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Abstract: Plasmonic hybrid nanostructures have been investigated as attractive heterogeneous
photocatalysts that can utilize sunlight to produce valuable chemicals. In particular, the efficient
photoconversion of CO2 into a stable hydrocarbon with sunlight can be a promising strategy to
achieve a sustainable human life on Earth. The next step for hydrocarbons once obtained from
CO2 is the carbon–carbon coupling reactions to produce a valuable chemical for energy storage or
fine chemicals. For these purposes, plasmonic nanomaterials have been widely investigated as a
visible-light-induced photocatalyst to achieve increased efficiency of photochemical reactions with
sunlight. In this review, we discuss recent achievements involving plasmonic hybrid photocatalysts
that have been investigated for CO and CO2 photoreductions to form multi-carbon products and for
C–C coupling reactions, such as the Suzuki–Miyaura coupling reactions.
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1. Introduction

Global population growth and industrial development have been continuously caus-
ing the consumption of fossil fuels, resulting in environmental pollution and energy
shortages. Among various alternative energy sources, sun light is an eco-friendly, clean,
and sustainable energy source that can produce more than tens of thousands of terawatts
from the Earth’s surface [1,2]. The sun light can be utilized in various ways in producing
electricity, photochemical synthesis in plants, and a giant heat source to maintain biological
systems on Earth [3–7]. Therefore, utilizing sun light as an energy source has been an
attractive research topic in chemistry and materials sciences. Among many applications
with light, mimicking the photosynthetic system with a catalyst and sun light will be
greatly attracting and challenging areas.

In this regard, the efficient conversion of CO2 into hydrocarbon with sun light is one
plausible way to reduce the amount of CO2 at atmosphere by producing stable chemicals,
which can be utilized as an energy source when necessary [8,9]. To achieve this challenging
goal, the first step is an efficient conversion of CO2 into hydrocarbon, either C1 or C2. The
next step is carbon–carbon coupling to produce multi-carbon products. Although these
two types of reactions have different aspects, the reactions have the commonality of not
only forming carbon-to-carbon bonds, but also their utility in the production of materials
that can be used in other fields.

The first developed method for CO2 conversion is the electrochemical approach,
traced back to the 19th century [10]. The electrochemical method has the advantages of
flexibility in the design of devices and individual optimization of components, but still
has the disadvantage of requiring external energy (electricity). Subsequently, the photo-
catalytic approach was proposed, which was traced back to the 1970s [11–14]. Inspired
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by photosynthesis, solar-driven reduction of CO2 has been considered as one of several
possible solutions because it is renewable and eco-friendly energy that can reduce CO2 con-
centration [12,15–17]. The general concept of a CO2 reduction process in the photocatalytic
system is shown in Figure 1a.
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Figure 1. The carbon–carbon coupling reactions. (a) The general process of CO2 reduction in a
photocatalytic system inspired by photosynthesis and (b) the summary of carbon–carbon cross-
coupling in organic chemistry.

The conversion of CO2 into C2 hydrocarbon is one type of a C–C coupling reac-
tion [9,18]. However, the reaction requires a multi-step reaction involving multiple elec-
trons. It is more difficult to conduct than the simple CO2 conversion reaction. Therefore,
the understanding and development of suitable catalysts, reaction conditions, etc. are
essentially required to improve the efficiency of CO2 conversion to multi-carbon products.

Carbon–carbon cross-couplings and related reactions, which are the other types of C–C
coupling, present an important research direction in the field of chemistry [19–23]. After
the reports of C–C coupling reactions in the 1970s [24–27], the reactions have been regarded
as very powerful methods for forming C–C and C–heteroatom bonds. In recognition of
their developments and applications conducted in the 1990s [28–31], in 2010, R. F. Heck,
E.-I. Negishi, and A. Suzuki were awarded the Nobel Prize in Chemistry [32]. Even now,
studies including the development of catalysts and reaction conditions are being extensively
conducted to increase the efficiency of several named reactions, called Suzuki–Miyaura,
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Heck, Sonogashira, Stille, and Negishi, which are summarized in Figure 1b. The widely
accepted mechanism of C–C cross-coupling reactions, including the Suzuki–Miyaura
coupling, consists of three steps: (1) the oxidative addition of a catalyst such as palladium
to the halide, which is the rate-determining step in most cases, (2) transmetalation, which
is an organometallic reaction where the ligands are transferred from one species to the
metal (II) complex, (3) the reductive elimination of corresponding products, and the
restoration of the palladium catalyst [33]. Sufficient energy and specific reaction conditions
are required to overcome the activation energy barrier, transfer the electrons, and make
the reaction proceed [32,34,35]. These problems have led to a demand for sustainable, safe,
and environmentally-friendly sources, such as solar energy.

Materials that are responsive to sunlight include plasmonic nanomaterials, semicon-
ductors, and photosensitizers. When light is irradiated on the materials, electrons or
energies are excited, causing chemical reactions and the transformation of solar energy
into chemical energy. Accordingly, it is important to select the appropriate materials that
can improve the catalytic efficiency. In particular, visible/IR-light-responsive materials
need to be used because the visible-to-IR light accounts for ca. 95% of the solar light, while
the proportion of UV of solar light is only ca. 5% [36–40]. Among possible materials,
plasmonic nanoparticles, such as Au, Ag, and Cu, show strong interactions with visible-
light and localized electromagnetic field due to their localized surface plasmon resonances
(LSPR) [41–43]. The collective oscillation of electrons by LSPR induces to yield energetic
electrons, called hot electrons, which can help boost the chemical reactions [41,44,45]. The
changes in the size, shape, and composition of plasmonic nanomaterials can cause interac-
tions in the near-infrared (NIR) region [46–50]. However, the hybridization of plasmonic
nanomaterials with other materials such as semiconductors is necessary because of the
extremely short lifetime of the hot electrons (<100 fs) [51,52]. In this review, we focus on
the recent development of plasmonic nanomaterial-based photocatalysts for CO2 reduction
and C–C coupling.

2. Plasmonic Hybrid Photocatalysts for CO2 Reduction into Hydrocarbon with
Multi-Carbon Products

The increased CO2 emission is a global problem, which strongly required us to start
the immediate reduction [53–55]. Accordingly, CO2 conversion into stable chemicals can
be one of the key solutions, which can both reduce the amount of CO2 and produce
sustainable energy sources [8,56–58]. However, CO2 is one of the most thermodynami-
cally stable molecules due to its strong C=O double bond, which has made it difficult for
many researchers to convert CO2 into other fuels [37,57,59–61]. Even producing multi-
carbon products is significantly more difficult than producing single carbon products
because greater energy and a complex multi-step, multi-electron transfer processes are
required [8,9,60,62]. Nonetheless, the production of multi-carbon chemicals is more de-
sirable because of their higher energy densities, broader applicability, and use as more
convenient storages and transportations [9,13,60,63–65].

Typically, semiconductors have been used for CO2 conversion as a photocatalyst, in
which the electrons are mainly derived from the excitons of photo-induced semiconduc-
tors [13,57,66–68]. However, the use of the limited wavelength of light have brought about
the introduction of plasmonic metal NPs [9,13,69–71]. In the following part, we will discuss
the introduction of plasmonic hybrid nanomaterials as a photocatalyst to improve the
efficiency of CO2 reduction reactions.

2.1. Gold Nanoparticle (AuNP)-Assisted Plasmonic Photocatalysts for CO2 Reduction to
Multi-Carbon Products

The gold nanoparticle (AuNP) is one of the promising visible-light-responsive mate-
rials that exhibit strong LSPR phenomenon with visible light [72]. Many advantages of
AuNPs, including stability, low toxicity, and optical properties, have led many researchers
to use AuNPs as photocatalysts [72,73]. There have been attempts to use AuNPs together
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with other materials, such as carbon nanoparticles and reduced graphene oxide to convert
CO2 into formic acid, but not to produce multi-carbon products [69,74].

The formation of more valuable multi-carbon products requires multiple electron–
hole pairs involved in CO2 reduction [75]. To generate abundant charge carriers, Tu
et al. introduced AuNPs, showing a strong LSPR effect, into a TiO2 hollow shell, which
were called Au@TiO2 yolk–shell hollow spheres [76]. According to this report, bare TiO2
reduced CO2 to produce CH4 (1.33 µmoL g−1 h−1), but not C2H6, while the Au@TiO2
yolk–shell generated both CH4 and C2H6, indicating the significant role of AuNPs in
enhancing the photocatalytic yield and the generation of multi-carbon species with rates of
2.52 µmoL g−1 h−1 to produce CH4 and 1.67 µmoL g−1 h−1 to produce C2H6, respectively,
accelerating multiple e−/h+ reactions [76].

Yu et al. investigated product selectivity tuned by a light excitation attribute, which
is a type of plasmonic control with polyvinylpyrrolidone (PVP)-capped AuNPs
(11.8 ± 2.3 nm) [77]. They determined that higher photon energies (shorter wavelength)
and flux (light intensity) tend to produce C2H6 rather than CH4, showing C2H6 selectivity
(Figure 2) [77]. Specifically, CH4 production rates increased proportionally at higher photon
energies, that is, shorter excitation wavelengths, but C2H6 was produced only at higher
photon energies at a fixed laser intensity of 150 mW·cm−2 (Figure 2b). In addition, CH4
production rates increased almost linearly with increasing photon flux, i.e., light intensity
(~0.5 NP−1 h−1 of turnover frequency (TOF) under 532 nm, >0.9 NP−1 h−1 of turnover
frequency under 488 nm), irrespective of the wavelength of light, and C2H6 generation was
observed only at 488 nm of wavelength and above 300 mW cm−2 (~0.6 NP−1 h−1 of TOF
at 750 mW cm−2), indicating the presence of a threshold intensity for C2H6 production
(Figure 2c,d).
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Zhao et al. also conducted plasmonic control of CO2 conversion using metal/ZnO pho-
tocatalysts (Figure 3) [78]. They revealed that the production of higher levels of hydrocar-
bons, such as C2H6, is closely related to the coupling of the surface plasmon resonance (SPR)
field with the intrinsic inner electric field, enabling the separation of electron–hole pairs
and the polarization and activation of absorbed substrates. They found that Au interacts
more strongly with semiconductors than Ag and Pd, which alters the molecular pathway
of CO2 conversion, resulting in a tremendous change in the selectivity of products by den-
sity functional theory (DFT) calculations, electron paramagnetic resonance spectroscopy,
and Raman spectroscopy. By putting their results all together, they determined that only
Au/ZnO can produce C2H6 with a rate of ~25 µmol g−1 h−1 (Figure 3b), while Ag/ZnO
and Pd/ZnO produce CH4 and CO without multi-carbon products (Figure 3c,d) [78].
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Nguyen et al. used metal–organic frameworks (MOFs) with AuNPs for photocatalytic
CO2 conversion to methanol and ethanol [79]. They observed the effect of Au loading on
the Aux@zeolitic imidazolate framework (ZIF-67) for the reaction in which Au10@ZIF-67
showed the highest performance of CH3OH production at a rate of 1623 µmol g−1 h−1,
while Au20@ZIF-67 showed that C2H5OH production occurred at a rate of 495 µmol g−1 h−1

(Figure 4a,b), and both CH3OH and C2H5OH products decreased with Au30@ZIF-67, pos-
sibly due to the agglomeration of AuNPs. Because the reaction to form C2H5OH requires
more electrons than CH3OH, these phenomena are thought to be the result of higher hot
electrons that enable the photoreduction and support C2H5OH generation due to higher
Au concentrations [79].
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2.2. Silver Nanoparticle (AgNP)-Assisted Plasmonic Photocatalysts for CO2 Reduction to
Multi-Carbon Products

The silver nanoparticle (AgNP) is also one of the plasmonic materials that can exhibit
unique optical properties for photocatalysts under visible light with LSPR, like AuNP [80].
Cai et al. prepared AgClxBr1-x alloy nanocrystals and found that the conduction band
level could be affected by varying compositions [81]. The substitution of Cl with Br
leads to a narrower band gap due to a negative shift in the conduction band minimum.
Accordingly, AgCl0.75Br0.25 exhibited higher photocatalytic efficiency for CO2 reduction
into both CH3OH (181 µmol g−1) and C2H5OH (362 µmol g−1) than any other AgClxBr1-x
with different compositions. Furthermore, the amplified electric field due to the LSPR of
Ag0 species also contributes to the light enhancement by encouraging the photocatalytic
reaction. Cai et al. further developed an Ag/AgCl photocatalyst system with a coaxial tri-
cubic morphology, called red Ag/AgCl [82]. The enhancement of light harvesting property
with red Ag/AgCl was observed, compared to normal AgCl, due to the synergistic effect
between metallic AgNPs and the n-type AgCl semiconductor, which is the featured LSPR,
Schottky junction, and polarization effect induced by surface plasmons. As a result,
the CH3OH and C2H5OH yields and apparent quantum efficiency for the red Ag/AgCl
catalysts were 146 and 223 µmol g−1 for 5 h, respectively, in which both are higher than
those for normal AgCl catalysts (Figure 5) [82].
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Li et al. suggested a system with a plasmonic photocatalyst other than the C–C
coupling of CO2 alone by adopting the oxidative coupling of methane using CO2 as the oxi-
dant [83]. In the Ag/TiO2 system, AgNPs can absorb visible light and generate hot electrons
and holes, and the hot electrons are injected into TiO2 while hot holes should be captured
by CH4. Otherwise, it will lead to the accumulation of Ag(I), which can be reduced back
to Ag(0) under UV light. At the same time, TiO2 can generate photoexcited electron–hole
pairs, and photoexcited holes can combine with hot electrons from Ag, while photoexcited
electrons can reduce CO2 adsorbed on TiO2. This synergistic effect enhances the photocat-
alytic activity of the reaction (1149 µmoL g−1 h−1 for CO and 686 µmol g−1 h−1 for C2H4)
and contributes to the high stability of the catalyst (Figure 6b) [83]. They also demonstrated
that other types of support materials with Ag did not present any synergistic effect due to
the formation of an unsuitable Schottky barrier and CO2 adsorption sites (Figure 6c), and
other precious metals with TiO2 showed lower activity for the photocatalytic reaction due
to the poor SPR effect of the metals (Figure 6d) [83].
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2.3. Copper Nanoparticle (CuNP)-Assisted Photocatalytic CO2 Reduction to Multi-Carbon
Products

Metallic Cu species, including CuNPs, have been used as cocatalysts due to their
known effectiveness in generating not only C1 products, but also multi-carbon organic
compounds, not as light absorbers with the LSPR effect [84–87]. Therefore, Cu has been
used as an electron acceptor and suppressor of recombination of photoexcited electron–hole
pairs generated from semiconductors [88–90]. Shown et al. prepared CuNP-decorated
graphene oxide because of the large work function of Cu compared to that of GO, pro-
ducing methanol and acetaldehyde [88]. They controlled the production rates and the
ratio of and between both products by adjusting the work function of Cu/GO hybrids [88].
Park et al. used trititanate nanotubes (TNTs) decorated with Cu and CdS quantum dots
(CdS/Cu-TNTs) for the production of C1–C3 hydrocarbons [89]. When irradiated with
light, an efficient reduction of CO2 to C1–C3 hydrocarbons was observed by the transport
of photogenerated electrons to the Cu part through the TNTs while photogenerated holes
oxidize water, which is similar to artificial photosynthesis [89]. Chen et al. carried out pho-
tocatalytic CO2 reduction with benzyl alcohol oxidation to benzyl acetate using Cu2O/Cu
nanocomposites due to the narrow direct band gap and the position of the conduction band
of Cu2O [90]. Electrons and holes are generated over Cu2O with visible light irradiation,
and the electrons transfer to the surface of Cu due to their lower work function, while the
holes can react with benzyl alcohol to form benzaldehyde, followed by the subsequent
coupling reaction to form benzyl acetate [90]. CuNPs have great potential for photocatalytic
C–C coupling, but more research is needed to utilize CuNPs for light harvesting materials.

There have been several attempts to produce value-added fuels through CO2 conver-
sion using plasmonic hybrid photocatalysts, even though only a few studies have been
conducted to generate single carbon products. The hybrid structures of the photocatalysts,
reaction conditions, and yields are summarized in Table 1.
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Table 1. Plasmonic hybrid nano-catalysts for various photocatalytic CO2 conversion into multi-carbon products. AuNP-, AgNP- and CuNP-assisted photocatalysts under visible light.

Photocatalyst Size and Shape Product Light Source Reaction Condition Time Yield
(µmoL g−1 h−1) Ref.

Au@TiO2

Spherical core: 45 nm
Spherical shell: 200–250 nm (50 nm

thickness)
CH4, C2H6 300 W Xe arc lamp H2O 10 h 2.52 (CH4),

1.67 (C2H6) [76]

AuNPs 11.8 ± 2.3 nm spherical NPs CH4, C2H6 300 W Xe lamp 10% IPA 10 h
0.65 (CH4),

0.56 (C2H6) as TOF
(NP−1h−1)

[77]

Au/ZnO
AuNPs: 7 nm

ZnO sheets: >µm (1.6 nm thickness,
10–100 nm pores)

CH4, C2H6
300 W Xe lamp

(>320 nm) H2O 1–6 h 21.0 (CH4),
27.0 (C2H6) [78]

Au20@ZIF-67 AuNPs: 30–40 nm
ZIF-67: ~µm

CH3OH
C2H5OH

Solar simulator
(150 mW cm−2)

10 wt.% TEOA, 0.08
M NaHCO3

4 h 1623 (CH3OH),
495 (C2H5OH) [79]

AgCl0.75Br0.25
Cubic nanocrystals

150–260 nm
CH3OH
C2H5OH

500 W Xe arc lamp
(>420 nm) 0.1 M NaHCO3 5 h 36.2 (CH3OH),

72.4 (C2H5OH) [81]

Ag/AgCl Coaxial tri-cubic
500–600 nm

CH3OH
C2H5OH

500 W Xe arc lamp
(>420 nm) 0.1 M NaHCO3 5 h 29.2 (CH3OH),

44.6 (C2H5OH) [82]

Ag/TiO2
AgNPs: 4 nm
TiO2: 25 nm

CO
C2H4

Xe lamp
Quartz cotton,

micro-
autoclave

2 h 1149 (CO)
686 (C2H4) [83]

Cu/GO Cu (111) NPs: 5 nm
GO: >µm

CH3OH
CH3CHO

Halogen lamp (300
W)

Continuous gas flow
reactor 2 h 2.94 (CH3OH),

3.88 (CH3CHO) [88]

CdS/(Cu-TNTs) Hexagonal CdS
CH4
C2H6
C3H8

450 W Xe lamp
(>420 nm) H2O 5 h

~28 (CH4),
~17 (C2H6),
~9 (C3H8)
µL g−1 h−1

[89]

Cu2O/Cu Irregular porous structures
100 nm Benzyl acetate 300 W Xe lamp

(420–800 nm)
MeCN, benzyl

alcohol 20 h 116.7 [90]
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3. Plasmonic Hybrid Photocatalysts for C–C Cross-Coupling

The Suzuki–Miyaura coupling, which is one of the most powerful methods for carbon–
carbon cross-coupling, is the reaction between an organoboron species and aryl halide in
the presence of a palladium (Pd) catalyst and base [21,91]. Although most of this reaction
involves a Pd catalyst, which has been regarded as a catalytically active site for the reaction,
Pd is difficult to use as a photocatalyst because of its low absorption of visible light [92]. In
recent years, to remedy this shortcoming, plasmonic nanoparticles and semiconductors
that can absorb visible light have been used. In particular, plasmonic NPs (Au, Ag, Cu)
are useful materials that can help the reaction of the Pd catalyst because they interact with
visible light to show a strong LSPR phenomenon [93–95]. In addition, semiconductors
are introduced into plasmonic materials, so-called plasmonic hybrid structures, to help
plasmonic NPs extend the lifetime of hot electrons excited by light, or to form electron–
hole pairs [96,97]. The hybrid structures classified by each type of plasmonic NPs for
photocatalytic C–C cross-coupling reactions are described below.

3.1. AuNP-Assisted Plasmonic Photocatalysts for C–C Cross-Coupling

For C–C cross-coupling reactions, Au–Pd nanocomposites can be utilized, where the
Au part absorbs visible light and transfers hot electrons into Pd, and the Pd part acts
as electron acceptors and active sites. Some studies using Au–Pd alloys without non-
plasmonic materials, such as AuPd nano-wheels [98] and AuPd nanotriangles [99] for
photocatalytic C–C cross-coupling, have been reported (Figure 7). Huang et al. prepared
AuPd nano-wheels, in which Pd encircles an Au core, with a controllable edge length and
tunable SPR using a facile wet-chemical reduction method. In this work, the photocatalytic
efficiency of the nano-wheel-catalysts for benzyl alcohol conversion and Suzuki coupling
was confirmed, and the yield of products was 65.8% at 50 ◦C for 1 h under visible light
(Figure 7a) [98]. Gangishetty et al. synthesized AuPd bimetallic nanotriangles consisting
of an Au nanotriangle core with an unevenly distributed Pd shell, which is similar in
morphology with AuPd nano-wheels [99]. The nano-catalysts showed >80% yield of
Suzuki coupling between p-iodobenzoic acid and phenylboronic acid for 5 h under a green
LED, accompanied by an increase in the temperature from 25 ◦C to 37 ◦C while the dark
reaction showed only ca. 35% lower conversion compared to the light reaction (Figure 7b).
Compared to the yield under dark reaction at 37 ◦C (ca. 75%), the pure photocatalytic effect
is not significant, while the photothermal effect generated from non-radiative plasmon
decay is the primary factor (Figure 7b) [99].

Sarina, Xiao et al. prepared Au–Pd alloy NPs embedded on ZrO2, which has a band
gap of approximately 5 eV, exhibiting negligible visible light absorption above 400 nm,
so that the ZrO2 support does not contribute to the photocatalytic activity of C–C cross-
coupling (Figure 8) [100–103]. Several C–C coupling reactions such as Suzuki–Miyaura,
Sonogashira, Stille, Hiyama, Buchwald–Hartwig, and Ullmann coupling, were conducted
to study the effects of the wavelength and intensity of the light, the Au/Pd molar ratio of
the alloy NPs on the photocatalytic activity, and the photocatalytic mechanism for the C–C
coupling reactions. The researchers described the photocatalytic process in view of reaction
kinetics. The reduced activation energy for the C–C coupling reaction is possible by visible-
light absorption of photocatalyst, indicating the low activation energy in the photocatalytic
process compared with that of a thermal reaction process (Figure 8b,c) [101,102]. In terms
of energy levels of the molecular orbital, there are two light absorption mechanisms such
as inter-band excitation and LSPR absorption at 530 nm for AuNPs. Inter-band excitation
is possible with short-wavelength (e.g., 400 nm) absorption via a single-electron excitation.
When irradiated with short-wavelength, single-photon excitation generates hot electrons
to be injected into the lowest unoccupied molecular orbital (LUMO). In the case irradiated
with longer wavelengths, the hot electrons generated by the collective excitation of LSPR
can only induce reactions with lower energy thresholds (Figure 8d) [103]. In spite of the
low TOF and the number of conversion reactions, they provided a comprehensive insight
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for the photocatalytic reactions for various C–C cross-coupling reactions and explained the
kinetics and mechanisms of the reactions.

Other researchers have used a variety of support materials such as semiconductors
(e.g., CeO2, graphitic carbon nitride (g-C3N4)) [104,105], metal–organic frameworks (MOF,
UiO-66-NH2) [106], polymers (e.g., perylene bisimide (PBI), polystyrene) [107,108], wide
band gap semiconductors (TiO2) [109–112], and silica [113]. Semiconductors that have
narrower band gaps than 3.1 eV (i.e., 2.7 eV for g-C3N4) can absorb visible light to generate
electron–hole pairs, which are transferred to metal NPs. By itself, a semiconductor can
help the Pd catalyst in photocatalytic C–C cross-coupling reactions [114–116], but even the
synergy of plasmonic hybrid with semiconductors can be expected to have greater photo-
catalytic efficiency for a C–C cross-coupling reaction. In these systems, the hot electrons
generated from AuNPs (due to the strong LSPR effect of AuNPs) using irradiation can be
injected into the attached Pd, in which the electrons transfer to aryl halide molecules, while
the photogenerated electron–hole pairs of semiconductors by irradiation can be separated,
causing electrons to recover into the Au0 state and holes to transfer into solvent or phenyl-
boronic acid to be activated (Figure 9) [104,105]. Moreover, semiconductors such as g-C3N4
are two-dimensional materials with large surface areas and unique electronic/optical prop-
erties, and Schottky junctions form at the interface of the metal and semiconductor, relying
on the band alignment and work function [114–116], leading to a positive effect on catalytic
efficiency (Figure 9b) [105]. Therefore, the AuPd/g-C3N4 nanohybrid showed a very high
TOF of 7920 h−1 in the C-C cross-coupling reaction.
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MOFs such as UiO-66-NH2 are similar to semiconductors in that they have a band
gap (approximately 2.67 eV) capable of absorbing visible light. The key differences are that
the energy transfer occurs from ligands to a metal. The pore volume and surface area can
be controlled by using the functional group. Noble metals can be introduced into MOFs,
and they exhibit high dispersion stability owing to the ultra-high surface area [106].
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In general, wide band gap semiconductors such as TiO2 display great light absorption
at wavelengths below 400 nm, making it difficult to expect visible light absorption for
catalytic reactions [37]. Furthermore, the high energy of UV light might oxidize and reduce
organic reactants, which can result in low yield and selectivity. Rohani et al. changed the
morphology of TiO2 into urchin-like yolk–shell structures with unique properties, such as
a high surface area and visible-light harvesting (Figure 10) [112]. The hydrogenated urchin-
like yolk@shell TiO2 structure (HUY@S-TOH) was decorated with plasmonic Au/Pd NPs
for photocatalytic Suzuki coupling. The structure showed absorption property for visible
light because of the Ti3+ species on the surface of the structure and AuNPs, enhancing
the light harvesting efficiency and the inhibition of the recombination of photogenerated
electron–hole pairs by decreasing the band gap of TiO2 to the visible region. In addition to
the strong interaction between noble metals and TiO2-x, HUY@S-TOH/AuPd showed a
high catalytic efficiency with a TOF value of 7095 h−1.
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Graphene and its derivatives are 2D materials with an exceptional electron mobility
of 2 × 105 cm2·v−1s−1 and variable band gap that depends on the oxidation state of
graphene [69,117,118]. Hybrid structures containing graphene or its oxide have been
reported for photocatalytic C–C cross-coupling to extend the lifetime of hot electrons of
plasmonic NPs generated by light absorption or to prevent recombination of electron–hole
pairs [119,120]. Moreover, graphene or slightly oxidized graphene on its own can also
be a good support material not only for combination with Pd2+ or Pd0 NPs owing to
its functional group, but also for transferring electrons into Pd with facilities to enhance
catalytic activity [121]. Kang et al. studied the effect of interfaces on Pd-nanodot-decorated
AuNPs with a graphene layer with different oxidation states for photocatalytic Suzuki
coupling (Figure 11) [119]. They prepared Pd-cys-AuNPs, Pd-GO-AuNPs, and Pd-rGO-
AuNPs with different oxidation states, and found that Pd-rGO-AuNPs exhibited the fastest
reaction progress (66.4% with a thermal effect and 54.4% without a thermal effect), while
the Pd-cys-AuNPs exhibited the slowest reaction progress (30% with a thermal effect and
6.7% without a thermal effect) for 2 h (Figure 11b,c). The contribution of the electron
transfer mechanism from plasmonic NPs (AuNPs) to Pd nanodots is significant through the
graphene interface, preventing the relaxation of hot electrons of plasmonic NPs induced by
light [119].

Plasmonic properties can be tuned by size and shape by utilizing varying wavelengths
of light [46,122]. Gold nanorods (AuNRs), like spherical AuNPs and other noble metal NPs,
have the ability to interact with light of varying wavelengths through LSPR [46,123–125].
They display two SPR bands of transverse and longitudinal bands due to their anisotropic
shape. The transverse mode is located near 500 nm, while the longitudinal mode varies
widely depending on the aspect ratio and the overall size of AuNRs, generally located in the
NIR region. Therefore, AuNRs have been used as NIR-responsive photocatalysts [122,126].
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Figure 11. Pd-nanodot-decorated AuNPs with a graphene interface for visible-light-induced photo-
catalytic Suzuki–Miyaura coupling reaction. (a) The scheme of the Suzuki–Miyaura cross-coupling
with Pd nanodot-decorated AuNPs and (b,c) the catalytic activities of Pd-cys-AuNPs, Pd-GO-AuNPs,
and Pd-rGO-AuNPs for the reaction under various conditions. Reproduced with permission from
Reference [119]. Copyright 2018 Creative Commons Attribution.

AuNR-based photocatalysts have been applied to C–C coupling reactions [127–131].
Wang et al. synthesized Au–Pd nanostructures where Pd NPs were located at the tip of the
AuNRs to a large extent as well as on the whole surface of the AuNRs (Figure 12a). They
conducted photocatalytic Suzuki coupling under an 809-nm laser in the NIR region, yield-
ing biphenyl products, where they demonstrated the two origins of the catalytic activity of
Au–Pd nanostructures, which is the plasmonic heating process and plasmon-excitation-
induced hot electrons [127]. Guo et al. developed Au–Pd nanostructures, called Au@Pd
superstructures formed from different directing agents, investigating the effect of the
shapes of Pd, which are superstructures, nano-dendrites, and shell structures (Figure 12b).
Different from AuNRs, the Au@Pd core@shell exhibited weak electric field enhancement
due to the plasmon shielding effect of Pd shells. In the case of Au@Pd nano-dendrites
with discrete Pd surfaces, the |E|/|E0| around their surface was largely enhanced by
16 of the maximum value of |Emax|/|E0|, which allows the inside of the AuNR core
to be excited partially. The Au@Pd superstructures displayed further improvement of
|Emax|/|E0| up to 23 because of the ordered open structure of the Pd nano-arrays and
their strong plasmonic antenna effect. Accordingly, the plasmon-enhanced photocatalytic
activity of Au@Pd superstructures was >4 times higher than that of the Au@Pd core@shell
(TOF ≈ 2880 h−1), and approximately two times higher than that of the Au@Pd nanoden-
drites [129]. Yoshii et al. designed Pd-graphene-AuNR nanocomposite catalysts similar to
Pd-rGO-Au by Kang et al., facilitating the transfer of SPR-induced hot electrons by AuNR
to the catalytic active metals (Pd) through the graphene layer (Figure 12c). Almost all
aspects of Pd-graphene-AuNR nanocomposites are similar to Pd-rGO-Au, and the only
difference is that AuNR was used to absorb NIR light [131].
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with permission from Reference [129]. Copyright 2017 American Chemical Society. (c) Pd-graphene-AuNR nanocomposites.
Reproduced with permission from Reference [131]. Copyright 2019 American Chemical Society.

3.2. AgNP-Assisted Plasmonic Photocatalysts for C–C Cross-Coupling

AgNP-based hybrid photocatalysts with various support materials such as graphene
oxide with AgBr [132], silica [113,133], supramolecular ensemble with Cu2O [134,135], and
TiO2 [136] for C–C cross-coupling have been reported. Verma et al. used mesoporous
silica as a support material (SBA-15, Aldrich), of which the channel can contain Pd/Ag
NPs with stability for photocatalytic Suzuki coupling [113,133]. They observed the effect
of the shape of Ag or type of plasmonic NPs (Au or Ag), affecting plasmonic optical
properties and catalytic activity (Figure 13). They found that longer aspect ratios of the Ag
nanostructure result in higher photocatalytic activity efficiency due to the light absorption
property (<30% for Pd/Ag/SBA-15(Y), ~40% for Pd/Ag/SBA-15(R), 53% for Pd/AgSBA-
15(B)) (Figure 13b) [133]. Although the photocatalytic activity for Suzuki coupling with
Pd/Au/SBA-15 was better than that for Suzuki coupling with Pd/Ag/SBA-15 (~70% for
Pd/Au/SBA-15, and ~40% for Pd/Ag/SBA-15) (Figure 13d), the activity with Pd/Ag/SBA-
15 for the dehydrogenation reaction was better than that with Pd/Au/SBA-15, indicating
that it is difficult to simply compare the effects of those reactions [113]. Putting it all
together, it is meaningful that Ag and Au can work complementarily with each other in
terms of light absorption.
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Figure 13. Pd/Ag bimetallic nano-catalysts on mesoporous silica for photocatalytic Suzuki coupling. (a) UV-vis spectra and
wavelength dependence of the photocatalysts, (b) the catalytic activities of Pd/Ag/SBA-15 catalysts with different SBA-15,
(c) the mechanism for the enhanced photocatalytic activity, and (d) the catalytic activities of Pd/metal/SBA-15. Reproduced
with permission from References [113,133]. Copyright 2015 and 2016 Royal Society of Chemistry.

Bhalla’s group used supramolecular ensembles as both reactors and stabilizers of NPs
to a higher extent through electron-rich assemblies and introduced Cu2O as a shell around
the AgNP for its affordable price, stability, and property. Cu2O is a p-type semiconductor
and has been used as an efficient catalyst for C–C, C–N, and C–O cross-coupling reactions
(Figure 14) [134,135]. These reports are not studies for the development of conventional
Suzuki coupling, but they are significant in that they were performed without palladium
even though they showed relatively low photocatalytic efficiency.

3.3. CuNP-Assisted Plasmonic Photocatalysts for C–C Cross-Coupling

Copper nanoparticles (CuNPs) are plasmonic materials like AuNPs and AgNPs, which
possess unique optical properties [137–139]. However, their instability and tendency to
undergo surface oxidation make it difficult for many researchers to utilize CuNPs [140].
Nevertheless, there have been some attempts to overcome the instability in order to use
CuNPs for photocatalysts because of their low cost [141–143].
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For C–C cross-coupling with CuNPs, CuPd bimetallic alloy NPs with other light-
absorbing materials such as silicon carbide (SiC) as a semiconductor and NH2-UiO-66(Zr)
as MOF were used under visible light (Figure 15) [144,145]. Wang et al. prepared PdCu/SiC
using a sol-gel and carbon thermal reduction process for photocatalytic Sonogashira reac-
tion under visible light. They proposed a mechanism in which photogenerated electrons
transfer to the Pd part, facilitating the cleavage of aryl halides, while photogenerated
holes in the CuNPs react with phenylacetylene to form a phenylethynylcopper(I) com-
pound (Figure 15a) [144]. Sun et al. prepared CuPd@NH2-UiO-66(Zr), with encapsulated
bimetallic CuPd nanoclusters inside the cavities of NH2-UiO-66(Zr) via double-solvent
impregnation followed by chemical reduction for a Suzuki coupling reaction. The transfer
of the photogenerated electrons from the photoexcited NH2-UiO-66(Zr) to the Pd part to
form electron-rich Pd was facilitated by metallic Cu acts as an electron mediator, which
results in the superior activity of photocatalytic Suzuki coupling, since Cu has a higher
Fermi energy level as compared to Pd and lower Fermi energy level as compared to NH2-
UiO-66(Zr) (Figure 15b) [145]. These reports do not state the plasmonic light-harvesting
property of CuNP itself as a photocatalyst, but attempts to introduce copper into Pd.

In order to stabilize CuNPs, Cui et al. introduced graphene to Cu because of the
possible change of the electronic structure of Cu by the carbon vacancies or dangling bond in
graphene [146,147]. Due to the LSPR effect of CuNPs, the electron density in Cu is polarized,
causing charge heterogeneity at the surface of CuNPs with both relatively electron-rich sites
and positively charged sites. The electron-rich sites can easily adsorb imidazole molecules
and inject into the molecules, facilitating the cleavage of N–H bonds, while positively
charged sites can assist to cleave C–B bonds in phenylboronic acid molecules, and, as a
result, C–N bonds are formed (Figure 16a). Furthermore, graphene can also absorb light,
generating a strong photocurrent, and the work function of graphene, which is lower than
that of Cu, causes hot electrons to transfer to Cu from graphene easily, which can result in
the collection of energetic electrons at the Cu sites to accelerate the reaction [147]. Bhalla
et al. used supramolecular ensembles as reactors and stabilizers of CuNPs, which is similar
to supramolecular ensemble-based Ag@Cu2O core@shell NPs [148]. They confirmed
the existence of the LSPR band of CuNPs for plasmonic photocatalysts, and the hybrid
systems showed efficient photocatalytic efficiency for photocatalytic C(sp2)–H alkynylation
(another type of C–C coupling reaction) (Figure 16b). These reports are not about the
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named C–C cross-coupling reactions, but they are meaningful in that they make good use
of the plasmonic properties of CuNPs as a photocatalyst.
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Figure 16. Plasmonic CuNPs with other support materials for photocatalysis. (a) Cu/graphene for photocatalytic C-N
cross-coupling reaction. Reproduced with permission from Reference [147]. Copyright 2015 Nature Publishing Group. (b)
Supramolecular ensemble 3:CuNPs for photocatalytic C-C cross-coupling by C(sp2)-H functionalization. Reproduced with
permission from Reference [148]. Copyright 2016 Royal Society of Chemistry.

Many attempts have been made to introduce Pd NPs into solid supports to stabilize
or assist Pd for catalytic efficiency of C–C cross-coupling, in addition to the examples
mentioned above. The hybrid structures of the plasmonic photocatalysts used, reaction con-
ditions, and yields with TOF values for C–C cross-coupling are classified and summarized
in Table 2.
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Table 2. Plasmonic hybrid nano-catalysts for various photocatalytic C–C cross-coupling. AuNP-, AgNP-, CuNP-assisted photocatalysts under visible and NIR light.

Photocatalyst Size and Shape Reaction Light Source Reaction
Temp.

Solvent,
Base Time Yield TOF (h−1) Ref.

AuPd wheels Nano-wheels
290 nm (6 nm thickness) Suzuki Xe lamp 50 ◦C

EtOH/H2O
(9:1),

K2CO3

1 h 65.8% - [98]

AuPd
nanotriangles

Nanotriangles
43 ± 4 nm Suzuki Green LED

(450–600 nm) -
EtOH/H2O

(1:6),
K2CO3

5 h >80% - [99]

Au–Pd alloy
NPs/ZrO2

Au-Pd NPs: <8 nm Suzuki
500 W halogen

lamp
(400–750 nm)

30 ◦C
DMF/H2O

(3:1),
K2CO3

6 h 96% 14.5 [100]

Au–Pd alloy
NPs/ZrO2

Au-Pd NPs: <7 nm Sonogashira
or Stille

Halogen lamp
(400–750 nm) 45 ◦C

H2O,
K3PO4

or NaOH
24 h 80%

−81%
4.7
−4.8 [102]

Au–Pd alloy
NPs/ZrO2

Au-Pd NPs: <7 nm Suzuki Halogen lamp
(400–750 nm) 30 ◦C

DMF/H2O
(3:1),

K2CO3

6 h 96% 14.5 [101]

Pd/Au/CeO2

AuNPs (111): 4.28 ± 1.05 nm
PdNPs (111): 5.14 ± 1.01 nm

CeO2 nanorods: ~5 nm (width),
~30 nm (length)

Suzuki 150 W Xe lamp
(>400 nm) 25 ◦C

DMF/H2O
(1:1),

K2CO3

5 h 98.8% - [104]

Pd/Au/SBA-15 Pd/Au NPs: 4.9 nm
SBA-15: >µm Suzuki Xe lamp Room Temp. EtOH

K2CO3
2 h 70% - [113]

Au–Pd alloy
NPs/TiO2

Au-Pd NPs: 3 nm Suzuki 5 W blue LED
lamp 25 ◦C

EtOH/H2O
(1:1),

K2CO3

5 h 98% - [109]

Pd-rGO-AuNPs Pd nanodots: 2–3 nm
AuNPs: ~30 nm Suzuki Xe lamp

(400–800 nm) 25 ◦C
EtOH/H2O

(1:1),
K2CO3

2 h 54.5% - [119]

Au–Pd/HPS
AuNPs core: ~4 nm

Pd shell: <1 nm
HPS: 15–50 nm

Suzuki 300 W filament
lamp 60 ◦C

EtOH/H2O
(5:1),

NaOH
3 h 71.6% 130.7 [108]



Catalysts 2021, 11, 155 21 of 30

Table 2. Cont.

Photocatalyst Size and Shape Reaction Light Source Reaction
Temp.

Solvent,
Base Time Yield TOF (h−1) Ref.

TiO2 +
PdAu/Al2O3

- Ullmann Xe lamp
(≥350 nm) Room Temp. CH3CN 0.5 h 2.2% - [110]

TiO2 +
PdAu/Al2O3

PdAu NPs: 3–4 nm Dehydrogenative
cross-coupling

Xe lamp
(≥350 nm) Room Temp. - 1 h 15.2 µmol - [111]

Supramolecular
Polymer
5:AuNPs

Supramolecule: ~µm
AuNPs: <30 nm Heck 100 W tungsten

filament blub Room Temp. H2O,
K2CO3

1 h 89% - [107]

GO/LDH
@AuPd AuPd NPs: ~4.2 nm Suzuki 300 W Xe lamp

(≥420 nm) 25 ◦C
EtOH/H2O

(3:1),
K2CO3

2 h 99.5% - [120]

HUY@S-
TOH/AuPd

AuNPs core: 5 nm
Pd shell: ~0.7 nm

HUY@S-TOH: ~3 µm
Suzuki 300 W Xe lamp Room Temp.

EtOH/H2O
(2:1),

K2CO3

0.5 h >99% 7095 [112]

Au/Pd@UiO-
66-NH2

Au/Pd NPs: 6.45 nm
UiO-66-NH2: ~50 nm Suzuki 300 W Xe lamp

(>420 nm) 25 ◦C
EtOH/H2O

(1:1),
K2CO3

1 h >99% 433 [106]

AuPd/g-C3N4 AuPd NPs: 5 nm Suzuki 5 W Xe HID
lamp 25 ◦C

EtOH/H2O
(1:1),

K3PO4

0.5 h 99% 7920 [105]

Au–Pd
nanostructures

AuNRs: 25
± 2 (diameter), 82 ± 6 nm (length)

PdNPs: 3–5 nm
Suzuki

Continuous
semiconductor
laser (809 nm)

Room Temp. H2O,
NaOH 1 h 99% 162 [127]

Pd-Au/SiO2
AuNRs: ~10 nm (diameter), ~40

nm (length) Suzuki 500 W Xe lamp
(>420 nm) Room Temp. EtOH 0.5 h 78% 334 [128]

Au nanorod@Pd
superstructures

AuNRs: ~20 nm (diameter), ~60
nm (length)

Pd: 3.8 ± 0.1 nm
Suzuki 300 W Xe lamp

(>510 nm) 40 ◦C
EtOH/H2O

(1:3),
NaOH

0.5 h - ~2880 [129]

Au@Pd NRs
AuNRs: 49 ± 5 nm (diameter), 107

± 8 nm
PdNPs: ~5 nm

Suzuki Continuous
808-nm laser -. H2O,

NaOH 1 h 97.6% - [130]



Catalysts 2021, 11, 155 22 of 30

Table 2. Cont.

Photocatalyst Size and Shape Reaction Light Source Reaction
Temp.

Solvent,
Base Time Yield TOF (h−1) Ref.

Pd/Au@rGO-
10/SiO2

AuNRs: 25 nm (diameter), 75 nm
(length)

rGO layer: 2.8 nm
Pd: 1.4 nm

Suzuki 500 W Xe lamp
(>420 nm) - EtOH,

K2CO3
0.5 h 56% - [131]

GO-Pd@Ag-
AgBr >µm Suzuki 300 W Xe lamp

(>400 nm) 25 ◦C
EtOH/H2O

(1:1),
K2CO3

0.5 h 97% - [132]

Pd/Ag/SBA-15 Spherical AgNPs: ~4 nm
Ag nanorods: ~10 nm Suzuki 500 W Xe lamp

(>420 nm) 35 ◦C EtOH,
K2CO3

6 h 53% 489 [133]

Pd/Ag/SBA-15 Pd/Ag NPs: 4.2 nm
SBA-15: >µm Suzuki Xe lamp Room Temp. EtOH

K2CO3
2 h 40% - [113]

Supramolecular
ensemble-based
Ag@Cu2O NPs

AgNPs core: 10–15 nm
Cu2O shell: 10–15 nm thickness Suzuki 100 W tungsten

filament bulb Room Temp.
EtOH/H2O

(3:1),
K2CO3

5 h 75% - [134]

Supramolecular
ensemble-based
Ag@Cu2O NPs

AgNPs core: 7.5 nm
Cu2O shell: 2.5 nm thickness C-H activation 100 W tungsten

filament bulb Room Temp.
Toluene/H2O

(3:7),
KOtBu

5.5 h 80% - [135]

Ag/TiO2
AgNPs: 1.5–5 nm

TiO2: 10-15 nm pores Suzuki 20 W white LED
(>420 nm) Room Temp. Toluene 24 h 97% - [136]

Cu/graphene CuNPs: ~15 nm C-N
cross-coupling

300 W Xe lamp
(400–800 nm) Room Temp. MeOH 1 h 99% 25.4 [147]

Supramolecular
ensemble
3:CuNPs

CuNPs: 3–20 nm C-H
alkynylation

60 W tungsten
filament bulb Room Temp. DMSO,

K2CO3
8 h 72% - [148]

Pd-Cu/SiC Pd-Cu NPs: <5 nm Sonogashira 300 W Xe lamp 60 ◦C DMF,
Cs2CO3

8 h 99% - [144]

CuPd@NH2-
UiO-66(Zr) CuPd alloy nanoclusters: ~0.9 nm Suzuki 300 W Xe lamp

(420–800 nm) Room Temp.
DMF/H2O

(1:1),
TEA

4 h 99% - [145]

Cu/Cu2O NPs Tetrahexahedron: ~µm Ullmann Xe lamp - - 12 h 77% - [149]
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Table 2. Cont.

Photocatalyst Size and Shape Reaction Light Source Reaction
Temp.

Solvent,
Base Time Yield TOF (h−1) Ref.

Pd hexagonal
nanoplates

60.4 ± 19.3 nm
(20.5 ± 3.7 nm thickness) Suzuki Xe lamp

(300–1000 nm) 25 ◦C EtOH,
K2CO3

3 h - ~288 [150]

Cu7S4@Pd Cu7S4: 14 nm
Pd: 4.3 nm Suzuki 1500-nm diode

laser Room Temp. H2O,
NaOH 0.5 h 97% - [151]

Pd/WO3-x NWs
Pd: ~5 nm

WO3-x NWs: >µm (length), ~10 nm
(diameter)

Suzuki 500 W Xe lamp
(>650 nm) - EtOH,

K2CO3
100 min 68.75% - [152]

Pd nanoflowers 150 nm Suzuki 300 W Xe lamp
(>475 nm) Room Temp. EtOH

Cs2CO3
4 h 96% - [153]

Pd/TiO2 - Suzuki 15 W white LED 28 ◦C H2O-PEG,
NaOC(CH3)3

4 h 93% - [154]

Pd/ZnO ~25 nm Suzuki 11 W white LED
lamp Room Temp. H2O,

Cs2CO3
40 min >99% - [155]
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4. Summary and Outlook

Herein, we reviewed the research and development of plasmonic hybrid nano-catalysts
for two types of photocatalytic C–C coupling reactions: C–C coupling in CO2 reduction
to hydrocarbon fuels and C–C cross-coupling in organic chemistry. The C–C coupling in
CO2 reduction into multi-carbon fuels can be promoted with the aid of plasmonic NPs
as both light absorbers and affinity sites for reactants. Likewise, Suzuki coupling can
also be represented in C–C cross-coupling reactions, including Heck, Sonogashira, Stille,
Negishi, and other reactions, typically using Pd as an active catalyst and plasmonic NPs
with semiconductors as light-responsive materials to accelerate photocatalytic reactions.
As mentioned above, the performances of the photocatalytic CO2 reduction and C–C
cross-coupling reactions are summarized in Tables 1 and 2.

Although plasmonic hybrid nano-catalysts for photocatalytic C–C cross-coupling
in CO2 reduction to hydrocarbon and C–C coupling in organic chemistry have been
intensively investigated for their ability to contribute to the fine-chemical industry, energy
sector, and environmental fields, and for solving challenges that still exist in synthesizing
suitable photocatalysts by reaching high quantum yields for commercialization, controlling
photothermal effects may affect reactions, and help understand the mechanism. As for
C–C coupling in CO2 reduction to value-added products, multi-carbon production is still
much more difficult than C1 production because of the requirement of multiple electrons,
steps, and low selectivity. In addition, Cu has not been properly utilized as a plasmonic
material that is cheaper than gold and silver. Thus, developing new hybrid materials with
high efficiency could be one of the possible solutions. As for C–C cross-coupling in organic
chemistry, the photocatalytic reaction, even Suzuki coupling, has no unified reaction
system, where the efficiency varies widely depending on the reaction conditions, reactants,
etc., and integrated mechanism. In addition, only a few studies on other photocatalytic
C–C coupling reactions including Heck, Sonogashira, Stille, and Negishi coupling, except
Suzuki coupling, have been conducted. Moreover, from an economic point of view, C–
C cross-coupling reactions typically require expensive Pd active catalysts, which makes
commercialization more difficult, so the Pd-free reaction needs to be actively studied.
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