ysis (EDAX) of the supported catalyst. (a) Carbon Black; (b) tBu-TPyzPzCo; (c) tBu-TpyzPzCo/CB;
(d) tBu-TpyzPzCo/CB.

2.2. Photoelectrocatalytic Performance

Figure 4 shows the catalytic performance results of tBu-TPyzPzCo and tBu-TPyzPzCo/CB
in different processes. The HPAM removal efficiency and viscosity of the unsupported cata-
lyst of each catalytic method were significantly lower than those of the supported catalyst.
For tBu-TPyzPzCo/CB, the degradation efficiency of HPAM was less than 50% after 2 h
of degradation in a single catalytic process. In contrast, the ratio of photoelectrocatalysis
was 94.55%, which was much higher than the sum of the other two. This fact indicated
that a synergistic effect existed in the combination process, along with several factors which
influenced HPAM viscosity (such as temperature, concentration, and molecular weight). In
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this study, the initial viscosity of the 50 mg/L HPAM solution was 8.33 mPas, which decreased
to 5.62 mPas because of the addition of the electrolyte and catalyst after magnetic stirring for
half an hour. The viscosity of the solution was easily affected by anions and stirring. As the
reaction progressed, HPAM gradually degraded, and the viscosity of the solution decreased
accordingly. This downward trend was consistent with the degradation efficiency.
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Figure 4. Comparison of degradation of hydrolyzed polyacrylamide (HPAM) by the different cata-
lytic processes. (a) tBu-TpyzPzCo; (b) tBu-TpyzPzCo; (c) tBu-TpyzPzCo/CB; (d) tBu-
TpyzPzCo/CB. (electrolyte: 0.1 mol/L; initial concentration of HPAM: 50 mg/L; voltage: 40 
V; catalyst: 0.3 g/L). 
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Figure 4. Comparison of degradation of hydrolyzed polyacrylamide (HPAM) by the different catalytic processes. (a) tBu-
TpyzPzCo; (b) tBu-TpyzPzCo; (c) tBu-TpyzPzCo/CB; (d) tBu-TpyzPzCo/CB. (electrolyte: 0.1 mol/L; initial concentration
of HPAM: 50 mg/L; voltage: 40 V; catalyst: 0.3 g/L).

Previous studies have proven that the reaction rate of the photoelectrocatalytic process
is affected by many reaction conditions, such as light source and light intensity, bipolar
voltage, pollutant concentration, nature of the reaction medium, pH, temperature, pres-
sure and catalyst properties [16,17]. We previously proved that the photoelectrocatalytic
processes constructed in this paper can fully perform their respective functions in single
photocatalytic and single electrocatalytic processes. They can also use chemical collateral
effects between each other to produce synergistic effects and degrade HPAM using the
combined force of the oxidation abilities in the system.

The degradation of HPAM in the photoelectrocatalytic process can be divided into
paths as shown in Equations (1)–(4), where products 1–4 are just to distinguish between
the different reaction processes. It may be the same product in the actual reaction.

HPAM
kE→ Product1 + CO2 + H2O (Degradation caused by electrocatalysis) (1)

HPAM
kP→ Product2 + CO2 + H2O (Degradation caused by photocatalysis) (2)

HPAM
kX−E→ Product3 + CO2 + H2O

(Increased efficiency produced by electrocatalysis affected by xenon lamp)
(3)

HPAM
kV−P→ Product4 + CO2 + H2O

(Increased efficiency produced by photocatalysis affected by voltage)
(4)

According to the literature, photocatalytic oxidation [18] and electrochemical degra-
dation of organic pollutants basically follow quasi-first order reaction kinetics. Corre-
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spondingly, the increase of oxidized species produced under the photoelectrocatalytic
effect also undergoes a homogeneous reaction in the reaction system, so the total rate of
photoelectrocatalytic degradation of HPAM in this paper can be expressed as Formula (5):

− dc
dt

= kE·c + kP·c + (kX−E + kV−P)·c (5)

In the equation, the first term on the right side of the equals sign represents the
oxidation in the electrocatalytic process, and kE is the reaction rate of the process; the
second term represents the oxidation in the photocatalytic process, and kP is the reaction
rate of the process; the third item represents the synergy produced by the interaction
between light and electrical systems in the photoelectrocatalytic process. This third item
includes electrocatalytic degradation under xenon lamp irradiation (reaction rate expressed
as kX−E), and photocatalytic degradation under applied voltage (reaction rate expressed
as kV−P).

Integrate Equation (5) to get (6)

c = c0e−(kE+kP+kX−E+kV−P)t (6)

In the formula, c0 represents the initial concentration of HPAM; t represents the
photoelectrocatalytic degradation time.

Suppose K = kE + kP+kX−E + kV−P, then (6) is simplified to (7):

c = c0e−Kt (7)

It can be seen from Equation (7) that the photoelectrocatalytic degradation of HPAM
in this study is the same as the photocatalytic and electrocatalytic degradation of HPAM. It
should also follow quasi-first order reaction kinetics, and the total degradation rate of the
reaction is expressed as K.

The Langmuir–Hinshelwood reaction formula was employed to linearly fit the results
of the three catalytic processes, as presented in Figure 5.
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Figure 5. Kinetic analysis of the three catalytic processes. (electrolyte: 0.1 mol/L; initial concentration
of HPAM: 50 mg/L; voltage: 40 V; catalyst: 0.3 g/L)

The results confirmed that all three HPAM catalytic degradation processes were quasi-
first order reactions. The reaction rate constant of the photoelectrocatalytic system was
2.4 × 10−2 min−1, which was 6.03 times that of photocatalysis and 3.97 times that of
electrocatalysis. The reaction rate constants and fitting correlation coefficients of the three
catalytic methods are shown in Table 1.
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Table 1. Kinetics reaction rate constants of the three catalytic processes.

No. Cell Voltage
(V)

Na2SO4
(mol/L)

Reaction
Rate (min−1) R2 Process

1 - 0.1 3.98 × 10−3 0.9789 Photocatalytic
2 40 0.1 5.05 × 10−3 0.9614 Electrocatalytic
3 40 0.1 2.4 × 10−2 0.9771 Photoelectrocatalytic

2.3. Synergy Mechanism Analysis

In photocatalytic systems, the existing electrochemical indirect oxidation mechanism
of phthalocyanine complexes was proposed by Comninellis et al. [19,20] and has been
improved on and verified by many scholars [21–23]. In the electrochemical degradation
process, pollutants (represented by W) can be directly oxidized to produce oxidizing
pollutant cations (W•+), and water molecules on the electrode surface can also be decom-
posed, forming hydroxyl radicals (•OH) adsorbed on the electrode surface, as shown in
Formulas (8) and (9). During the photocatalytic degradation process, the phthalocyanine
(represented by P) absorbs sunlight to reach the first singlet excited state 1P*, which can
undergo intersystem crossing (isc) to the triplet excited state 3P*. Both 1P* and 3P* can react
with water molecules to produce •OH, as shown in Formulas (10) and (11) [24–26]. Addi-
tionally, both can react with pollutants (W) [27] to give the oxidized form of the pollutant
(W•+) and the reduced form of the photocatalyst (P•−), as shown in Formulas (12) and (13).
In the electrocatalytic reaction process, the oxygen molecules near the stainless steel cathode
gain electrons to generate superoxide radicals O2•− [28], as shown in Formula (14), and
P•− can also react with molecular oxygen to generate O2•− [29], as shown in Formula (15).
Hydroxyl radicals, superoxide radicals, and oxidizing pollutant cations can all directly
oxidize pollutants until mineralization, as shown in Equations (16) to (18).

W→W•+ + e− (8)

H2O→ •OH + H+ + e− (9)

P hv↔ 1P∗ + H2O→ P•− + •OH + H+ + e− (10)

P hv↔ 1P∗ isc→ 3P∗ + H2O→ P•− + •OH + H+ + e− (11)

P hv↔ 1P∗ + W→ P•− + W•+ (12)

P hv↔ 1P∗ isc→ 3P∗ + W→ P•− + W•+ (13)

O2 + e− → O2•− (14)

P•− + O2 → P + O2•− (15)

W + •OH→ Oxidation products (16)

W + O2•− → Oxidation products (17)

W•+ + O2•− → Oxidation products (18)

Through literature review, there may be a degradation pathway, in which the chain
scission reaction occurs first, and HPAM is decomposed into various units with relatively
low molecular weights [30–32]. According to our research, small molecules were degraded
on tBu-TPyzPzCo/CB under xenon lamp irradiation and an external electric field. To study
the degradation pathway clearly, we used a multi-instrument combined method to detect
intermediates, especially PyGCMS, 1HNMR, HSGCMS and EDX. It is worth noting that
we did not use HPLC/MS, because high concentrations of electrolyte will cause serious
distortion of the results. The results suggested that acrylamide monomer and acrylic acid
were intermediate products. A possible path for HPAM photoelectrocatalytic degradation
is proposed in Figure 6 based on those characterizations.
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TPyzPzCo/CB particle electrodes.

2.4. Energy Consumption Analysis

In actual water treatment applications, while pursuing a higher pollutant removal
rate, the operating cost of the system is an important indicator for evaluating the quality of
the process. In this study, when photocatalysis, electrocatalysis, and photoelectrocatalysis
processes treat HPAM-containing wastewater, energy consumption is the most important
operating cost. To compare that of the three processes, this study calculated the running
time and energy consumption of the system when the same mass (40%) of HPAM was
removed, and obtained energy efficiency. The reaction conditions were as follows: the
catalyst addition was 0.3 g/L, the applied voltage across the electrode was 40 v, and the
Na2SO4 electrolyte concentration was 0.1 mol/L. The power of the xenon lamp used in
this study was 300 W, higher than the 200 W of the DC power source. The calculation of
energy efficiency and energy consumption used the following, Formulas (19) and (20), and
the experimental results are shown in Table 2.

E =
30
Q

(19)

Q = W × t (20)

Table 2. Comparison of energy consumption of three catalytic processes.

Catalyst Process
Time Required to

Remove 40% HPAM
Energy

Consumption Energy Efficiency

h kW·h mg HPAM/(kW·h)

Photocatalysis 4 1.32 22.73
CoTPyzPz Electrocatalysis 6 1.38 21.74

Photoelectrocatalysis 0.67 0.36 84.48

Photocatalysis 4 1.32 22.73
CoTPyzPz/CB Electrocatalysis 3.5 0.81 37.27

Photoelectrocatalysis 0.51 0.27 110.99

Photocatalysis 2.1 0.69 43.29
tBu-CoTPyzPz Electrocatalysis 6 1.38 21.74

Photoelectrocatalysis 0.8 0.42 70.75

Photocatalysis 2.1 0.69 43.29
tBu-CoTPyzPz/CB Electrocatalysis 1.5 0.35 86.96

Photoelectrocatalysis 0.4 0.21 141.51
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In the formulas, E represents energy efficiency, Q represents the energy consumption,
W represents the total power of all electrical equipment for each catalytic process, and t
represents the time taken for each process to remove 40% HPAM.

It can be clearly seen in Table 2 that the photocatalytic process had the highest energy
consumption and the lowest energy efficiency when removing the same mass of HPAM; on
the other hand, although the photoelectrocatalytic process had higher energy consumption
per unit time than the other two, the treatment time was greatly shortened, so the energy
efficiency was far better than the other two. Among them, the catalyst tBu-CoTPyzPz/CB
had the highest energy efficiency. Under the experimental conditions, the energy efficiency
of HPAM wastewater treatment reached 141.51 mg/(kW·h), which benefited from the
increase in the total amount of active substances under the photoelectrocatalysis. The
energy consumption comparison can be used as a basis for actual industrial production in
the future.

To compare the three catalytic processes more intuitively, we list some related research
results from recent years in Table 3. The degradation efficiency of the photoelectrocatalytic
process is often better than that of the other two processes.

Table 3. Comparison of three catalytic processes recorded in the literature.

Catalyst Process Pollutant Degradation Rate Reference

Imidazole
Phthalocyanine Photocatalysis 2,3,4,5-

Tetrachlorophenol 80–90% [5]

Zinc Phthalocyanine—
Nanoporous Gold Photocatalysis 1,3-

diphenylisobenzofuran 92% [33]

Metal phthalocyanines-TiO2
nanoparticles Photocatalysis Ibuprofen 90% [34]

Flotation tailings particle
electrode Electrocatalysis tetracycline 75% [35]

cerium doped
Ti/nano-TiO2/PbO2

Electrocatalysis COD 96.6% [36]

Ti/TiO2 nanotube Photoelectrocatalysis 5-fluorouracil 100% [37]

Nanopararticulate titania
films/FTO Photoelectrocatalysis azo dye Basic Blue 41 95% [8]

tBu-CoTPyzPz/CB Photoelectrocatalysis HPAM 94.55% This paper

3. Materials and Methods
3.1. Materials

CB (Vulcan XC-72R, Cabot Corporation, Boston, MA, USA), with a pore size of 30 nm
and surface area of 232 m2/g, was cleaned by ultrasound wave in deionized water for
30 min at room temperature, then dried at 75 ◦C in the vacuum drying oven. All the other
chemicals, solvents and reagents were of AR grade, used as received, and purchased from
the Sinopharm Chemical Reagent Company, Shanghai, China. The average molecular
weight of HPAM was about 3 × 106 (the degree of hydrolysis of HPAM was about 16~18%).

3.2. Procedure for the Preparation of tBu-TPyzPzCo/CB

The preparation procedure of tBu-TPyzPzCo/CB refers to the author’s previous
work [38]. In a typical experiment, tBu-TPyzPzCo was synthesized by mixing pivalil (1)
with 2,3-diaminomaleonitrile (2), urea (3), and cobalt chloride hydrate (4) in the presence
of heat, of which a molar ratio of 1:1:4:0.5 from 1:2:3:4 obtained the best result. Pivalil
was synthesized from pivaloin (5) by oxidation with chromic acid solution (6), based on
the general procedure of Melvin S. Newman and A. Arkell [39]. The catalyst was first
dissolved in DMF and ultrasonically dispersed. Then, carbon black was added, and the
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sample continued to undergo ultrasonic dispersion for 1 h. The liquid was filtered, and
the residue was washed with DMF until the filtrate became colorless. The residue was
washed with distilled water in triplicate and dried under a vacuum at 70 ◦C to produce
tBu-TPyzPzCo/CB.

3.3. Catalytic Experiments

The photoelectrocatalytic reaction was carried out using self-made equipment, as
shown in the schematic diagram in Figure 7. In this device, an open rectangular sink
with a size of 16 cm × 8 cm × 15 cm was prepared as the main reactor, with an effective
volume of 1.92 L. The light source for photocatalytic reaction was a 300 W xenon lamp
(PLS -SXE300, Perfect Light, Beijing, China) which was placed above the main reactor. The
anode and cathode materials were titanium and 304 stainless steel, respectively. The size
of the electrode plate was 12 cm × 4 cm, and the distance between them was 5 cm. This
study used a DC power supply (MN605D, Zhaoxin, China) with a voltage range of 0 to
60 V and a current range of 0 to 5 A. To maintain the concentration and temperature of the
reaction solution during the reaction, we placed the reactor on a magnetic stirrer and used
a peristaltic pump at the same time.
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In this paper, we studied the electrocatalysis, photocatalysis and photoelectrocatalysis
processes of HPAM degradation under the same conditions. In each experiment, a certain
concentration of HPAM solution was set as the reaction solution, and sodium sulfate
(Na2SO4, 0.1 mol/L) was added as an electrolyte. The reaction solution was magnetically
stirred for more than half an hour in the dark to reach the absorption equilibrium. While
keeping the other aexperimental conditions unchanged, we turned on the xenon lamp/DC
power supply and turned off the DC power supply/xenon lamp while studying the
photocatalytic/electrocatalytic performances, respectively. The xenon lamp and DC power
supply were turned on at the same time when the photoelectrocatalytic performance
was studied. The viscosity and concentration of the HPAM solution were sampled every
20 min and measured immediately. The concentration was tested by the starch-cadmium
iodide method [16,38] using an ultraviolet-visible spectrophotometer, and the viscosity
was measured by a digital viscometer (DV-II + Pro, Brookfield, IL, USA). All measurements
were performed at room temperature.

4. Conclusions

In summary, a tBu-TPyzPzCo/CB composite catalyst was prepared by the ultrasonic
impregnation method, and UV-vis, FTIR, and SEM were used to characterize the samples.
Following the degradation of HPAM over the catalyst in a photoelectrocatalytic process, a
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significant decrease was observed in the concentration and viscosity of the HPAM solution,
which illustrates the excellent photoelectrocatalytic activity of the as-prepared catalysts.

Based on the research results of the photoelectrocatalytic process, the two signal cat-
alytic processes were combined simply; however, we could also get significantly synergistic
enhancement effects in addition to the two processes’ respective degradation effects. This
photoelectric combined process has many advantages, including utilizing the simple com-
bination and rapid treatment for refractory wastewater, which exhibits a certain practical
value for the improvement of existing facilities. Finally, based on the low energy consump-
tion, relatively mild reaction conditions and good stability, low-cost, non-toxic catalysts are
required to make the photoelectrocatalytic synergistic process a highly promising water
treatment technology.
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