

Supplementary Information

Surface Modifications of 2D-Ti₃C₂O₂ by Nonmetal Doping for Obtaining High Hydrogen Evolution Reaction Activity: A Computational Approach

Fangtao Li¹, Xiaoxu Wang^{2,*} and Rongming Wang^{1,*}

3 × 3 supercell	Ef (eV)	В NM-Ті (Å)	Bader (eV)	a (Å)
Ti27C18O18	-7.454	1.969	1.109	9.059
Ti27C18O17S1	-7.4204	2.394	0.836	9.065
Ti27C18O17S3	-7.349	2.390	0.824	9.107
Ti27C18O17Se1	-7.409	2.532	0.705	9.067
Ti27C18O17Se3	-7.315	2.532	0.700	9.109
Ti27C18O17Te1	-7.393	2.756	0.496	9.082
Ti27C18O17Te3	-7.268	2.770	0.490	9.121

Table S1. Formation Energy (E_f) of 2D-Ti₃C₂O₂ before and after doped with X (X = S, Se, Te) in the 3×3 supercell. Bond Length (B_{NM}-Ti) of Ti-X, charge transfer (Bader) of X. Positive values denude the obtained electron and the corresponding lattice constant (a).

Table S2. Structure optimization results of 2D-Ti₃C₂O₂.

Ti ₃ C ₂ O ₂	a (Å)	O-Ti1 bond (Å)	Ti1-C bond(Å)	C-Ti2 bond(Å)
This work	3.020	1.969	2.179	2.144
Reference	3.019	1.970	2.180	2.144

Figure S1. 3×3 supercell spin density of 2D-Ti₃C₂O₂ before and after doped with X. (a) Ti₂₇C₁₈O₁₈; (b) Ti₂₇C₁₈O₁₅S₁; (c) Ti₂₇C₁₈O₁₅Se₁; (d) Ti₂₇C₁₈O₁₅Te₁. Yellow: Spin up electrons, Blue: Spin down electrons.

Reference

 Xiaoxu Wang, Changxin Wang, Shinan Ci, Yuan Ma, Tong Liu, Lei Gao, Ping Qian, Chunlin Ji and Yanjing Su. Accelerating 2D MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy. J. Mater. Chem. A, 2020, 8, 23488–23497.