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Abstract: Obtaining high-area catalysts is in demand in heterogeneous catalysis as it influences the
ratio between the number of active surface sites and the number of total surface sites of the catalysts.
From this point of view, fractal theory seems to be a suitable instrument to characterize catalysts’
surfaces. Moreover, catalysts with higher fractal dimensions will perform better in catalytic reactions.
Modifying catalysts to increase their fractal dimension is a constant concern in heterogeneous
catalysis. In this paper, scientific results related to oxide catalysts, such as lanthanum cobaltites
and ferrites with perovskite structure, and nanoparticle catalysts (such as Pt, Rh, Pt-Cu, etc.) will
be reviewed, emphasizing their fractal properties and the influence of their modification on both
fractal and catalytic properties. Some of the methods used to compute the fractal dimension of the
catalysts (micrograph fractal analysis and the adsorption isotherm method) and the computed fractal
dimensions will be presented and discussed.

Keywords: fractal dimension; modified catalysts; fractal analysis; perovskite; nanoparticles

1. Introduction

The power of self-similarity as a fractal property was first emphasized in 1975 by B.B
Mandelbort [1,2]. Following this finding, many processes and phenomena were analyzed
as fractal behavior: light scattering on rough surfaces [3], fractal antennae [4], diffusion-
limited aggregation [5], fractures [6], reaction kinetics [7], tumor diagnosis and cancer
therapy [8,9] and, recently, mechanical responses of cell membranes [10].

In 1984, David Avnir, Dina Farin and Peter Pfeifer [11] reported that, at the molecular
scale, the surfaces of most materials are fractal. This property leads to scaling laws of
great interest in the description of various processes specific to heterogeneous chemistry:
physical adsorption, chemisorption, and catalytic processes. Lately, a series of articles
regarding the fractal analysis of surfaces of some catalysts and catalytic reactions have
appeared in literature [12–26].

Tailoring catalysts with high activity in specific reactions is a challenging field of
interest. Strategies implying the influence of particle size on catalytic properties [27] or
metal-support interaction [28] or morphological controlling, metal deposition and chemical
treatment [29] are largely seen in the literature. In the following, we shall focus only on the
influence of fractal behavior self-similarity on catalytic properties.

Briefly, from a geometric point of view, catalytic reactions are favored by the existence
of a large number of active centers arranged on the irregular surfaces of the catalysts,
surfaces that have large specific surface areas (BET). Therefore, the surface of a catalyst can’t
be described as a flat surface, but rather as a sum of convoluted flat surfaces. Thus, fractal
geometry can describe the surface of a catalyst better than classic, Euclidean geometry.
Fractal geometry deals with the description of certain properties and characteristics of
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catalysts as scale sizes, not as their sums for small entities, keeping the same mathematical
properties at different scales.

Not every random structure is fractal [1,2]: it is necessary to verify the existence of the
self-similarity property on a sufficiently large scaling area to be able to conclude that the
object itself is fractal.

The characterization of a fractal object is related to the measurement of two properties:
the fractal dimension and the scaling domain. The fractal dimension, which is often a
fractional number between 2 and 3 for surfaces, and, respectively, between 1 and 2 for
powders, measures the degree of space occupancy, irregularity and roughness, and becomes
close to three for surfaces that tend to “fill” the entire volume and two for surfaces that
tend towards the plane, while the domain of self-similarity is the scaling area where the
fractal properties are manifested [1,2]. The greater the field of self-similarity, the closer the
fractal gets to an ideal mathematical fractal.

This work’s focus is our results regarding the fractal characterization of oxide catalysts
with perovskite structure (cobaltite and ferrite), as well as of some supported and unsup-
ported metallic nanoparticles (NP) of Pd, Pt, Rh and bimetallic Pd-Cu, Pd-Ag and Pt-Cu.
The fractal characteristics of these catalysts will be correlated with their catalytic properties.
Fractal analysis will be performed both by SEM or TEM image analysis of micrographs
and by the nitrogen adsorption isotherms method.

Therefore, based on the analyzed catalytic materials, the present paper aims to high-
light the fractal character of various investigated catalysts and the means in which the
fractal characteristics are tailored based on the modified catalysts. The impact on the
catalytic properties will also be emphasized.

2. Results
2.1. Influences of Synthesis Parameters on the Fractal Dimension
2.1.1. Precursor Type Influences the Fractal Dimension of Perovskite

Obtaining catalysts with high fractal dimension, hoping that higher fractal dimensions
will lead to higher catalytic activities, is a challenging objective.

To achieve this purpose, systematic studies must be performed to analyze the relation
between synthesis parameters—in every case—and catalyst fractal dimensions. From this
point of view, it is a large field of research and a vast domain.

Oxides with perovskite structure of LaCoO3 and LaFeO3 were obtained in different
preparation conditions by thermal decomposition of the precursors with maleic acid,
alpha-alanine, urea and sorbitol [30,31].

Analyzing the nitrogen adsorption isotherms for lanthanum cobaltites (LaCoO3) [30]
and lanthanum ferrites (LaFeO3) [31] obtained from different precursors, only Dubinin–
Radushkevitch isotherm can be used to fit the experimental data.

The computed fractal dimension of oxide cobaltites are presented in Table 1. Results
show the fractal behavior of the analyzed samples related to the BET surface; as expected,
a higher fractal dimension corresponds to a higher BET surface.

Table 1. Fractal dimensions of perovskite oxides LaCoO3 obtained by the direct fit of the DR isotherm; fractal dimension
obtained by the Avnir–Jaroniec method; BET specific surface area (m2/g).

Precursor Fractal Dimension
DR Isotherm

Fractal Dimension
AJ Method BET Surface (m2/g)

Maleic acid 2.3±0.06 2.34 ± 0.06
Fractional filling 0.40–0.80 20.42

Alpha-alanine 2.62±0.06 2.62 ± 0.06
Fractional filling 0.68–0.88 32.50

Urea 2.43±0.03 2.43 ± 0.03
Fractional filling 0.45–0.82 22.62
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In the case of Lanthanum ferrites, the calculation of the fractal dimension by direct
fitting of the isotherm and by using the Avnir–Jaroniec method leads to low and medium
values for the fractal dimension (Table 2). This indicates that J(x), the pore distribution, is
not very steep, so there are more and more wide pores in the microporosity regime when
the fractal dimension decreases. In this case, multilayer filling of the micropores requires
higher pressure values compared to samples with larger fractal dimensions. This behavior
is described by type II isotherms. Ferrites obtained using alpha-alanine or sorbitol have
similar values of the fractal dimension, indicating a similar microstructure [31].

Table 2. Fractal dimensions of lanthanum ferrites (LaFeO3) obtained under various preparation conditions. Reprinted from
ref. [31], Copyright (2003), with permission from Elsevier.

Precursor Fractal Dimension
DR Isotherm Fitting

Fractal Dimension
Avnir–Jaroniec Method

Maleic acid 2.11 ± 0.04 2.07 ± 0.01
0.4–0.6 (fractional filling range)

Alpha-alanine 2.42 ± 0.02 2.44 ± 0.05
0.46–0.93 (fractional filling range)

Urea 2.40 ± 0.02 2.49 ± 0.01
0.77–0.86 (fractional filling range)

Both Tables 1 and 2 show good concordance between the values of the fractal dimen-
sion obtained by the two methods (i.e., direct fitting by fractal adsorption isotherms and the
Avnir–Jaroniec Method) and, also, that the fractal dimension value is strongly influenced by
the preparation method. Larger fractal dimensions are obtained when alanine or sorbitol
precursors are used.

2.1.2. The Dopant (Sr) Influences the Fractal Dimension. The Limits of Self-Similarity

Strontium-doped lanthanum cobaltites with concentrations of 0.1–0.3 have a strong
effect on the fractal dimension. Our results indicate that the fractal dimension of the doped
samples is larger than the fractal dimension of the pure sample (Tables 3 and 4). Good
agreement between the fractal dimension computed by SEM micrographs analysis and by
fitting the adsorption isotherms was found (Table 3).

Table 3. Fractal Dimension dependence on Sr concentration x for doped lanthanum cobaltites (La1−xSrxCoO3); samples
were obtained by thermal decomposition of the complex precursor molar ratio La:Sr:Co:acid maleic = 1 − x:x:1:8.6. Reprinted
from ref. [32], Copyright (2003), with permission from JOAM.

x SEM Analysis Self-Similarity Limits (nm)
(SEM Analysis)

Fractal Dimension
(DR Adsorption Isotherm)

0 2.32 ± 0.01 250–1110 2.34 ± 0.06
0.1 2.51 ± 0.02 100–440 2.58 ± 0.02
0.2 2.43 ± 0.01 30–330 2.48 ± 0.01

For a more accurate study, Wojsz and Terzyk [33] showed that the detailed isotherm
can be fitted with a general Dubinin–Astakhov type isotherm [16], computing the limits of
the micropore range as the minimum and the upper limit of the pores size at which fractal
behavior is emphasized.

The same conclusions were taken from the analysis of the La1−xSrxCoO3 (x = 0–0.3)
samples obtained by the thermal decomposition of alpha-alanine precursors. The results
were presented in detail [34] and summarized in Table 4.
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Table 4. Fractal dimension obtained by direct fitting of the nitrogen adsorption data with DR adsorption isotherms.
Reprinted from ref. [34], Copyright (2018), with permission from RRC.

Sample Fractal Dimension Determination Coefficient

LaCoO3 2.39 ± 0.03 0.987
La0.9Sr0.1CoO3 2.45 ± 0.01 0.989
La0.8Sr0.2CoO3 2.48 ± 0.01 0.999
La0.7Sr0.3CoO3 2.62 ± 0.03 0.970

Extending the research on other oxide catalysts with perovskite structure such as
LaMnO3, both pure and doped with Sr, a different behavior was emphasized. Adding
Sr into the Mn perovskite structure seems to have an inverse influence—it decreases the
fractal dimension. Although the effect is not very strong, it is an unexpected observation
(Table 5).

Table 5. Fractal dimensions of La1−xSrxMnO3 samples with perovskite structure. The fractal dimension was obtained by
analysis of SEM micrographs and by direct fitting of the adsorption isotherms using DR fractal isotherm.

Samples Method Fractal Dimension Determination
Coefficient

Self-Similarity Limit
(nm)

LaMnO3-alanine

SEM—correlation function method
2.49 ± 0.01 0.999 100–282

2.70 ± 0.01 0.983 282–2326

SEM—variable scale method
2.53 ± 0.02 0.998 1000–4000

2.74 ± 0.01 0.992 4000–12,000

DR fractal isotherm 2.54 ± 0.04 0.972 -

La0.9Sr0.1MnO3
SEM—correlation function method

2.20 ± 0.01 0.994 20–116

2.62 ± 0.01 0.984 116–820

DR fractal isotherm 2.19 ± 0.02 0.975 -

La0.8Sr0.2MnO3

SEM—correlation function method
2.18 ± 0.01 0.996 20–136

2.43 ± 0.01 0.988 136–700

SEM—variable scale method - - -

DR fractal isotherm 2.20 ± 0.02 0.989 -

It can be observed that regardless of the type of catalyst (LaCoO3 or LaMnO3), the
introduction of Sr as a dopant will reduce the self-similarity limits of the samples. This
means that irrespective of whether the fractal dimension increases or decreases, the fractal
properties of the catalyst manifest themselves on a smaller scaling width. The destruction
of the fractal character of perovskite materials with the addition of Sr as a dopant seems to
be more accentuated in the case of the LaMnO3 sample than in the case of LaCoO3 sample.

Our results show that there are differences between the values of the fractal dimensions
obtained by the analysis of SEM micrographs and those obtained from direct fitting of the
adsorption isotherms. This behavior can be explained by the fact that TEM micrographs
“expose” the surface as seen by the microscope, while the adsorption isotherm “describes”
the surface as “seen” by adsorbed nitrogen molecules. In other words, there will be various
hidden areas in the case of TEM images not “seen” by nitrogen molecules in the case of
adsorption isotherms and, thus, not counted.

To compare the results regarding the catalytic activity of perovskites, the use of the
fractal dimensions calculated from the fit of the adsorption isotherms or by the Avnir–
Jaroniec method is indicated. These are methods that give a more accurate description of
the specific surface, which is responsible for the existence of active centers.
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2.2. The Dependence of the Fractal Dimension on Catalytic Activity

Our previous results indicate that both pure and doped LaCoO3 samples [34] exhibit
catalytic activity in the hydrogen peroxide decomposition reaction following the sequence
LaCoO3 < La0.9Sr0.1CoO3 < La0.8Sr0.2CoO3 < La0.7Sr0.3CoO3. Therefore, as the fractal
dimension increases, the catalytic activity also increases (Table 4). This correlation can be
explained by the increase in catalytic activity due to the number of vacancies generated by
partial substitution of La by the Sr ions. [35,36].

At the same time, there is a linear dependence of the logarithm of the pre-exponential
factor lnA and the apparent activation energy for the hydrogen peroxide decomposition
reaction, indicating a compensation effect (Figure 1). This effect can be explained by the
existence of a non-uniform energetic surface and/or by the dependence of the active centers
number on the presence of the Sr ions on the catalyst surface.
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Trypolskyi and al. [37] showed that the activation energy in catalytic processes de-
pends on the fractal surface dimension. Our results emphasize the same behavior as the
reported paper (Figures 2 and 3).
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Sr-doped LaMnO3 catalyst with various concentrations (x = 0–0.2) were also investi-
gated in the methane combustion reaction (Figure 4).
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Figure 4. The catalytic activity for methane combustion.

It is observed that the conversion of methane vs. temperature in the total oxidation of
methane depends on the used catalyst. Better results were obtained for the pure catalyst
compared to those doped with strontium cation. For comparison, the results obtained
using Pt/Al2O3 1 wt.% commercial catalyst (Engelhard) are also presented. The reactivity
of the three samples decreases following the sequence La0.8Sr0.2MnO3 < La0.9Sr0.1MnO3 <
LaMnO3. This is in good agreement with the decrease of the computed fractal dimension
according to the same sequence. Moreover, the activation energy of the methane oxidation
reaction decreases with the decreases of fractal dimension (Figure 5).
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2.3. The Fractal Structure of Mono- and Bi-Metallic Nanoparticles

Mono- and bi-metallic nanoparticles of Pd, Pd-Cu and Pd-Ag were obtained under
different conditions, as is described in detail in [38]. Fractal behavior was investigated
by TEM micrographs analysis. The D0 fractal dimensions and the lacunarities [20] of the
nanoparticles were computed using the “box counting” method and the modified black
and white TEM images, considering nanoparticles as 2D black disks (Tables 6 and 7).

Table 6. The «box-counting » fractal dimension and the lacunarity of monometallic and alloy nanoparticles. Reprinted from
ref. [38], Copyright (2018), with permission from Elsevier.

Sample Fractal Dimension
D0

Lacunarity
A0

Pd 1.427 ± 0.457 8.39 × 104

Pd-Cu 4:1 Alloy 1.912 ± 0.014 8.24 × 105

Pd-Cu 1:1 Alloy 1.681 ± 0.015 2.57 × 105

Pd-Cu 1:4 Alloy 1.799 ± 0.035 2.36 × 105

Table 7. The “box-counting” fractal dimensions D0, and the fractal dimensions D (λm), D (λ1) and D (λ2) obtained by gray
level analysis, where D (λ1) and D (λ2) are the fractal dimensions characteristic for the nucleation processes, the “core”
fractal dimension and the “shell” fractal dimension. Meanwhile, D (λm) is the fractal dimension of the whole structure.
Reprinted from ref. [38], Copyright (2018), with permission from Elsevier.

Sample D0 λm D (λm) λ1 D (λ1) λ2 D (λ2)

Pd-Cu
Core-shell 1.841 ± 0.009 140 1.773 ± 0.048 170 1.632 ± 0.074 130 1.826 ± 0.037

Cu-Pd
Inverse core-shell 1.855 ± 0.010 110 1.796 ± 0.026 130 1.827 ± 0.029 100 1.813 ± 0.010

Pd-Ag
Core-shell 1.854 ± 0.018 130 1.819 ± 0.107 160 1.669 ± 0.061 120 1.863 ± 0.079

Ag-Pd
Inverse Core-shell 1.875 ± 0.032 100 1.836 ± 0.023 110 1.776 ± 0.018 90 1.884 ± 0.021

The results presented in (Tables 6 and 7) indicate self-similarity and fractal properties
for all the studied catalysts. It should be noted that the grey-level fractal analysis of TEM
images leads to the identification of the structure of nanoparticles (alloy or core-shell type),
obtaining the fractal dimension both for the core and for the shell [38].
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Another bimetallic nanoparticle system characterized by fractal properties is Pt-Cu
prepared in two synthesis variants: with low molar ratio of PVP/Pt4+ = 5 (Pt-Cu)L, and
high molar ratio (Pt-Cu)s, PVP/Pt4+ = 10, respectively, as described in the literature [39].
Fractal properties are summarized in (Table 8).

Table 8. Results of the fractal analysis performed on Pt-Cu nanoparticles. Reprinted from ref. [39], Copyright (2015), with
permission from RSC.

Sample Calculation Method Fractal Dimension Correlation
Coefficient

Self-Similarity
Domain/nm

(Pt-Cu)L

Correlation function 2.50 ± 0.01 0.991 1.4–2.5
2.70 ± 0.01 0.981 2.5–5.0

Variable length scale 2.68 ± 0.01 0.984 5.0–27.5

(Pt-Cu)S

Correlation function 2.40 ± 0.01 0.998 1.4–2.2
2.73 ± 0.01 0.996 7.5–12.5

Variable length scale 2.88 ± 0.01 0.992 12.5–22.5

As was described in detail in article [39], the PVP/Pt4+ low molar ratio leads to the
formation of larger nanoparticles (between 2 nm and 5 nm), while a PVP/Pt4+ high molar
ratio leads to nanoparticles of diameters between 1 nm and 2 nm. This observation can be
seen in Table 8 from the analysis of self-similarity limits. The fractal behavior of (Pt-Cu)L
nanoparticles indicates a mixture of small particles 1.4 nm–2.5 nm and, respectively, large
2.5 nm–5 nm ones, between which there are long-distance correlations characterized by a
fractal size of 2.68. On the other hand, (Pt-Cu)s sample has an homogeneous structure com-
posed of particles of 1.4 nm–2.2 nm, with medium and long-correlated fractal dimensions
of 2.73 and 2.88, respectively.

One of the conclusions of the cited article is that unsupported (Pt-Cu)s nanoparticles
have a much better catalytic performance than (Pt-Cu)L nanoparticles in terms of the
catalytic reduction of NO3

− ions. Beyond the explanations provided in detail by the cited
article, it is observed that catalytic performance can be correlated with long-distance fractal
dimension: the larger fractal dimension (Pt-Cu)s nanoparticles, D = 2.88, will favor catalytic
activity compared to the lower fractal dimension (Pt-Cu)L nanoparticles, D = 2.68.

The catalytic applications of bimetallic nanoparticles are diverse: oxidative conversion
of methane [40], oxidation of CO [41], reduction of nitrates [42], oxidation of methanol [43],
etc. In most cases, bimetallic nanoparticles have shown better catalytic activity than their
constituent metals.

We will further refer to alumina supported Pt-Cu nanoparticles studied in the context
of total oxidation of methane. The catalytic behavior of the above mentioned nanoparticles
was compared with an available catalyst Pt/Al2O3 1 wt.% (Engelhard) with the same metal
loading level (1wt. %) (Figure 6) [44].

Fractal analysis of TEM images (images for which the background was removed in
order to improve image quality) shows a bimodal fractal behavior characterized by two
fractal dimensions: one for low scales and another for large scales. The inflection point
(contact between the two self-similarity domains) is located at 1.2 nm and it is an indication
of the average radius of Pt-Cu particles. For wide scaling domains (greater than 4.5 nm)
the structure does not show fractal behavior (Table 9).

Table 9. The fractal dimension of Pt-Cu/Al2O3 obtained using the correlation function method. Reprinted from ref. [44],
Copyright (2011), with permission from Elsevier.

Fractal Dimension Linear Correlation Coefficient Self-Similarity Domain

2.39 ± 0.01 0.996 0.18–1.24
2.81 ± 0.01 0.975 1.24–4.50
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Figure 6. Methane conversion versus temperature using two different catalysts: Pt-Cu/Al2O3 and
Pt/Al2O3. Reprinted from ref. [44], Copyright (2011), with permission from Elsevier.

Although, the fractal size of the Pt-Cu/Al2O3 bimetallic system is quite large on a wide
scale (2.81) compared to a commercial Pt/Al2O3 catalyst, from the obtained experimental
results we observed that there is a decrease in the catalytic activity; an explanation lies in
the nanoparticles’ surface chemical composition due to copper enrichment.

2.4. The Influence of the Fractal Dimension of Supported Nanoparticles on Surface Basicity

In order to deepen how fractal character influences the physico-chemical properties of
the catalysts, we further analyze a series of Rh nanoparticles on various supports: Al2O3,
TiO2 and WO3 [45].

The studied based-nanoparticle catalysts Rh/Al2O3, Rh/TiO2, Rh/WO3 showed
fractal behavior (Tables 10 and 11), both before and after CO2-TPD experiments, on a wide
self-similarity domain. There is a strong correlation between the fractal dimension and the
basicity of the studied catalysts.

Table 10. Fractal dimensions before CO2-TPD from the analysis of TEM micrographs, using two methods: “C” meaning the
correlation function method, and “S” the variable length scale method [45].

Sample Fractal Dimension Correlation Coefficient Self-Similarity Domain (nm)

Rh/Al2O3
2.872 ± 0.001 (C) 0.9910 4.4–14.4
2.784 ± 0.051 (S) 0.8186 7.2–11.8

Al2O3
2.952 ± 0.001 (C) 0.9375 0.7–8.1
2.962 ± 0.004 (S) 0.9549 1.4–2.8

Rh/TiO2
2.733 ± 0.001 (C) 0.9884 4.9–14.4
2.832 ± 0.009 (S) 0.9649 5.4–17.3

TiO2
2.831 ± 0.001 (C) 0.857 6.5–11
2.911 ± 0.017 (S) 0.925 2.4–3.00

Rh/WO3

2.490 ± 0.001 (C) 0.9975 0.2–2.7
2.330 ± 0.001 (C) 0.9991 2.7–13.8
2.469 ± 0.035 (S) 0.9747 4.5–11
2.226 ± 0.047 (S) 0.9334 11–29.3

WO3

2.660 ± 0.004 (C) 0.990 0.2–1.2
2.293 ± 0.002 (C) 0.986 1.8–5.0
2.652 ± 0.042 (S) 0.949 4.1–5.9
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Table 11. Fractal dimensions (before and after CO2-TPD) obtained by direct fitting of adsorption data with DR adsorption
isotherms [45].

Sample Fractal Dimension Correlation
Coefficient

Self-Similarity
Domain (p/p0) CO2-TPD

Rh/Al2O3 2.607 ± 0.004 0.9986 0.033–0.850 Before
2.534 ± 0.009 0.9973 0.011–0.350 After
2.623 ± 0.002 0.9998 0.350–0.800 After

Rh/TiO2 2.604 ± 0.003 0.9989 0.011–0.750 Before
2.292 ± 0.011 0.9980 0.005–0.350 After
2.548 ± 0.005 0.9987 0.350–0.850 After

Rh/WO3 2.448 ± 0.012 0.9977 0.005–0.200 Before
2.589 ± 0.014 0.9889 0.200–0.750 Before
2.595 ± 0.008 0.9970 0.005–0.350 After
2.003 ± 0.003 0.9993 0.350–0.875 After

Results showed (Tables 10 and 11) that adding Rh nanoparticles on the corresponding
supports leads to a decrease in the fractal dimension of the Rh/support system, compared
to the fractal dimension of the support itself. This decrease in fractal dimension can be
explained by blocking the surface pores on the support and/or by encapsulating Rh via
strong metal support-interaction (SMSI) [28]. The bimodal character of the WO3 substrate
is preserved even when Rh nanoparticles are added. The fractal dimensions obtained
by fitting the adsorption isotherms with the DR isotherms (in the capillary condensation
regime) are smaller than the fractal dimensions obtained by the image analysis of the TEM
micrographs for Rh/Al2O3 and Rh/TiO2 samples. This behavior can be explained by the
fact that fractal dimension obtained from the analysis of the adsorption isotherm is an
expression of the pore filling capacity on the surface of the adsorbate, while the fractal
dimension obtained from the TEM image analysis measures correlations and similarities of
all points (visible in TEM) on the studied surface. The last sample (Rh/WO3) has the same
bimodal characteristic, both in terms of the DR fractal dimension and in terms of the TEM
fractal dimension.

Figures 7–10 present the number of basic centers dependence on the fractal dimension
of the system/support.
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It is observed that the number of low and medium basic centers decreases slightly
with the TEM fractal dimension of the supported nanoparticles, but also with the TEM
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fractal dimension of the support. On the other hand, the total number of strong basic
centers increases with the same fractal dimensions. The same behavior is observed in the
case of the fractal dimension obtained by analyzing the adsorption isotherm, both before
and after CO2-TPD. This behavior leads to the idea that large fractal dimensions favor
strong basic centers, while small fractal dimensions favor weak basic centers.

A system with a large fractal dimension will favor the strong metal support-interaction
(SMSI) leading to the formation of monodentate carbonate (Rh/Al2O3 and Rh/TiO2) and
implicitly of the strong basic centers. Weak and medium centers, usually attributed to the
HO group, forming bicarbonate species with CO2 or bidentate carbonate, are favored by
surfaces with fewer defects, pores, fewer irregularities and lower fractal dimension.

In order to improve the DRM (Dry Reforming of Methane), catalytic activity of
Rh/Al2O3, Rh/TiO2 and Rh/WO3 and a large number of active centers are needed [46,47].
One way to achieve this is to use supports with a large fractal dimension; supports that
will lead to NP systems/supports with a large fractal dimension and, therefore, to a large
number of basic centers.

3. Discussion Regarding the Fractal Properties of Catalysts

The novelty element of this study is its correlation of the fractal behavior (fractal
dimension) of catalysts with their catalytic activity as well as their specific chemical prop-
erties. We started from the general observation that a “perfect” catalyst should have an
“ideal” fractal structure [12]. This idea involves structures of catalysts with very large
specific surfaces and therefore many active centers capable of favoring chemical reactions.
In reality, catalysts cannot be ideal mathematical fractals. No real structure can be described
as an ideal mathematical fractal. It would require that it could be characterized by an
infinite field of self-similarity and a deterministic self-similar structure. In the real world,
systems are characterized by fractal properties only on restricted domains of self-similarity,
which is always of necessary mention in the characterization of systems. Obviously, if
we study a phenomenon on the order of nanometers, we are interested in self-similarity
properties at this scale and not at scale lengths on the order of meters.

Self-similarity domains, especially the intersection areas of the domains with different
fractal dimensions, give information regarding particle size, bi-modality of the sample, etc.

One of the methods used in determining fractal size is the direct fitting of the adsorp-
tion data with DR adsorption isotherms. The usual way to construct DR fractal isotherms
is to consider the object as a fractal pore system. However, are real catalysts actually real
fractal pore systems? In addition, if they are not, can we talk about their fractal dimension?
Alternatively, can fractal adsorption isotherms, which are based on the idea of a pore fractal
system [16], be used to determine the fractal dimension?

There are studies [48] showing that an optimal catalyst cannot be described as a
fractal pore system realistically, though the fractal dimension could be an indication of the
roughness of the analyzed samples.

Rudzinschi and. al. [49] show that fractal adsorption isotherms can be deduced
without assuming the existence of a fractal pore system. The actual nature of the partially
correlated solid surfaces is sufficient to deduce the fractal isotherms used. Surface energy
heterogeneities in relation to fractal geometric non-uniformities lead to the deduction
of the Dubinin–Radushkevitch isotherm without resorting to the questionable fractal
distribution of pores [49]. In conclusion, the fractal dimension calculated by direct fitting of
the adsorption isotherms with the DR equation reflects a real characteristic of self-similarity
of the catalysts and is not a mathematical artefact.

4. Materials and Methods
4.1. Synthesis of Materials

Mixed perovskite-type oxides (cobaltite and ferrite) were prepared by calcination in air
of isolated complex precursors (urea-base precursor, alpha-alanine-base precursor, sorbitol-
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base precursor, acid maleic-base precursor). Details on catalyst synthesis are presented in
extenso in [30–32,34,50,51].

Bimetallic nanoparticle samples were prepared using the alkaline polyol method, an
easy and versatile synthesis method described in detail in the literature [38,39,44,45,52].

4.2. Methods
4.2.1. Fractal Dimension Determination Using Image Analysis

The mathematical determination of the fractal dimension has its basis in the funda-
mental fractal property of self-similarity [2]. Self-similarity is the property of an object to
appear the same when seen from near or far. The mathematical description of this property
is given by the following formula:

N(r/R) ∼ (r/R)−D (1)

where D is the fractal dimension, N(r/R) is the number of r size boxes that can cover an
object of size R.

Starting from this definition and from its mathematical expression, various methods
for determining both the fractal dimension and the scaling domain can be imagined, i.e.,
the values for r for which Equation (1) is valid.

SEM, TEM and AFM micrographs can be analyzed using various methods, such as the
Fourier transform method [53], the box-counting method [2], the mass-radius dependence
method [54], the correlation function method [53,55] and the variable scaling method [56].

4.2.2. Fractal Dimension Determination Using Adsorption Isotherms

The fractal size of the catalysts can be determined by adsorption experiments, ei-
ther by direct fitting the adsorption isotherms or by the Avnir–Jaroniec method. Experi-
mental adsorption isotherms have been shown to be efficiently fitted with the Dubinin–
Radushkevitch isotherm [16]:

θ = K[ln(po/p)]D−3 (2)

where θ is the relative adsorption, K is a characteristic constant, p0 and p are saturation
and equilibrium pressures and D is the fractal dimension.

Other isotherms (such as those presented below—Equations (3) and (4)) did not lead
to viable results regarding the fractal dimension.

- the BET fractal isotherm obtained by Fripiat [57]:

θ = N/Nm =
c

1 + (c − 1)x

∞

∑
n=1

n2−Dxn (3)

- the Frenkel-Halsey-Hill [58] isotherm:

N/Nm = (z/a)3−D = [γ/(−lnx)]
(3 − D)/3

γ ≡ α/
(

kTa3
)
, 2 ≤ D < 3,

x ≡ P/Po, z = [α/(kTln(Po/P))]
1/3

(4)

where Nm, is the monolayer volume, a is the monolayer thickness and α is the difference
of the interaction constants.

It is noteworthy that although the Frenkel–Halsey–Hill isotherm shape resembles the
Dubinin–Radushkevitch fractal isotherm, the exponent is different for the two isotherms.
The use of the Frenkel–Halsey–Hill isotherm can lead, in some cases, to values of fractal
size of over 4, which is obviously unrealistic.
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4.2.3. Avnir–Jaroniec Method

This method is described in detail in the literature [24]. It is based on the micropores
volume calculation and, thus, the dependence of the fractional filling on pressure is com-
puted, leading to the local determination of the Avnir–Jaroniec fractal dimension. The zone
where the fractal dimension is constant gives the value of the fractal dimension, but also
the domain of self-similarity.

5. Conclusions

The present paper depicted some catalysts that have been shown to have fractal
properties, with a large domain of self-similarity.

The experimental results revealed that the synthesis method of catalysts influences the
fractal dimension. Both the nature of the precursor as well as the introduction of dopants
changes the fractal dimension for mixed oxide perovskite-type catalysts. Moreover, fractal
analysis was used to obtain information regarding the morphology/geometry of the
samples.

The fractal dimension is, as well, an indicator of the number of basic centers on the
surface of the supported nanoparticles studied, basic centers that are directly related to the
catalytic activity of these catalysts.

Moreover, very importantly, both catalytic activity in various reactions and the activa-
tion energy strongly depend on the fractal dimension of the catalysts. Catalytic activity is
undoubtedly favored by catalysts with large fractal dimensions.
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