Syntheses, Characterization and Application of Tridentate Phenoxyimino-phenoxy Aluminum Complexes for the Coupling of Epoxide with CO₂: from Binary System to Single Component Catalyst

Zhichao Zhang,¹ Tianming Wang,¹ Peng, Xiang,² Qinqin Du,³ Shuang Han¹

- ¹ School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
- ² PolyAnalytik Inc, 700 Collip Circle, Suite 202, London, Ontario N6G 4X8, Canada
- ³ DUT Chemistry Analysis & Research Centre, Dalian University of Technology, Dalian, 116024, China

Experimental Section

2-Aminophenol (99%), 4-tertbutylphenol, aqueous dimethylamine solution (40 wt.%), iodomethane, 3,5ditertbutylsalicyaldehyde (98%), anhydrous MgCl₂, paraformaldehyde and diethyl aluminium chloride (1 mol/L, in hexane) are commercially available and used as received. Propylene oxide, 1,2-butylene oxide, epichlorohydrin, styrene oxide and triethylamine were distilled over CaH₂ before use. THF, hexane and acetonitrile were pre-dried over 4Å molecular sieves before distillation over sodium with benzophenone as the indicator under an argon atmosphere and stored over freshly cut sodium in a glovebox. CO₂ (99.999% purity) was purchased from Shenyang Hongsheng Gas Limited Corporation, China. Ethanol and formic acid were used as received without further handling.

General procedures: All reactions sensitive to air and moisture were carried out in a glovebox filled with dry argon. 5-tertbutylsalicylaldehyde, 3-(N,N-dimethylaminomethyl)-5-tertbutylsalicylaldehyde, 2-hydroxy-3-(N,N-dimethyl)aminomethyl-aniline were synthesized according to the literature methods^[1-3]. Proligands $H_2L^1-H_2L^3$ were synthesized by the equimolar reaction of the corresponding functional salicylaldehyde with functional aminophenol and structurally identified by ¹H NMR and ¹³C NMR. Elemental analyses were performed at DUT Chemistry Analysis & Research Centre, Dalian University of Technology. The aluminium complexes 1-3 were prepared by equimolar reaction of the proligands with AlEt₂Cl in the glovebox. The structures of the complexes 1-3 are characterized by ¹H NMR, ¹³C NMR and MS. The cycloaddition of epoxide with CO₂ was carried in a stainless steel autoclave equipped with a magnetic stirring bar. The reaction mixture was analyzed by the ¹H NMR spectra with CDCl₃ as a solvent. The ¹H and ¹³C NMR spectra were recorded using AVANCE III 500 MHz spectrometer. Mass spectra of the complexes 1-3 were obtained in the electrospray positive mode (ESI+) on LTQ Orbitrap XL spectrometer, samples were diluted in methanol or ethanol, at DUT Chemistry Analysis & Research Centre.

The typical procedure for the cycloaddition of PO with CO_2 by the complex 1 under elevated pressure. The complex 1 and cocatalyst were dissolved in PO in a Schlenk tube. Then the solution was transferred via syringe into the pre-dried autoclave under CO_2 atmosphere. The autoclave was pressurized with CO_2 and heated. After the designated time the autoclave was cooled in an ice bath. The excess of the CO_2 was vented out. The conversion of PO was determined by GC analysis and ¹H NMR of the reaction mixture and yield was calculated based on isolated propylene carbonate. The results showed that the GC result was consistent with that by weight analysis of the PC.

The typical procedure for the cycloaddition of PO with CO_2 by the complex **2** under elevated pressure. Complex **2** was first placed in the pre-dried autoclave. After the internal atmosphere of the autoclave was displaced by CO_2 for three times, PO was injected followed by charging CO_2 to 2 MPa. Then the autoclave was heated for the designated time. The analysis was the same as the above method.

The typical procedure for the cycloaddition of CO_2 with CPO by the complex **2** at atmospheric CO_2 pressure. Complex **2** was placed in a 10 mL round bottom flask in a glovebox. The flask was taken out, equipped with a balloon. The flask was vacuumed, recharged with CO_2 . After the injection of the prescribed amount of CPO, the flask was heated and maintained at 100 °C. The samples were taken out periodically and analysed by GC to determine the conversion of CPO.

Synthesis of Proligand H₂L¹: 3,5-ditertbutylsalicyaldehyde (2.34 g, 10 mmol) and 2-aminophenol (1.09g, 10 mmol) were dissolved in methanol (60 mL). after addition of drops of HCOOH the mixture was stirred for 8 h at room temperature. The desired product H₂L¹ was isolated as yellow solids in 85% yield. ¹H NMR (500 MHz, CDCl₃): δ 12.68 (s, 2H, OH) , 8.72 (s, 1H, CH=N), 7.51 (s, 1H, Ar-H), .22 (s, 1H, Ar-H), 7.16 (s, 1H, Ar-H), 7.03 (s, 1H, Ar-H), 6.97 (s, 1H, Ar-H), 5.87 (s, 1H, Ar-H), 1.49 (s, 9H, *t*-Bu), 1.35 (s, 9H, *t*-Bu). Anal. Calcd for C₂₁H₂₇NO₂ (%): C, 77.50; H, 8.36; N, 4.30. Found: C, 77.47; H, 8.34; C, 4.28.

Figure S1. ¹H NMR spectrum of proligand H₂L¹ in CDCl₃

Synthesis of proligand H₂L²: 3-(N,N-dimethylaminomethyl)-5-tertbutylsalicylaldehyde (2.35 g, 10 mmol) and 2-aminophenol (1.09 g, 10 mmol) were dissolved in 50 mL MeOH. After addition of several drops of HCOOH, the mixture was stirred for 24 h at room temperature. After removal of MeOH by rotary evaporation, the resulting mixture was washed by n-hexane for 5 times to give H_2L^2 as orange solids in 72% yield. ¹H NMR (500 MHz, DMSO): δ 9.00 (s, 1H, CH=N) , 7.57 (s, 1H, Ar-H), 7.48 (s, 1H, Ar-H), 7.38 (d, 1H, Ar-H, *J* = 7.5Hz), 7.14 (t, 1H, Ar-H, *J* = 7.5 Hz), 6.98 (d, 1H, Ar-H, *J* = 7.5 Hz), 3.62 (s, 2H, Ar-CH₂-NMe₂), 2.30 (s, 6H, N(CH₃)₂), 1.31 (s, 9H, *t*-Bu). ¹³C NMR (126 MHz, DMSO) δ 161.96, 158.61, 151.62, 140.50, 134.95, 132.07, 128.48, 128.43, 123.61, 120.02, 119.78, 118.84, 117.01, 56.51, 44.62, 34.24, 31.68. Anal. Calcd for C₂₀H₂₆N₂O₂ (%): C, 73.59; H, 8.03; N, 8.58. Found: C, 73.57; H, 8.00; N, 8.55.

Figure S2. ¹H NMR spectrum of proligand H₂L² in DMSO-d₆

Proligand H₂L³: 3-(N,N-dimethylaminomethyl)-5-tertbutylsalicylaldehyde (2.35 g, 10 mmol) and 2hydroxy-3-(N,N-dimethyl)aminomethyl-aniline (1.66g, 10 mmol)were dissolved in 50 mL MeOH. After addition of several drops of HCOOH, the mixture was stirred for 24 h at room temperature. After removal of MeOH by rotary evaporation, the resulting mixture was washed by n-hexane for 5 times to give H₂L² as dark orange solids in 68% yield.¹H NMR (500 MHz, DMSO): δ 9.09 (s, 1H, CH=N), 7.58 (s, 1H, Ar-H), 7.52 (s, 1H, Ar-H), 7.38 (d, 1H, Ar-H, *J* = 7.5 Hz), 7.02 (d, 1H, Ar-H, *J* = 7.5 Hz), 6.84 (t, 1H, Ar-H, *J* = 7.5 Hz), 3.75 (s, 4H, CH₂-NMe₂), 2.39 (s, 6H, NMe₂), 2.33 (s, 6H, NMe₂), 1.31 (s, 9H, *t*-Bu). ¹³C NMR (126 MHz, DMSO) δ 163.73, 162.36, 159.40, 152.72, 140.91, 134.59, 132.92, 129.21, 128.22, 124.12, 123.21, 119.65, 119.26, 119.24, 62.09, 56.50, 44.66, 44.63, 34.67, 32.08. Anal. Calcd for C₂₃H₃₃N₃O₂(%): C, 72.03; H, 8.67; N, 10.96. Found: C, 72.00; H, 8.64; N, 10.94.

Figure S3. ¹H NMR spectrum of proligand H₂L³ in DMSO-d₆

Syntheses of complexes 1~3.

Typical procedure for the synthesis of complex 1: H_2L^1 (4 mmol)in 15 mL anhydrous THF was added dropwise to a stirred hexane solution of Et₂AlCl (4.2 mmol) under -30 °C. The mixture was allowed to warm up to room temperatue and stirred for another 4 h. Ater all the volatiles were removed under reduced pressure, the residues were washed by n-hexane (3×10 mL) to give the desired product and dried in vacuum to constant weight.

Complex 1: ¹H NMR (CDCl₃, 25 °C, 500 Hz): δ 8.06 (s, 1H, CH=N), 7.31 (d, 1H, ⁴*J* = 2.5 Hz, 2H, Ar-H), 7.06 (d, ⁴*J* = 2.5 Hz, 1H, Ar-H), 6.95 (t, ³*J* = 7.5 Hz, 1H, Ar-H), 6.87 (d, ³*J* = 8 Hz, 1H, Ar-H), 6.74 (d, ³*J* = 8.0 Hz, 1H, Ar-H), 6.67 (t, ³*J* = 7.5, 1H, Ar-H), 1.32 (s, 9H, C(CH₃)₃), 0.84 (s, 9H, C(CH₃)₃). ¹³C NMR (125.77 MHz, CDCl₃, 25 °C): δ 165.2, 157.7, 149.8,141.2, 137.1, 135.9, 128.7, 128.4, 127.2, 120.9, 118.4,118.2, 115.6, 35.1, 34.2, 31.4, 29.4 ppm. ESI MS: C₂₁H₂₅NO₂Al, theoretical calculation: 350.1701, found m/z = 350.1566 (weak); C₂₃H₃₃NO₄Al, theoretical calculation: 414.2225, found m/z = 414.2219 (very strong).

Figure S4. ¹H NMR spectrum of the complex 1 in CDCl₃.

Complex 2: ¹H NMR (500 MHz, DMSO): δ 9.11 (s, 1H, CH=N), 9.01 (s, 1H, CH=N), 7.74 (d, 1H, Ar-H), 7.70 (d, 1H, Ar-H), 7.6 (b, 2H, Ar-H), 7.56 (s, 1H, Ar-H), 7.51 (s, 2H, Ar-H), 7.27 (d, 1H, Ar-H), 7.14 (m, 1H, Ar-H), 6.66 (b, 2H, Ar-H), 6.57 (t, 1H, Ar-H), 3.41 (s, 4H, Ar-CH₂-NMe₂), 2.51 (s, 12H, NMe₂), 1.32 (s, 18H, *t*-Bu), 1.30. ¹³C NMR (126 MHz, DMSO) δ 165.93, 162.51, 161.65, 138.05, 133.42, 132.55, 132.19, 130.31, 130.11, 129.67, 119.85, 117.89, 115.41, 67.50, 42.46, 34.18, 31.68. ESI MS: C₂₂H₃₀AlN₂O₃, theoretical calculation: 397.2072, found: m/z = 397.1085; C₄₂H₅₄Al₂ClN₄O₅, theoretical calculation: 783.3414, found: m/z = 783.3226.

Figure S5. ¹H NMR spectrum of the complex 2 in DMSO-d₆

Complex 3: ¹H NMR (500 MHz, DMSO): δ 9.11 (s, 1H, CH=N), 9.01 (s, 1H, CH=N), 7.74 (d, 2H, Ar-H, J = 7.5 Hz), 7.60 (s, 2H, Ar-H, J = 7.5 Hz), 7.51 (s, sH, Ar-H), 7.27 (s, 1H, Ar-H), 7.14 (d, 2H, Ar-H, J = 7.5 Hz), 6.57 (t, 2H, Ar-H, J = 7.5 Hz), 3.82 (m, 8H, CH₂-NMe₂), 2.29 (s, 12H, NMe₂), 2.19 (s, 12H, NMe₂), 1.28 (s, 18, *t*-Bu). ¹³C NMR (126 MHz, DMSO) δ 166.01, 162.92, 156.79, 132.14, 119.67, 119.66, 67.50, 55.09, 42.89, 42.86, 41.93, 41.72, 34.10, 34.02, 31.70, 31.69. ESI MS: C₂₅H₃₉AlN₃O₄,

theoretical calculation: 472.2756, found: m/z = 472.4619; $C_{46}H_{62}Al_2ClN_6O_4$: theoretical calculation: 851.4152, found: m/z = 851.4619.

Figure S6. ¹H NMR spectrum of the complex 3 in DMSO-d₆

Table S1. Cycloaddition of CO2 to PO mediated by complex 1 and TBAB a)

			H ₃ C PO	+ CO ₂ -	catalyst	H ₃ C PC
entry	[1]:[TBAB] (molar ratio)	T (°C)	PO Conv ^{b)} %	TON ^{c)}	TOF ^{d)} (h ⁻¹)	
1	1:2	60	_ e)	-	_	
2	1:4	60	11.3	226	22.6	
3	1:10	60	12.0	240	24.0	
4	1:20	60	82.7	1654	165.4	
5	1:40	60	83.8	1676	167.6	
6	1:20	80	85.8	1716	171.6	
7	1:40	80	91.2	1824	182.4	
8	1:40	100	88.2	1764	176.4	

^{a)} Conditions: Complex 1 (19.2 mg, 25 μ mol), n₍₁/n_(PO)= 1/2000, P_{CO2}: 2 MPa, *t* = 10 h. ^{b)} Determined by ¹H NMR; ^{c)} TON = ([PO]/[1])×(conversion). ^{d)} TOF = (TON/reaction time in hours). All selectivity for propylene carbonate > 99%. ^{e)} not detected.

Table S2. Effect of reaction time on the PO conversion^{a)}

entry t PO Conv TON TOF

	(h)	(%)		(h^{-1})
1	1	10.5	210	210
2	2	23.4	468	234
3	4	39.4	788	197
4	5	42.1	842	168.4
5	6	53.6	1072	178.6
6	8	76.3	1526	190.8
7	10	91.2	1824	182.4

^{a)} Conditions: Complex 1 (19.2 mg, 25 μ mol), $n_{(1)}/n_{(TBAB)} = 1/40$, $n_{(1)}/n_{(PO)} = 1/2000$, P_{CO2} : 2 MPa. Other notes are the same as those in Table S1.

Figure S7. Kinetic study of coupling of PO/CO₂ mediated by 1/TBAB (1:40 molar ratio), PO conversion *vs* reaction time.

entry	[1]:[DMAP] (molar ratio)	T (°C)	PO Conv	TON	TOF (h ⁻¹)
	(motal fatto)	(\mathbf{C})	(70)		(п)
1	1:2	60	37.2	744	74.4
2	1:4	60	39.7	794	79.4
3	1:10	60	40.7	814	81.4
4	1:20	60	57.2	1144	114.4
5	1:40	60	49.1	982	98.2
6	1:10	80	15.6	312	31.2
7	1:20	80	12.1	242	24.2

Table S3. Coupling of CO₂/PO catalyzed by 1/DMAP^{a)}

^{a)} Conditions: Complex **2** (19.2 mg, 25 μ mol), n₍₁₎/n_(PO) = 1/2000, P_{CO2}: 2 MPa, *t* = 10 h. Selectivity for propylene carbonate is higher than 99% in all runs. Other notes are the same as those in Table S1.

Table S4. Coupling of CO₂/PO catalyzed by 1/1-MeIm.^{a)}

entry	[1]:[1-MeIm] (molar ratio)	Т (°С)	PO Conv (%)	TON	TOF (h ⁻¹)
1	1:2	60	_	_	_
2	1:4	60	15.2	304	30.4

3	1:10	60	21.3	426	42.6
4	1:20	60	23.5	470	47.0
5	1:2	80	5.3	106	10.6
6	1:4	80	39.1	782	78.2
7	1:10	80	94.6	1892	189.2
8	1:20	80	4.8	96	9.6
9	1:40	80	3.6	72	7.2
10 ^{b)}	1:10	80	22.1	442	88.4
11 ^{c)}	1:10	80	54.8	1096	137

^{a)} Conditions: Complex 1 (19.2 mg, 25 μ mol), n₍₁₎/n_(PO)= 1/2000, P_{CO2}: 2 MPa, *t* = 10 h unless other condition is stated. All selectivity for propylene carbonate is higher than 99%. b) *t* = 5 h. c) *t* = 8 h. Other notes are the same as those in Table S1.

Reference

[1] P. D. Knight, P. N. O'Shaughnessy, I. J. Munslow, B. S. Kimberley, and P. Scott, *J. Organomet. Chem.*, **2003**, *683*, 103-113.

[2] M. W. Fennie, E. F. DiMauro, E. M. O'Brien, V. Annamalai, and M. C. Kozlowski, *Tetrahedron*, **2005**, *61*, 6249-6265.

[3] P. Muthumani, Neckmohammed, R. Meera, S. Venkataraman, N. Chidambaranathan, P. Devi, C. A. Suresh Kumar, *Int. J. Pharm. Biomed. Res.*, **2010**, *1*, 78-86.

[4] M. Hong, Y. Kim, H. Kim, H. J. Cho, M.-H. Baik and Y. Kim, *J. Org. Chem.*, **2018**, *83*, 9370-9380.