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Abstract: Catalytic hydrotreatment (HT) is one of the most important refining steps in the actual
petroleum-based refineries for the production of fuels and chemicals, and it will play also a crucial
role for the development of biomass-based refineries. In fact, the utilization of HT processes for the
upgrading of biomass and/or lignocellulosic residues aimed to the production of synthetic fuels
and chemical intermediates represents a reliable strategy to reduce both carbon dioxide emissions
and fossil fuels dependence. At this regard, the catalytic hydrotreatment of oils obtained from
either thermochemical (e.g., pyrolysis) or physical (e.g., vegetable seeds pressing) processes allows
to convert biomass-derived oils into a biofuel with properties very similar to conventional ones
(so-called drop-in biofuels). Similarly, catalytic hydro-processing also may have a key role in the
valorization of other biorefinery streams, such as lignocellulose, for the production of high-added
value chemicals. This review is focused on recent hydrotreatment developments aimed to stabilizing
the pyrolytic oil from biomasses. A particular emphasis is devoted on the catalyst formulation,
reaction pathways, and technologies.

Keywords: pyrolysis oils; catalytic hydrotreatment; heterogeneous catalysis; hydrogenation; biore-
finery; green chemistry

1. Introduction

In a green and sustainable perspective, the world is moving from a strong fossil fuels’
dependence to a consistent use of renewable feedstocks. In this view, Anastas and Green
proposed in 1998 “the 12 principles of green chemistry” [1], where a particular attention was
also given to (second and third generation) transportation biofuels, chemicals, commodities,
and pharmaceuticals directly produced from biomass in modern biorefineries [2–6]. This
transition is given not only by the matured awareness that fossil resources are running out,
but it is mostly accelerated by the United Nation decision to adopt the 2030 Agenda for
Sustainable Development, a program action of 17 ambitious goals (SDGs) and 169 targets
aimed to eradicate the poverty, to protect the planet, and to ensure the prosperity for
all [7]. Biomasses, that currently supply about 80% of global renewable energy and a
low-emissions character, represent a unique sustainable pathway to successfully address
SDGs [1,7,8]. Among several technologies that can use biomass waste as the feedstock
to produce energy fuels, power, heat, and various high value-added chemicals [9–14], an
interesting example is the use of lignocellulose (plant based biomasses mainly composed
of cellulose, hemicellulose, and lignin) and microalgae (biomasses with high protein and
carbohydrate content characterized by the absence of lignin) for the production of bio-oil
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that can be used as intermediate for the production of liquid bio-fuels [15]. Bio-oil is a dark
brown-red colored liquid, with a characteristic smell of smoke and a chemical composition
strictly related to the biomass feedstocks containing a wide number of unique compounds
generated from the rapid quenching of pyrolytic fragments of lignocellulose [16]. Figure 1
shows the main compounds present in the bio-oil: an aqueous solution of several products
derived from the fragmentation of cellulose and hemicellulose and from the depolymer-
ization of lignin. The mixture consists of various organic compounds (20–30 wt%), water
(19–20 wt%), water-soluble oligomers (WS, also known as pyrolityc humin), and water-
insoluble oligomers (WIS, also known as pyrolityc lignin) (43–59 wt%) that can be efficiently
used for several applications, such as drop-in fuel, production of chemicals, and various
carbon-based materials [17–22].
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Conventionally, bio-oil is produced by using a high energy demanding multistep pro-
cess, such as pyrolysis (fast or slow, thermal or thermo-catalytic) and hydrothermal lique-
faction (HTL). These thermochemical processes are conducted in the absence of oxygen and
at high reaction temperature with the aim to allow the decomposition/depolymerisation of
lignocellulose and microalgae into a bio-oil liquid (the major product), solid (bio-char), and
gaseous products (CO2, CO, CH4, H2) (bio-syngas [15,23,24]. Bio-char can access applica-
tions in several fields (e.g., soil amendment in agriculture, chemical sensing, adsorbent
material in wastewater remediation) or combusted to recover energy for the pyrolysis
stage [25], while bio-syngas may be directly utilized for many energy uses (e.g., electricity
generation, fuel for transport, cooking fuel, feedstock for fuel cells) [26]. HTL processes
were developed to improve the efficiency of direct thermal decomposition methods and
differ from the pyrolysis for the adoption of lower reaction temperatures and for the pres-
ence of a homogeneous or heterogeneous catalyst by applying water and simple aliphatic
(e.g., methanol, ethanol, and 2-propanol) alcohols used as such or in combination as re-
action solvents. However, bio-oils arising from these two processes cannot be directly
used as drop-in fuels in conventional engines due to problems related to the presence of
a common limiting feature, the high oxygen content of biomass otherwise responsible
of chemical unfavorable properties of bio-oil (high acidity, high viscosity, thermal and
chemical instability) [16].

Thus, a biorefinery process in which biomass is first converted in bio-oil by pyrolytic
or HTL step followed by an oxygen removal stage represents a most promising approach
for the production of biofuels and chemicals.

To this regard, in order to mitigate the oxygen content and to improve the bio-oil
properties for practical use, some catalytic approach (catalytic cracking, hydrodeoxygena-
tion HDO, etc.), based on a thermal-catalytic treatment of biomass (hydrotreatment or
hydrotreating process), come to help. Among them, one of the most promising strategies
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is the catalytic hydrodeoxygenation (HDO) that allows the reduction of oxygen content
providing, at the same time, the highest C-atom efficiency.

Although this process allows to obtain bio-oil in a high yield, the formation of a
variable quantity of coke remains a problem to be solved. In this context, it was reported
that the presence of a suitable catalyst in a two-step biorefinery process can reduce the
formation of coke by improving, at the same time, the bio-oil properties [27,28]. The first
step (or stabilization step) permits the transformation of carbonyl and carboxyl functional
groups into alcohols promoted by noble metals catalysts (Pt, Ru, and Pd) in a temperature
range between 100 and 300 ◦C. The second step is conducted between 350 and 400 ◦C and is
driven by sulphide conventional catalysts that allows to completely remove oxygen species.

This review aims to provide a brief overview on recent advances in the catalytic
hydrogenation process of bio-oil arising from thermal treatment of lignocellulosic biomass
and microalgae, highlighting progresses made in terms of enhancing catalyst efficient
activity for upgrade bio-oil HDO.

2. Bio-Oil Proprieties

Bio-oil is the main product of biomass pyrolysis. Historical documents report that
this process was already used in ancient Egypt to prepare sealants for boats and ointments.
In the 18th century, wood distillation provided compounds such as soluble tar, pitch,
creosote oil, as well as chemical and non-condensable gases. Interest in biomass pyrolysis
was revived in the 1980s, when the process was perfected to have a high yield of liquid
compound [29]. The pyrolysis process carried out with a temperature between 400 ◦C
and 600 ◦C and varying the residence time and heating rate, the product distribution
changes. To maximize the process in term of liquid yield, the fast pyrolysis at ~500 ◦C is
usually preferred, advantageously producing a liquid yield up to three times larger than
the conventional and slow pyrolysis [30].

As an example, Figure 2 shows the flow diagram of the BTG Bi-oliquids BV pyrolysis
plant [31]. The first part of the plant consists in a drying unit where biomass from different
origin (for example, wood, rice husk, bagasse, sludge, tobacco, energy crops, palm-oil
residues, straw, olive stone residues, chicken manure) is dried to decrease the water content.
The dry biomass, in presence of a hot carrier (sand), is then converted in a fluidized bed
reactor into pyrolysis oil, gas, and char. After that, the products and the sand are separated
from the vapor/gas phase by a series of cyclones. Then, the char and sand fraction is
moved to a fluid bed combustor, where the char is used to heat the sand recycled in the
fluidized bed. The vapor/gas phase is instead quenched by re-circulated oil to divide the
bio-oil from the incondensable gases, where the latter are captured as high-pressure steam
and utilized in a steam turbine system.

1 
 

 

Figure 2. Pyrolysis plant. With permission from BTG Bioliquids BTG bioliquids BV [31].
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Furthermore, recent researchers are focusing their attention to microalgae as feedstock
for fast pyrolytic reaction [32]. Microalgae are classified as third-generation biofuel due
to their fast growth cycle and high lipid content (~50%), easily converted in fuels. More-
over, microalgae do not require arable land and are adaptable at different water sources,
including wastewater. The pyrolysis of microalgae is usually carried out in presence of a
catalyst, such as zeolites, aluminosilicates, transitional metal-loaded zeolites, MOFs, silica
gel [33–35]. The pyrolysis process for microalgae may be performed as (i) one-pot step
process, where microalgae and catalyst are mixed together (ii) or a double-step process, the
pyrolysis vapors from microalgae are swept over a catalyst at a specific temperature [36,37].

The fast pyrolysis of biomass produces hundreds of different compounds (Table 1),
where their composition depends of the cellulose, hemicellulose, lignin, and extractive
content in the respective feedstock. The influence of biomass composition on bio-oils
composition can be appreciated from the variability of the bio-oils elemental composition
reported in Table 2, where the C content can vary from 39% (pine sawdust) to about 60%
(beech wood) under the same pyrolysis conditions. Furthermore, the operating conditions
of the fast pyrolysis influence the bio-oil composition [38–40].

Table 1. Bio-oil composition.

Fraction/Chemical Groups Compound Types
wt%

(Wet Basis)
[38]

wt%
(Wet Basis)

[39]
wt% [40]

Water solubles 75–85%

Acids alcohols Small acids, small alcohols 5–10 6.5 8.5

Ether-solubles Catechols, syringols, guaiacols, aldehydes,
ketones, furans, and pyrans 5–15 15.4 20.3

Ether-insolubles Sugars 30–40 34.4 45.3
Water Water 20–30 23.9 -

Water insoluble 15–25%

Hexane-solubles Extractives (High MW compounds with
functional groups such as acids, alcohols) 2–6 4.35 5.7

DCM solubles Stilbenes, Low MW lignin degraded
compounds 5–10 13.4 17.7

DCM insolubles High MW lignin degraded compounds 2–10 1.95 2.6

Table 2. Feedstock composition updated from [35].

Feedstock for Bio-Oil C H O N S Ref.

Beechwood 51.1 7.3 41.6 [41]
Pine wood 40.1 7.6 52.1 0.1 [42]
Rice husk 39.92 8.15 51.29 0.61 0.03 [43]

Beech wood 58.6 6.2 35.2 [44]
Pine sawdust 38.8 7.7 53.4 0.09 0.02 [45]
Eucalyptus 44.8 7.2 48.1 0.2 [46]

White spruce 49.6 6.4 43.1 0.2 [47]
Poplar 49.5 6.05 44.4 0.07 [47]

Sawdust 60.4 6.9 31.8 0.9 [48]
Microalgae 54.8 7.6 28.7 8.5 0.4 [49]

Scenedesmus 44.6 6.1 40.8 4.8 3.6 [50]
Nannochloropsis gaditana 40.3 5.97 14.5 6.3 0.37 [51]
Chlorella protothecoides 62.1 8.7 11.2 9.7 n/a [52]

Spirulina 67.5 9.8 11.3 10.7 n/a [53]
Nannochloropsis sp. 80.2 6.2 5.8 6.2 n/a [54]
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3. Catalytic Hydrogenation of BIO-Oil

In refineries, the hydrogenation reactions are common operations to limit the presence
of oxygen, nitrogen, sulphur, olefins, and aromatics. The reaction is generally catalyzed
by molybdenum together with Ni or Co supported by γAl2O3. The operating conditions
depend on the type of feed: LHSV 0.2 to 8.0, H2 circulation from 50 to 675 Nm3/m3, H2
pressure between 14 and 138 bar, and temperatures between 290 and 470 ◦C [55]. Actually,
there are not industrial processes for HDO of bio-oil, but several catalysts have been tested
from noble metals to Ni and Co, in presence of acid supports such as Al2O3 and SiO2, or C,
in the temperature range 150–500 ◦C, pressure range between 2 and 200 bar [47]. In this
section, recent advances on catalysts for HDO of bio-oil are summarized. Furthermore,
technical aspects of emergent technologies (e.g., membrane reactors) for hydroprocessing
are also discussed.

3.1. Catalysts

Hydro-processing is conventionally catalyzed in presence of metals from group VIII,
such as nickel, palladium, and platinum [56]. Furthermore, group VIB metals (tungsten
and molybdenum) have also been used for oxygen removal, since they are resistant to
attack by oxygen, acids, and alkalis [57,58]. According to Masel [59], hydrogen is reactive
in the surfaces of Co, Ni, Ru, Rh, Pd, Os, Ir, Pt as well as on Sc, Ti, V, Y, Zr, Nb, Mo, La, Hf,
Ta, W, Cr, Mn, Fe, Tc, and Re. A slower uptake of hydrogen was observed with Cu [59].
Some authors increased the catalyst activity adding a second metal in order to promote an
efficient adsorption of hydrogen at low temperature [60,61]. The most used supports were
alumina-silica, carbon, titania (rutile), and zirconia (monoclinic form). Activated carbon is
a well-known high-surface area (typically ~1000 m2/g) support material, which has been
shown to be stable in hot water processing environments; rutile titania and monoclinic
zirconia have lesser surface area (typically 30–80 m2/g) but have also demonstrated their
utility as catalytic metal support and have been used in the hot water processing environ-
ment [62–64]. A possible pathway for upgrading bio-oils is represented by hydrogenation
reactions in liquid phase, with the conversion of aldehydes, ketones, sugars, phenols, etc.,
in more stable alcohols. In order to improve the conversion of the bio-oils compounds and
enhance the selectivity on desired products, several catalysts have been studied (Table 3).
Interesting is the work of Wei et al. [65], where Pt over different ceria-zirconia supports
were evaluated for the hydrogenation of cinnamaldehyde at 10 bar and 60 ◦C, obtaining a
conversion in the range of 60–95%.

Table 3. Hydrogenation reaction.

Catalyst Reactant Pressure
(bar)

Temperature
(◦C) Time (h) Conversion

(%) Note Ref.

30% Ni/CNT acetic acid 40 150 4 5.8 2 wt% cat [66]

30% Cu/CNT acetic acid 40 150 4 3.5 2 wt% cat [66]

Ru/C acetic acid 40 150 4 4.7 2 wt% cat [66]

20% Mo/CNT acetic acid 40 150 4 <2 2 wt% cat [66]

10/10 wt%
NiMo/CNT acetic acid 40 150 4 14.8 2 wt% cat [66]

3 wt% Ru/TiO2 acetic acid 62 120 33 * 37.5 * time on stream [67]

3 wt% Ru/TiO2 Acetol 62 70 14 * 93.6 * time on stream [67]
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Table 3. Cont.

Catalyst Reactant Pressure
(bar)

Temperature
(◦C) Time (h) Conversion

(%) Note Ref.

3 wt% Ru/TiO2 Bio-oil 62 120 21 27/38/79 ** ** acetic acid/acetol/formic
acid

[67]

3 wt% Ru/C Bio-oil 52 120 6 33/99/97 ** [67]

Ru/Zr-MOFs Furfural 5 20 5 20–95 TOF: 2–11 Selectivity to
Furfuryl alcohol: 20–95 [68]

AuNCs/CNTs
membrane 4-nitro-phenol 53/100 5/10 µmol Au/17 cm2 [69]

Au/SiO2 25 compounds 80 6 5–24 40–99
1 mmol of alkyne, 0.01

mmol of Au, and 1 mmol of
piperazine

[70]

Re–Pd/SiO2 Stearic acid 80 140 1 15
Re/Pd = 1/8

[71]

Re–Pd/SiO2 Stearic acid 80 140 4 13 [71]

Ni/rutile Crotonaldehyde 10 70 60 [72]

Pd-Cu/MgO Furfural 6–8 80–130 0.5 100 98.7% selectivity of
Furfuryl alcohol [73]

Pt/MWNT Furfural 20 150 5 75–100 Max Furfuryl alcohol
selectivity: 79% [74]

ReOx–Pd/CeO2 16 compounds 80 140 4 1–60
substrate 0.5 g, 1,4 dioxane
4 g, Wcat = 150 mg (2 wt%

Re, 0.3 wt% Pd)
[75]

Rh–
MoOx/SiO2+

CeO2

cyclohexanecarboxamide 80 140 4 89 [76]

Liao et al. [77] used CeO as support with different metals (Ni, Co, and Cu) for the
hydrogenation in liquid phase of maleic anhydride at 50 bar and 210 ◦C, converting all
the reactant after 60, 180, and 420 min, for Ni, Co, and Cu, respectively. Elliott al. [78]
elaborated a reactivity scale of hydrogenation of different organic compounds in presence
of CoMo and NiMo sulphided catalysts (see Figure 3) based on literature work [79]. Olefins,
aldehydes, and ketones were hydrogenated at low temperatures as low as 150–200 ◦C,
while the alcohols at 250–300 ◦C. Carboxylic and phenolic ethers reacted at around 300 ◦C.

Recently, copper catalysts have attracted much attention for the conversion of glycerol
to propylene glycol because of their intrinsic ability to selectively cleave the C-O bonds in
glycerol rather than the C-C bonds. To increase the activity of Cu metal, Cu-based catalysts
such as Cu-Cr, Cu-Al, and Cu-Mg have been developed to promote the hydrogenolysis
reaction. Bienholz et al. prepared a highly dispersed silica-supported copper catalyst
(Cu/SiO2) using an ion-exchange method and achieved 100% glycerol conversion with 87%
propylene glycol selectivity at optimum conditions of 5 mL/h of 40 wt% aqueous glycerol
solution, 255 ◦C, and 300 mL/min of H2 at 15 bar [80]. Liu’s group studied the glycerol
hydrogenolysis over Ru-Cu catalysts supported on different support materials including
SiO2, Al2O3, NaY zeolite, TiO2, ZrO2, and HY zeolite. The best activity was observed for
Ru-Cu/ZrO2 with 100% glycerol conversion and 78.5% propylene glycol selectivity. The
high activity of this catalyst was attributed to the synergistic effect of Ru in the catalyst
related to hydrogen spill-over, while the high selectivity was attributed mainly to the low
acidity of the support and the Cu amount [81].The HDO of the Water soluble fraction of
Bio-Oil (WBO) at different temperatures (220, 270, and 310 ◦C) at 190 bar, using 5 wt%
Ru/C catalyst, was studied by de Miguel Mercader et al. [82], where the recovery of carbon
in oil phase increased from 16.3 wt% to 38.5 wt%, when the temperature was increased
from 220 to 310 ◦C. In another study, several lignin model compounds (phenol, m-cresol,
anisole, guaiacol, and diphenyl ether) were tested for HDO reactions in presence of MoO3
at atmospheric pressure and temperature between 150 and 250 ◦C [83]. The authors noted
that, according to the bond dissociation energy, the highest catalytic reactivity was obtained
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with diphenyl ether, but important carburization phenomena have been noted onto the
catalyst surface.
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Bagnato et al. [84] prepared by impregnation technique a series of monometallic
and bimetallic metal catalysts in which the zirconia was doped with Pd and not noble
metals (Cu and Fe), characterized, and their performances studied in term of conversion
and selectivity for key bio-compounds. Vanillin was completely converted after 80 min
at 100 ◦C and 50 bar, in presence of PdFe/ZrO2. Meanwhile, the PdFe reached the con-
version of 65.5% and 20% for furfural to furfuryl alcohol and glucose to sorbitol (74%
selectivity), respectively.

The authors noted that the bimetallic catalyst was able to improve the conversion than
the monometallic, mainly due the adsorption mechanism onto the catalytic surface: the not
noble metal favoured the bonding to the aldehyde group, while the noble metal favoured
the hydrogen molecule adsorption.

Bergem et al. [67] investigated the HDO of a model WBO using Ru/TiO2 and Ru/C
catalysts in a packet bed reactor (PBR) at a temperature between 100 and 140 ◦C, ~62 bar. A
completed conversion was noted already a 100 ◦C for compounds such as acetone, acetalde-
hyde, propionaldehyde, 2-propen-1-ol, 1-hydroxy-2-butanone, 3-hydroxy-2-butanone, 2-
hexanone, and 2-furanone. Other compounds such as furfural and hydroxyacetaldehyde
required elevate temperature (>140 ◦C) for converting completely. Furthermore, the au-
thors observed a decrement of catalyst activity, about 25% after 90 h, due at acid leaching.
Sanna et al. [85] studied the HDO of a real WBO in presence of Ru/C and Pt/C catalysts in
a two-stage continuous reactor. In the first stage, the reaction was carried out in presence
of Ru/C catalyst at 125 ◦C, while in the second stage, it was carried out at a temperature
between 200 and 250 ◦C with Pt/C, at 50 and 100 bar, and different weight hourly space
velocities from 0.75 to 6 h−1. During the first low temperature stage, the unstable bio-oil
functionalities were stabilized into alcohols, where the main products were ethylene glycol,
propylene glycol, and sorbitol, losing 7% of carbon as gas and solid phase. Furthermore,
the catalyst showed a constant activity for about 80 h. In the second-high temperature
stage, 45% of the carbon was converted in gasoline blend stocks and C2 to C6 diols.
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3.2. Kinetic Mechanism

The reactions involved during the hydrotreating of bio-oil have been widely stud-
ied [86–88], as shown below:

Hydrodeoxygenation (HDO) : R−OH + H2 → R− H + H2O; (1)

Hydrodesulphurisation (HDS) : R− SH + H2 → R− H + H2S; (2)

Hydrodenitrogenation (HDN) : Pyridine + H2 → Pentane + NH3; (3)

Hydrodealkylation : R− C6H5 + H2 → C6H6 + R− H; (4)

Hydrocracking : R1 − CH2CH2 − R2 + H2 → R1 − CH3 + R2 − CH3; (5)

Isomerisation of alkanes : n− alkane → i− alkane; (6)

Decarboxylation : R− CO−OH → R− H + CO2; (7)

Decarbonilation : R− CHO → R− H + CO; (8)

Water gas shift reaction : CO2 + H2 ↔ CO + H2O; (9)

Coke formation : polyaromatic → coke. (10)

In the following section, the reaction mechanisms of some of the most representative
bio-oil compounds will be discussed.

3.2.1. Phenol

The phenol hydrogenation has been widely studied [89–93]. The reaction pathways
are shown in Figure 4, where hydrogen reacts with the phenol (PHE) attacking the hydroxyl
group to produce benzene with subsequent production of cyclohexene (CHE) and cyclohex-
ane (CHO). Another reaction pathway of the aromatic ring is the formation of cyclohexanol
(CXO) with consecutive hydrogenation in cyclohexene and cyclohexane. A further reac-
tion pathway is represented by the formation of cyclohexanone (COL) with subsequent
cyclohexanol hydrogenation in cyclohexene and cyclohexane. Finally, methylcyclopentane
(MCP) can be produced by isomerization reaction.
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3.2.2. Guaiacol

Another representative compound in bio-oil is guaiacol that reacts forming phe-
nol [39–43] via two paths: (1) direct demethoxylation; and (2) indirect reaction through
demethylation to catechol with subsequent hydrogenation of the latter compound. The
undesired polymerisation of guaiacol (GCL) (Figure 5) leads to coke formation.
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Bindwal et al. [94] proposed a kinetic rate for the hydrogenation of guaiacol in 1,2
cycloexanediol in presence of 5% Ru/C catalyst according to the Langmuir–Hinshe–wood–
Hougen–Watson (LHHW) model. The authors, according to the experimental data ob-
tained, identified the limitation step for the reaction taking place on the catalyst sur-
face, assuming the dissociative adsorption of H2. The reaction rate was described by the
following equation:

r =
k3,aKBCB

√
KH2 CH2(

1 +
√

KH2 CH2 + KBCB
)2 , (11)

where CB CH2 are the molar concentration of guaiacol and hydrogen, respectively, k3,a the
kinetic constant, KB and KH2 are the adsorption constant of guaiacol and hydrogen.

3.2.3. Levoglucosan

The hydrolysis of levoglucosan has been studied in a solution of water and in the
presence of Ru/C [95]. The path involves the production of glucose (hydrolysis reaction)
with subsequent hydrogenation into sorbitol. Finally, ethylene glycol, 1,2-Propanediol, and
1,4-Butanediol are produced by the hydrogenation of sorbitol (Figure 6).
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Bindwal et al. [95] proposed a kinetic rate for the hydrogenation in presence of Ru/C,
where the H2 and levoglucosan (LG) chemisorbed and dissociated on the surface catalyst
are as follows:

H2 + X ↔ 2HX, (12)

LG + X ↔ LGX, (13)

2HX + LGX ↔ products, (14)

represented by the following equation:

r =
k3KH2KLGCH2CLG(

1 +
√

KH2CH2 + KLGCLG
)3 . (15)

3.2.4. Other Compounds

Bindwal et al. [94] studied the kinetics rate of other compounds using 5% Ru/C
catalyst to convert hydroxycetone, hydroxyacetaldehyde and 2-furanone in 1,2 propanediol,
ethylene glycol and γ-butyrolactone, according to the reactions in Figure 7.
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The authors proposed different kinetics rates varying the limitation step and the
possibility to have an atomic or molecular H2 adsorption.

The kinetics rates hypothesized were validated experimentally confirming that the
reactions are surface-reaction limited in presence of dissociative adsorption of H2. The
equation for the kinetics rate were

r =
k3
√

KH2 CH2 KBCB(
1 +

√
KH2 CH2 + KBCB

)2 , (16)

r =
k3KH2 KBCH2 CB(

1 +
√

KH2 CH2 + KBCB
)3 . (17)

Zhang et al. [96,97] described the reaction kinetics by dividing the products as Light
oil ranged from 36 ◦C to 250 ◦C, heavy oil from 250 ◦C to 450 ◦C, vapors, water, and
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coke. They assumed a series of parallel reactions with a first-order kinetics in presence of
CoMo/γAl2O3 catalyst.

Bio− oil →
k1

light f raction oil, (18)

Bio− oil →
k2

heavy f raction oil →
k4

light f raction oil, (19)

Bio− oil →
k2

heavy f raction oil →
k5

gas + water + char, (20)

Bio− oil →
k3

gas + water + char. (21)

Furthermore, Sheu et al. [98] divided the bio-oil into six groups (heavy non-volatiles,
light non-volatile, phenols, aromatics, alkanes, Coke + H2O + Outlet Gases) and used
three different catalysts (Pt/Al2O3/SiO2, CoMo/γ-Al2O3, and Ni-W/γ-Al2O3) to study
the hydrogenation of bio-oil. Moreover, the authors proposed a reaction pathway by
series-parallels of first-order reactions.

heavy nonvolatiles→
k1

light nonvolatiles→
k3

phenols, (22)

heavy nonvolatiles→
k2

aromatics + alkanes, (23)

phenols→
k4

aromatics + alkanes→
k5

Coke + H2O + outlet gases. (24)

ki is a kinetic constant and depend of the temperature and pressure by

ki = ki0Pni exp
(
− Ea

RT

)
, (25)

where ki0 and ni are the parameters of the reaction and the catalysts used.

3.3. Reactor Technologies
3.3.1. Conventional Reactors

The hydrogenation reaction is largely used in refinery to convert the heavy oil fraction
into light hydrocarbons. The existing process have been based on the following reactors:
fixed beds (FBRs), moving beds (MBRs), and expanded or ebullated beds (EBRs). The main
difference among the reactors involves the transport phenomena and some technical details.

The FBRs are the main reactor systems used commercially and used for hydrogenating
light hydrocarbon mixture such as naphtha and middle distillate. The FBRs are designed
for operating in an adiabatic condition. The reactor is divided into three catalytic zones
separated to an inert material (ceramic balls), the liquid and gas stream through the first
catalytic bed. The output fed exchange heat by the inert bed and subsequently quenched
adding fresh gas reactant and then fed inlet of the second catalytic bed. The output of the
second reactor is cooled again by the inert bed and by quenching. EBR reactors have been
also used to hydrogenate feeds such as vacuum residue.

The EBRs are used for heavy feeds with a large amount of metals and asphaltenes,
where the liquid and gas streams are fed from bottom expanding and mixing the catalyst
bed, reducing the pressure drop effect. In the output of the catalytic bed the hydrogen not
reacted is recycled, while the liquid products are recovered by a flash unit.

3.3.2. Membrane Reactor

The main disadvantage of hydrogenation reaction is represented by mass transport
limitation, because the reaction takes place in contact with the gaseous, liquid, and solid
phase. The system has to have a high operating pressure, improving the gas solubility
into the liquid system and high temperature to advantage the kinetic, but at the same
time, the H2 solubility decreases under those conditions. A membrane reactor (MR) is an
operation unit to produce new species by chemical reaction and separation process in a
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single equipment [99]. The use of MRs can reduce the process footprint, since the plant
will be more compact and can result in lower investment costs, improving the economics
of the process [100,101].

In a MBR, the fresh catalyst is fed from the top and trough the reactor, while the
reactant stream is fed from the bottom. Afterthought, the products leave the MBR and the
deactivated catalyst is sent to the regenerator reactor, where the coke deposition is burned
and the activated catalyst returns to MBR.

One of the features of the MRs is to act as a contactor between the three phases during
HDO reaction. Furthermore, the membrane can have catalytic activity chancing the product
distribution as reported by Liu et al. [102], who compared packed bed MR and catalytic
MR for the hydrogenation of nitrobenzene in presence of Pd/γ-Al2O3 catalyst. The CMMR
showed best performance in term of conversion and catalytic stability (~85% for 10 h) as
shown in Figure 8.
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Liu et al. [103] studied the selectivity hydrogenation of butadiene in butene at 40 ◦C
and 10 bar by catalytic membrane reactors (CMRs), obtaining a butene selectivity higher
than 99% and butadiene concentration in the output stream lower than 10 ppm. Another
example of hydrogenation reaction is reported in Table 4. Despite the increasing interest in
catalytic membranes, the HDO of bio-oil in MR is a novelty, since in literature there is only
one article [104] available on the topic, where the authors used a MR for the hydrogenation
of levulinic acid (compound present in bio-oils) by a porous expanded polytetrafluoroethy-
lene (ePTFE) membrane with Ru catalyst particles. Moreover, the same membranes were
coated only in one side with a dense Matrimid layer, which was used to control the hydro-
gen flux through the membrane. The reaction was studied in a temperature and reaction
pressure between 40 and 90 ◦C and 0.7 and 5.6 bar, respectively. Furthermore, the authors
compared the result obtained with a PBR as shown in Figure 9, where the kinetic rate is
presented as ratio of gamma-valerolactone product (g/h) over grams of Ru. In particular,
the MR without the Matrimid layer obtained the best performance (four times more than
PBR) with a conversion of 0.0065%, while the MR with the control layer (Matrimid) showed
a kinetic rate two times less than the PBR.

Recent studies have emphasized the functionality of MR to be able to achieve a
TOF equal to 48,000 h−1 for the partial hydrogenation of furfural in presence of Ru–
polyethersulfone (PES) catalytic membrane at 70 ◦C and 7 bar [105].
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Table 4. MR for hydrogenation reaction.

Hydrogenation of Catalyst Support Pressure (bar) Temperature
(◦C) Ref.

3-hexyn-1-ol Pd nanoparticles
(4.6 nm)

zirconia/polyvinyl
alcohol Batch 5–10 25 [106]

Nitrite Pd γ-Al2O3 Continuous 1 25 [107]
Methylenecyclohexane

(and isomerization) Pt, Pd, Ru in γ-Al2O3 macroporous α-Al2O3 Continuous 1.5 liquid 2 gas 15–70 [108]

Methylenecyclohexane Pd-PVDS PVP macroporous α-Al2O3 Continuous 25–50 [109] *

Edible oil Pd, Pt porous polyamideimide
(PAI) Continuous 4 100 [110]

Nitrobenzene Pd zirconia/polyvinyl
alcohol Continuous 1–2 25 [111]

Nitrobenzene Pd/γ-Al2O3 PDMS Continuous 1–2 20 [102]

Butadiene

PVP-Pd, PVP-Pd,
EC-Pd, AR-Pd, AR-Pd,
PVP-Pd, PVP-Pd-0.5

Co(OAc)2, PVP-Pd-0.5
Co(OAc)2

CA, PSF, CA, CA, PSF,
CA, CA, CA Continuous 10 40 [103] **

Furfural Ru PES Continous 7 70 [105]

* Ceramic membrane showed a higher selectivity toward the hydrogenated product than the polymeric membrane but exhibited a lower
TON (= converted moles in a second per gram of Pd) value. ** PVP-Pd-0.5 Co(OAc)2 showed best performance. The presence of Co
inhibited isomerization reaction.

4. Concluding Remarks and Future Outlook

The valorization of biomass and residues for the production of liquid fuels by both
thermochemical (e.g., pyrolysis) or physical (e.g., pressing) methods has attracted a great
attention from both scientific and technological point of view. In fact, the utilization
of vegetable raw materials for the production of synthetic chemical intermediates and
hydrocarbons is considered one of the most investigated strategies aimed at reducing both
the carbon dioxide emissions and the dependence on fossils fuels.

In this review, we summarize the main aspects related to pyrolysis and to the prop-
erties of the obtained bio-oils, focusing great attention to the hydrotreatment process
alternatives for converting the pyrolysis bio-oil into drop-in fuel.

Research studies usually are focused on the pyrolysis of a well-defined biomass, while
a limited number of papers are devoted to biomass residues with variable composition.
The former approach is useful for understanding the complex mechanism involved during
the pyrolysis and the effect of process parameters on reaction pathways, while the latter is
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of paramount importance for developing the technology at a pilot and demonstrative scale.
In fact, the compositional variations in the feedstock modify both yield and composition
of bio-oil, and this aspect has a significant impact on the viability of the process. As
previously mentioned, biomass availability at a low cost is one of the biggest challenges
of biorefinery. Therefore, more effort should be put on the experimental investigation
at a pilot and demonstrative scale on the production of bio-oil from biomass residues
with a large compositional variability. The research is also focused on the role of biomass
pre-treatment on bio-oil quality. In particular, physical, chemical, and thermal methods
may be adopted. As an example, the modification of size and shape of biomass particles
has an effect on heat transfer with an impact on bio-oil quality. Whereas, the reduction of
hemicellulose by a thermal method, such as torrefaction, decreases the amount of organic
acids, acetals, and water in the bio-oil, with a positive impact on bio-oil stability, but
with a higher inorganics content. The amount of inorganics may be reduced by physical
pre-treatment such as biomass washing with water or acids. Unfortunately, there is a lack
of information and knowledge about the economic feasibility of the biomass pre-treatment
methods. Another important aspect that should be investigated in more detail is the
stability of produced bio-oil. In fact, the bio-oil is a complex mixture containing water
and both polar and nonpolar organics that cause several reactions, e.g., oligomerization
condensation and dehydration, with aging of the bio-oil and formation of a more complex
multiphase systems. The addition of alcohols, such as methanol, usually improves stability,
homogeneity, and viscosity of bio-oil. Further research on bio-oil stabilization is needed to
address technical issues during bio-oil storage and processing.

This review aims to summarize recent advances on the conversion to pyrolysis bio-oil
into drop-in fuels by catalytic hydrogenation. In this regard, the research efforts should
be better focused on (i) catalytic assessment of novel catalysts, and (ii) experimental
investigation at pilot and demonstrative scale of hydrotreatment of real bio-oil. Concerning
the first point, several metals and metals supported over moderately acid solids have been
investigated. Ni-Mo or Co-Mo bimetallic systems supported over gamma-alumina are
the most investigated catalysts for hydrotreatment, since they are well-known catalysts
for hydroprocessing oil-derived streams, i.e., hydrodesulphurization. In these systems,
Mo represents the active phase for the removal of heteroatoms, while Ni or Co acts as
promoters for the hydrogenation step. Several alternative catalysts have been studied
mostly for the hydrogenation of model compounds, whose catalytic behavior is in part
discussed in this review. For instance, different metals and different supports have been
studied, while a less attention was paid to the design of innovative hybrid systems, where
the catalytic functionalities requested by the process, e.g., redox, acids, are carefully tuned
with the aim to improve catalyst effectiveness. In this regard, research should be also
devoted to the study of reaction mechanism as a function of surface properties of the
catalysts. This approach has brought advances in other fields, such as hydrogenation
of carbon dioxide to synthetic fuels, and it may be useful for a better understanding of
catalysis of hydrogenation of bio-oils.

Nevertheless, bio-oil strongly differs from typical crude oil derived streams, due to
the presence of a large amount of oxygenated compounds, e.g., carboxylic acids, phenols,
aldehydes, ketones, sugars, and water. For this reason, the physic-chemical features of
the catalyst for hydrotreatment of bio-oil should be carefully tuned as a function of bio-
oil composition. On the contrary, a limited number of studies were carried out on the
hydrotreatment of real pyrolysis bio-oil. In that case, the number of variables and the issues
strongly increase. As an example, the presence of unsaturated oligomers in real bio-oil
may lead to the formation of coke with deactivation of the catalyst. Therefore, future focus
should be on the separation of bio-oil fractions in order to assess the most suitable bio-oil
cut for hydroprocessing. In fact, the presence of oligomers inevitably causes a large amount
of coke formation with catalyst deactivation. Of course, the presence of an additional
step between pyrolysis and hydrotreatment has a significant effect on the process costs.
The experimental investigation of hydrotreatment of bio-oil fractions at an either pilot or
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demonstrative scale may push towards more research in the field of bio-oil pre-treatments,
as well as address also challenges, such as hydrogen consumption. In fact, most of the
papers on hydrotreatment of bio-oil or bio-oil models are focused on product yield and
quality, but it is difficult to find quantitative information on hydrogen consumption, which
is usually used in large excess. As in the case of pyrolysis step, investigations at scales
larger than laboratory of hydrogenation steps may surely provide quantitative data useful
for viability studies on the production of drop-in fuels from biomass via pyrolysis.
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BNZ Benzene
CHE Cyclohexene
CHO Cyclohexanol
CMR Catalytic membrane reactor
COL Cyclohexanone
CXO Cyclohexanol
Ea Activation energy
EBR Ebullated bed reactor
EG Ethylene glycol
γ-BCT γ-Butyrolactone
GCL Guaiacol
GCS Glucose
HDO Hydrodeoxygenation reaction
HD Hydrotreating
HTL Hydrothermal liquefaction
HXD Hydroxyacetaldehyde
HXE Hydroxyacetone
k Kinetic rate
k0 Pre-exponential number
LG Levoglucosan
LHHW Langmuir–Hinshelwood–Hougen–Watson
LHSV Liquid hourly space velocity
MR Membrane reactor
MBR Moving bed reactor
MCP Methylcyclopentane
n Kinetic order
PBR Packet bed reactor
PBMR Packed bed membrane reactor
PCL Pyrocatechol
PHE Phenol
SOB Sorbitol
TEA Techno-economical assessment
TOF Turnover of frequency
WBO Water soluble bio-oil fraction
1,2-PDO 1,2-Propanediol
1,4-BDO 1,4-Butanediol
2-FN 2-Furanone
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