

Supplementary information

Expanding the Family of Octahedral Chiral-at-Metal Cobalt(III) Catalysts by Introducing Tertiary Amine Moiety Into the Ligand

Tat'yana F. Savel'yeva ¹, Olga V. Khromova ¹, Vladimir A. Larionov ^{1,2,*}, Alexander F. Smol'yakov ¹, Ivan V. Fedyanin ¹, Yuri N. Belokon ^{1,*} and Victor I. Maleev ¹

- A.N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences (RAS), Vavilov Str. 28, 119991 Moscow, Russia; saveleva40@list.ru (T.F.S.); olvichrom@gmail.com (O.V.K.); larionov@ineos.ac.ru (V.A.L.); rengenhik@gmail.com (A.F.S.); octy@xrlab.ineos.ac.ru (I.V.F.); yubel@ineos.ac.ru (Y.N.B.); vim@ineos.ac.ru (V.I.M.)
- ² Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
- * Correspondence: larionov@ineos.ac.ru (V.A.L.); yubel@ineos.ac.ru (Y.N.B.); Tel.: +7-499-135-5047 (V.A.L.)

Characterization of the complex $\Lambda(R,R)$ -2

¹H-NMR (400 MHz, CDCl₃): δ = 7.57 (s, 2H, *CH*=*N*), 7.43–7.32 (m, 8H, *ArH*), 7.31–7.27 (m, 2H, *ArH*), 7.17 (d, *J* = 2.5 Hz, 2H, *ArH*), 7.09 (br.s, 2H, *NH*), 6.91 (d, *J* = 2.5 Hz, 2H, *ArH*), 5.10–4.90 (m, 2H, *CH*-*N*), 4.07–3.78 (m, 6H, *CH*₂-*Ph*, *CH*-*N*), 3.47 (t, *J* = 9.0 Hz, 2H, *CH*₂), 3.37 (t, *J* = 9.01 Hz, 2H, *CH*₂), 3.31 (t, *J* = 8.0 Hz, 2H, *CH*₂), 3.01 (t, *J* = 8.0 Hz, 2H, *CH*₂), 1.87 (br.s, 2H, *NH*), 1.20 (s, 18H, *t*Bu), 0.95 (s, 18H, *t*Bu) ppm.

¹³C-NMR (101 MHz, CDCl₃): δ = 163.4, 161.4, 143.0, 138.9, 137.2, 130.3, 128.6, 128.5, 128.2, 127.4, 117.8, 75.6, 61.6, 60.6, 50.8, 49.9, 35.3, 33.9, 31.4, 29.8 ppm.

Elem. anal. calcd. for C₅₂H₇₂CoN₆O₂Cl x 1.2H₂O (%): C, 67.22; H, 8.07; N, 9.04, found: C, 67.07; H, 8.04; N, 8.48.

 $[\alpha]_{D^{25}} = -2292^{\circ}$ (c=0.02 in MeOH).

Characterization of the complex $\Delta(S,S)$ -2

¹H-NMR (400 MHz, CDCl₃): δ = 7.57 (s, 2H, *CH*=*N*), 7.43–7.32 (m, 8H, *ArH*), 7.31–7.27 (m, 2H, *ArH*), 7.17 (d, *J* = 2.5 Hz, 2H, *ArH*), 7.09 (br.s, 2H, *NH*), 6.91 (d, *J* = 2.5 Hz, 2H, *ArH*), 5.10–4.90 (m, 2H, *CH*-*N*), 4.07–3.78 (m, 6H, *CH*₂-*Ph*, *CH*-*N*), 3.47 (t, *J* = 9.0 Hz, 2H, *CH*₂), 3.37 (t, *J* = 9.01 Hz, 2H, *CH*₂), 3.31 (t, *J* = 8.0 Hz, 2H, *CH*₂), 3.01 (t, *J* = 8.0 Hz, 2H, *CH*₂), 1.87 (br.s, 2H, *NH*), 1.20 (s, 18H, *t*Bu), 0.95 (s, 18H, *t*Bu) ppm.

¹³C-NMR (101 MHz, CDCl₃): δ = 163.4, 161.4, 143.0, 138.9, 137.2, 130.3, 128.6, 128.5, 128.2, 127.4, 117.8, 75.6, 61.6, 60.6, 50.8, 49.9, 35.3, 33.9, 31.4, 29.8 ppm.

Elem. anal. calcd. for C₅₂H₇₂CoN₆O₂Cl x 0.8H₂O (%): C, 67.74; H, 8.05; N, 9.12, found: C, 67.73; H, 8.13; N, 8.79.

[α]²⁵= +2103° (c=0.04 in MeOH).

Figure S1. ¹H NMR spectrum of the complex 2.

Figure S3. IR spectrum of the complex $\Lambda(R,R)$ -**2** recorded in CH₂Cl₂ (c = 4.4 × 10⁻³ M).

Figure S4. UV-vis spectrum of the complex $\Lambda(R,R)$ -2 recorded in CH₂Cl₂ (c = 4.4 × 10⁻³ M).

X-ray diffraction study of the Co(III) complex 2

Figure S5. X-ray structure of the Co(III) complex **2** of Δ -configuration with co-crystallized acetonitrile molecules.

Data block	Data block Complex 2		
Brutto formula	C56H78ClCoN8O2		
Formula weight	989.64		
Diffractometer	Bruker SMART APEX CCD area detector		
Scan mode	ω and ϕ scans		
Anode [Wavelength, Å]	MoK α [0.71073] sealed tube		
Crystal Dimensions, mm	0.02 imes 0.18 imes 0.25		
Crystal colour	brown		
Crystal system	triclinic		
a, Å	11.6512(15)		
b, Å	14.7315(18)		
c, Å	17.205(2)		
α, °	90.658(3)		
β, °	99.107(3)		
γ, °	104.433(2)		
Volume, Å ³	2819.7(6)		
Density, gcm ⁻³	1.166		
Temperature, K	120		
T_{min}/T_{max}	0.6437/0.7461		
μ , mm ⁻¹	0.397		
Space group	$P\overline{1}$		
Ζ	2		
F(000)	1060		
Reflections collected	27067		
Independent reflections	11086		
Reflections $(I \ge 2\sigma(I))$	6491		
Parameters	628		
R _{int}	0.0595		
$2\theta_{\min}$ - $2\theta_{\max}$, °	3.634 - 52.000		
wR ₂ (all reflections)	0.1858		
$R_1(I \ge \sigma(I))$	0.0624		
GOF	1.024		
$ ho_{min}/ ho_{max}$, eÅ ⁻³	-0.467/0.835		

Table S1. Crystallographic data for the complex 2.

Table S2. Selected bond distances and angles for the complex 2.

Distance	Å	Angle	0	Hydrogen Bond	Å
Col-Ol	1.888(3)	O1-Co1-N2	179.2(1)	H2BCl1	2.336
Co1-O2	1.888(2)	O2-Co1-N5	179.4(1)	H5BCl1	2.384
Co1-N1	1.903(3)	N1-Co1-N4	177.5(1)		
Co1-N2	1.993(3)	N2-Co1-N5	91.9(1)		
Co1-N4	1.905(3)				
Co1-N5	1.987(3)				

Evaluation of catalytic activity of the enantiopure complexes 2

Scheme S1. Epoxidation of chalcone.

The reaction was performed under our previously published conditions (ref. [13]). **(2***S***,3***R***)-Phenyl-3-phenyloxiran-2-yl)methanone**: ¹H NMR (400 MHz, CDCl₃): δ = 8.01 (d, *J*=7.5 Hz, 2H), 7.62 (t, *J*=7.4 Hz, 1H), 7.49 (t, *J*=7.7 Hz, 2H), 7.46–7.31 (m, 5H), 4.31 (d, *J*=1.8 Hz, 1H), 4.08 (d, *J*=1.6 Hz, 1H) ppm. HPLC Kromasil 3-AmyCoat column; 25 °C, hexane/isopropanol 95:5, λ = 254 nm, 1 mL/min, t_R = 10.1 (major), 10.9 min.

Scheme S2. Kinetic resolution of chalcone epoxide with CO2.

The reaction was performed under our previously published conditions (ref. [13]).

4-Benzoyl-5-phenyl-1,3-dioxolan-2-one: ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, *J*=7.5 Hz, 2H), 7.66 (t, *J*=7.5 Hz, 1H), 7.55–7.43 (m, 7H), 5.98 (d, *J*=6.2 Hz, 1H), 5.60 (d, *J*=6.2 Hz, 1H) ppm. HPLC CHIRALCEL OD-H column; 25 °C, heptane/isopropanol 90:10, λ = 220 nm, 1 mL/min, t_R = 18.0, 33.1 (major) min. The iodide complex **2** was obtained according to our published procedure (*ChemSusChem* **2016**, *9*, 216) and used without further purification and characterization.

S factor calculated as $(\ln[1-c(1+ee)])/(\ln[1-c(1-ee)])$ where c is the conversion and *ee* is the enantiomeric excess of the cyclic carbonate product.

Scheme S3. Asymmetric Henry reaction of the o-nitrobenzaldehyde with the nitromethane.

The reaction was performed under our previously published conditions (*Inorg. Chem.* **2019**, *58*, 11051).

2-Nitro-1-(2-nitrophenyl)ethanol: ¹H NMR (400 MHz, CDCl₃): δ = 8.11–8.08 (m, 1H), 7.98–7.96 (m, 1H), 7.78–7.74 (m, 1H), 7.59–7.55 (m, 1H), 6.07 (ddd, *J*=8.8, 4.2, 2.2 Hz, 1H), 4.89 (dd, *J*=13.9, 2.2 Hz, 1H), 4.57 (dd, *J*=13.9, 8.8 Hz, 1H), 3.15 (d, *J*=4.2 Hz, 1H) ppm. HPLC

Scheme S4. Michael addition of dimethyl malonate to *trans*-β-nitrostyrene. The reaction was performed under published conditions (ref. [24]).