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Abstract: Over the past few decades, the synthesis and potential applications of nanocatalysts have 

received great attention from the scientific community. Many well-established methods are exten-

sively utilized for the synthesis of nanocatalysts. However, most conventional physical and chemi-

cal methods have some drawbacks, such as the toxicity of precursor materials, the requirement of 

high-temperature environments, and the high cost of synthesis, which ultimately hinder their fruit-

ful applications in various fields. Bioinspired synthesis is eco-friendly, cost-effective, and requires 

a low energy/temperature ambient. Various microorganisms such as bacteria, fungi, and algae are 

used as nano-factories and can provide a novel method for the synthesis of different types of nano-

catalysts. The synthesized nanocatalysts can be further utilized in various applications such as the 

removal of heavy metals, treatment of industrial effluents, fabrication of materials with unique 

properties, biomedical, and biosensors. This review focuses on the biogenic synthesis of nanocata-

lysts from various green sources that have been adopted in the past two decades, and their potential 

applications in different areas. This review is expected to provide a valuable guideline for the bio-

genic synthesis of nanocatalysts and their concomitant applications in various fields. 
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1. Introduction 

Nanotechnology has evolved as a highly technical research arena with potential ap-

plications in all spheres of life. The term “nano” has been derived from the Greek for 

“dwarf.” With a clear idea of the extremity of something in a nano, a nanoparticle can be 

defined as particles that have at least one dimension below 100 nm [1]. Several bulk ma-

terials show completely different properties when they are studied on the nanoscale. One 
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known reason for this phenomenon is their higher surface-to-volume aspect ratio. For dif-

ferent nanoparticles, this can result in a variety of characteristics. For example, the higher 

aspect ratio of silver nanoparticles allows them to have increased efficacy in antibacterial 

properties. Consequently, silver nanoparticles can have diverse applications in cosmetics, 

packaging, electronics, coatings, and biotechnology [2,3]. A unique property of nanopar-

ticles is that they have the ability to combine or form a solid at lower temperatures without 

melting. This property helps to achieve improved coatings on capacitors and other elec-

tronic components. Nanoparticles are also transparent, which allows them to be utilized 

in packaging, coating, and cosmetics (e.g., scratchproof eyeglasses, crack-resistant paints). 

When metallic nanoparticles are attached to single-stranded DNA, they can travel 

through the bloodstream and confine any target organ. This characteristic can be exploited 

in medical diagnostics, therapeutics, and other biomedical applications. Due to their sig-

nificant potentials, nanoparticles must be further studied to find unexplored uses in eve-

ryday life [4].  

Nanocatalysts are usually differentiated based on their dimension, composition, 

morphology, material nature, agglomeration, and uniformity. The morphology and shape 

of nanoparticles have vital functions, such as their toxic effect on mankind or the environ-

ment [5]. On the basis of dimension, nanoparticles can be one-dimensional, two-dimen-

sional, and three-dimensional. Thin-film coatings used in sensors and electronic devices 

come under 1D, whereas carbon nanotubes, wires, fibers, etc. belong to 2D nanoparticles. 

Three dimensional nanoparticles include quantum dots, hollow spheres, and dendrimers. 

On the basis of morphology, they can be spherical, flat, crystalline, cubic, etc. structures 

and present in either single or composite form. 

Numerous physical and chemical approaches can be effectively utilized for nanocat-

alyst synthesis. These include aerosol technologies, microemulsion, microwave, laser ab-

lation, lithography, photochemical reduction, ion sputtering, sol–gel, sonochemical, ultra-

sonic spark discharge, and template synthesis [6]. However, most approaches have some 

nonnegligible drawbacks as these processes use expensive and hazardous chemicals and 

consume a lot of energy. Chemical synthesis has proved to be useful and can be used for 

a long time, but they have certain demerits such as the aggregation of particles when al-

lowed to react for a long time, instability of the final product, and improper control of 

crystal growth [7]. Moreover, this method is not environmentally friendly, as a lot of toxic 

wastes and pollutants are generated as by-products. In particular, both physical and 

chemical techniques produce harmful pollutants such as harmful capping and reducing 

agents and organic solvents. Therefore, the use of harmful chemicals and organic solvents 

involved in nanomaterial synthesis should be reduced [8]. Hence, both conventional 

methods of nanoparticle synthesis, i.e., physical and chemical methods, have evolved as 

costly and are not friendly to the ecosystem. The demerits of these methods lead to the 

development of novel methods for the synthesis of nanomaterials that should be environ-

mentally friendly, cheap, nonhazardous, clean, and energy-efficient [9]. Recently, the fo-

cus has shifted to the utilization of biological agents for the synthesis of nanomaterials 

due to their various advantages as compared to chemical and physical ones. Biological 

methods of synthesis are generally utilized by biological entities such as algae, fungi, and 

bacteria [10].  

There are different groups of nanoparticles available, which include carbon-based 

nanoparticles, ceramic nanoparticles, semiconductor nanoparticles, metal/metal oxide na-

noparticles, and polymeric nanoparticles [11–17]. Metal/metal oxide nanoparticles have 

gained significant interest due to their wide range of applications such as the detection 

and imaging of biomolecules, antimicrobial activity, removal of environmental pollutants, 

and bioanalytical applications [11]. These nanoparticles are prepared from the 

metal/metal oxide precursors. Metal/metal oxide nanoparticles include silver, copper, 

gold, titanium oxide, iron oxide, and zinc oxide [11]. They can be synthesized by chemical, 

physical, electrochemical, or photochemical approaches. However, due to their negative 

impact, biological methods have been currently in demand. Therefore, in this review, an 
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overview of different methods of synthesis, and the use of various biological agents such 

as algae, fungi, and bacteria, which are used for the synthesis of metal/metal oxide nano-

catalysts, is discussed. Further discussion of the application of nanocatalysts in different 

sectors is conducted.  

2. Different Methods of Nanocatalyst Synthesis 

Generally, there are two techniques for nanocatalyst synthesis: top-down and bot-

tom-up. In the first method, the bulk material is broken down into smaller nanosized par-

ticles [18,19]. Various metallic nanoparticles are composed of top-down methods such as 

etching, sputtering, and laser ablation. On the other hand, the bottom-up method involves 

joining a molecule by a molecule, atom by atom, and clusters by cluster. In this method, 

single molecules are explored to form a complex structure of nanoscale size [20]. Various 

methods that use bottom-up techniques include supercritical fluid synthesis, plasma or 

flame spraying synthesis, laser pyrolysis, molecular condensation, the sol–gel process, 

chemical reduction, and green synthesis (Figure 1). In this technique, physicochemical re-

actions occur that may affect the properties of nanoparticles, and the nanoparticles are 

collected from smaller units. Therefore, both techniques are controlled by kinetic pro-

cesses, which regulate the size and shapes of the synthesized nanoparticles. 

 

Figure 1. Method of nanoparticles synthesis [21]. 
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3. Biological Approach for Nanocatalyst/Nanoparticle Synthesis  

The biological method is preferred over the other two conventional methods (top-

down and bottom-up) as it is a green method, environmentally friendly, and does not 

require a higher energy consumption [22]. Nanoparticles obtained through the biological 

approach have a greater specific surface area, increase the rate of catalysis, and have metal 

salt and improved enzymes [23]. Hence, the main objective in the synthesis of nanoparti-

cles using a biological approach is to utilize cheap resources and facilitate a continuous 

production of nanoparticles. Biological sources that are used for nanoparticle synthesis 

provide a simple method and easy increase in biomass, ensuring a uniform particle size, 

as well as multiplication. The use of microbes is one of the most prominent methods 

among the biological approaches of nanoparticle synthesis. It utilizes different biological 

sources such as bacteria, fungi, and algae (Figure 2). Bacteria are the most commonly 

found organism in our biosphere. Under optimal conditions such as pH, temperature, and 

pressure, bacteria show the capability to synthesize various nanoparticles [24] (Figure 3). 

The ability of bacterial cells to survive and proliferate under extreme climatic conditions 

make them the most ideal organisms for nanoparticle synthesis. They can reproduce and 

multiply even under high metal concentrations, which may be due to particular resistance 

mechanisms.  

Strains of bacteria that are not resistant to high metal concentrations can also be em-

ployed as appropriate microbes. The nanoparticles produced by microorganisms have im-

portant uses in the biological field such as bioleaching, biocorrosion, biomineralization, 

and bioremediation. In addition to bacteria, fungi and algae are two other green sources 

that are capable of synthesizing nanoparticles. Fungi have an outstanding ability for the 

synthesis of various bioactive compounds that have potential for numerous applications. 

They are widely used as reducing and stabilizing agents and can be easily grown on a 

large scale for the production of nanoparticles with controlled shape and size [25]. Simi-

larly, algae have the ability to synthesize various bioactive compounds, pigments, and 

proteins, which help in the reduction of salts and act as capping agents in the synthesis 

mechanism [26].  
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Figure 2. Biological approach to nanoparticle synthesis [26]. 
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Figure 3. Different physiochemical properties of nanoparticles [24]. 

3.1. Bacterial Synthesis 

In the vast field of biological resources, prokaryotic bacteria are the most researched 

for the synthesis of metallic nanoparticles. This is because they are relatively easy to ma-

nipulate compared to any other living organisms. Various researchers have shown the 

bacterial synthesis of nanoparticles that were responsible for the reduction of metal ions. 

The main benefit of bacterial synthesis is their higher reproduction with negligible uses of 

toxic chemicals. Nevertheless, there are some problems associated with the bacterial syn-

thesis of nanoparticles such as the time-consuming culturing process, and difficulties in 

controlling the shape, size, and distribution. A study conducted with Lactobacillus strains 

that were extracted from common buttermilk showed a highly concentrated metallic ion. 

This process produced multiple, highly structured gold and silver nanoparticles. Lacto-

bacillus was observed to synthesize nanoparticles within the plasma membrane and re-

mained viable [27]. Ahmad et al. [28] reported the synthesis of gold nanoparticles using 

Thermomonospora sp.—an extremophilic actinomycetes strain and with another novel al-

kalotolerant actinomycete, i.e., Rhodococcus species. Another study reported the influence 

of the microbial synthesis of gold nanoparticles by changing the pH conditions of She-

wanella algae. It was found that at pH 7, the nanoparticles synthesized ranged from 10 to 

20 nm; however, when the pH was adjusted to 1, the size was modified to 50–500 nm [29]. 

In a study, Rhodopseudomonas casulata was used for the synthesis of gold nanoparticle syn-

thesis. It was found that at pH 7, spherical-shaped nanoparticles were synthesized, but as 

the pH dropped to 4, the nanoparticles produced were plate-shaped [30]. Parikh et al. [31] 

reported the synthesis of silver nanoparticles using a bacterial strain, i.e., Morganella sp., 

which was isolated from an insect midgut. When exposed to silver nitrate, Morganella sp. 

synthesized crystalline silver nanoparticles extracellularly. Reddy et al. [32] reported the 

synthesis of silver and gold nanoparticles using Bacillus subtilis. They observed that silver 

nanoparticles were entirely synthesized extracellularly and formed after 7 days of the ad-

dition of silver ions, whereas gold nanoparticles were synthesized both extracellularly and 
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intracellularly and formed after 1 day of addition of salt. Bruna et al. [33] reported the 

synthesis of CdS fluorescent nanoparticles using Halobacillus sp. They observed that the 

synthesized nanoparticles were hexagonal at 2–5 nm in size. Further details of nanoparti-

cles synthesized using bacterial cultures are presented in Table 1. 

Table 1. Nanoparticles synthesized from bacteria. 

Source Metal  Size (nm) Shape Location References 

Actinobacter spp. M 
10–40 (24 h) 

50–150 (48 h) 
Quasi-spherical cubic  E [34] 

Verticillium luteoalbum  G  100 Spherical, Triangular, Hexagonal I and E [35] 

Bacillus selenitireducens T  ~10 Nanorods E  [36] 

Escherichia coli DH5a G 25 ± 8 Spherical I [37] 

Klebsiella pneumoniae S  5–32 - E [38] 

Bacillus licheniformis  S  50 - E [39] 

Stenotrophomonas maltophilia G ~40  - I [40] 

Bacillus sp. S 5–15 - I [41] 

Bacillus megatherium D01 G 1.9 ± 0.8 Spherical E [42] 

Shewanella algae G 9.6  Spherical E [43] 

Trichoderma viride  S  2–4  Spherical E [44] 

Streptomyces sp.  S  10–100  Spherical E [45] 

Bacillus cereus  S 10–30  Spherical  E [46] 

Pseudomonas aeruginosa S 13 Spherical E [47] 

Idiomarina sp. PR58-8 S 26  - I [48] 

Pseudomonas fluorescens G 50–70 Spherical E [49] 

Vibrio alginolyticus S 50–100 Spherical I and E [50] 

Azospirillum brasilense G 5–50  Nanospheres E [51] 

Planomicrobium sp.  TO 8.89 Spherical E [52] 

Salmonella typhirium  S  50–150 - E [53] 

Geobacillus sp.  G  5–50  Quasi-hexagonal I [54] 

Lactobacillus crispatus  T 70.98  - E [55] 

Bacillus strain CS 11 S 42–94  Spherical I and E  [56] 

Pseudomonas fluorescens  C 49  Spherical, Hexagonal E  [57] 

Stereum hirsutum C/CO 5–20 Spherical E [58] 

Salmonella typhimurium C 40–60 - E [59] 

Bhargavaea indica S 30–100 

Pentagon, spherical, icosahedron, 

nanobar, hexagonal, truncated 

triangle, and triangular 

E [60] 

Exiguobacterium mexicanum S 5–40  - I and E [61] 

Deinococcus radiodurans G 43.75  
Spherical, triangular, and irregu-

lar  
I and E [62] 

Sporosarcina koreensis  G and S - Spherical E [63] 

Bacillus brevis S 41–68 Spherical E [64] 

Alcaligenes sp. S 30–50 Spherical - [65] 

Marinobacter algicola G 4–168 
Spherical, triangular, pentagonal, 

and hexagonal 
I [66] 

Paracoccus haeundaensis G 20.93  ± 3.46 Spherical E [67] 

Bacillus sp. S 5–15 Spherical - [68] 

S = silver, G = gold, C = copper, CO = copper oxide, T = titanium, TO = titanium oxide, TE = tellurium, M = magnetite, Z = 

zirconia, ZO = zinc oxide, IO = iron oxide, P = palladium, E = extracellular, I = intracellular. 
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3.2. Fungal Synthesis 

The use of fungi as a biological agent to synthesize metal nanoparticles has become 

popular because they show some advantages over bacteria. The presence of mycelia that 

enhances the surface area of fungi, and the economic utility and simplicity of the scaleup 

and downstream processing of fungi offer significant merits in using fungi as an agent for 

the synthesis of nanoparticles [69]. Fungi are also able to produce various enzymes, which 

help in nanoparticles synthesis with different shapes and sizes. As a result of their larger 

biomass compared to that of bacteria, the production of nanoparticles is higher. Various 

fungal species such as Fusarium oxysporum, Asperigillus oryzae, Verticillium luteoalbum, Al-

ternata alternata, and Collitotrichum sp. were utilized for nanoparticles synthesis. However, 

some of the drawbacks of using fungi include laborious and more costly downstream pro-

cesses. Nanoparticle synthesis using fungal culture can be intracellular or extracellular. In 

intracellular synthesis, the metal precursor is added to the fungal culture and biomass 

internalization of the precursor. Nanoparticle extraction is performed by breaking cells 

using different methods such as chemical treatment, centrifugation, and filtration [70]. In 

the case of extracellular synthesis, aqueous filtrate that contains fungal bioactive com-

pounds are mixed with the metal precursor; hence, the synthesis process occurs easily. 

Extracellular synthesis is the most commonly used technique [71]. Mukherjee et al. [72] 

reported the production of gold nanoparticles by Verticillium sp. where the intracellular 

gold nanoparticles were located on the mycelial surface. A study reported the use of 

Fusarium oxysporum for the synthesis of silver nanoparticles where pure silver nanoparti-

cles were produced with size ranges from 5 to 15 nm, and their capping was performed 

in such a way that they could be stabilized via the fungal proteins [28]. Bhainsa and 

D’Souza [73] reported the use of Aspergillus fumigatus to produce extracellular silver na-

noparticles of 5–25 nm in size. Riddin et al., [74] reported the synthesis of platinum nano-

particles by F. oxysporum. The intracellular and extracellular synthesis of the nanoparticles 

was observed, but the extracellular synthesis was more prominent, and the production of 

extracellular nanoparticles was found to be 5.66 mg/L. Rai et al. [75] used Fusarium ox-

ysporum for the synthesis of zinc sulfide, sulfur, molybdenum sulfide, cadmium sulfide, 

and lead sulfide nanoparticles. Sanghi et al. [76] used Coriolus versicolor for the synthesis 

of intracellular silver nanoparticles. When the reaction conditions were changed, it was 

observed that both the extracellular and intracellular synthesis of nanoparticles could be 

performed by the fungus. Vahabi et al. [77] used Trichoderma reesei for the synthesis of 

extracellular silver nanoparticles and found size ranges of 5–50 nm. Castro-Longoria et al. 

[78] reported the production of platinum nanoparticles by Neurospora crassa. Intracellular 

platinum nanoparticles were in the size range of 4–35 nm and spherical. Arun et al. [79] 

reported the synthesis of silver nanoparticles using Schizophyllum commune and found that 

the synthesized nanoparticles were spherical with sizes ranging from 54 to 99 nm. Gudi-

kandula et al. [71] used 55 strains of white rot fungi (basidomycetes) for the synthesis of 

silver nanoparticles. They found that the synthesized nanoparticles were 15–25 nm in size 

with a spherical to round shape. Molnár et al. [70] used 29 different thermophilic filamen-

tous fungi for the synthesis of gold nanoparticles, and the mechanism was intracellular 

where the synthesized nanoparticles were 1–80 nm in size with a hexagonal and spherical 

shape. A study reported the synthesis of silver nanoparticles using Botryosphaeria rhodiana, 

and it found that the synthesized nanoparticles were spherical with sizes ranging from 2 

to 50 nm [80]. More details of the nanoparticles synthesized using fungal cultures are pre-

sented in Table 2. 
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Table 2. Nanoparticles synthesized from fungus. 

Source Metal Size (nm) Shape Location Reference 

Fusarium oxysporum G 20–40 Spherical; triangular E [81] 

Phoma sp. 3.2883 S 71.06–74.46  - E [82] 

Fusarium oxysporum Z 3–11 Regular  E [83] 

Trichothecium sp. G 10–25 Hexagonal, triangular E [84] 

Fusarium oxysporum M 20–50  Quasi-spherical E [85] 

Phaenerochaete chrysosporium S 50–200 Pyramid E [86] 

Fusarium oxysporum  S 1.6 Spherical E [87] 

Trichoderma asperellum S 13–18  - E [88] 

Fusarium acuminatum S 5–40 Spherical E [89] 

Rhizopus oryzae G 10 Spherical - [90] 

Aspergillus clavatus S 10–25 Spherical, hexagonal E [91] 

Aspergillus clavatus  G 20–35  nanotriangle I [92] 

Rhizopus stolonier S 5–50 Spherical E [93] 

Aspergillus terreus S 1–20 Spherical E [94] 

Aspergillus fumigatus ZO 1.2–6.8 Spherical E [95] 

Macrophomina phaseolina  S 5–40 Spherical E [96] 

Penicillium chrysogenum  S 19–60 Spherical E [97] 

Penicillium nalgiovense S 15.2 ± 2.6 Spherical E [98] 

Aspergillus flavus TO 12–15 - E [99] 

Trichoderma viride S 1–50 Globular - [100] 

Phoma exigua  S 22 Spherical E [101] 

Phenerochaete chrysosporium  S 34–90  Spherical, oval E [102] 

Beauveria bassiana S 10–50 Circular, triangular, hexagonal E [103] 

Cladosporium cladosporioides S 30–60  Spherical E [104] 

Phomopsis helianthin S 5–60 Spherical, hexagonal E [105] 

Fusarium solani G 40–45 Needle, flower-like - [106] 

Aspergillus niger IO 20–40  Flake E [107] 

S = silver, G = gold, C = copper, CO = copper oxide, T = titanium, TO = titanium oxide, TE = tellurium, M = magnetite, Z = 

zirconia, ZO = zinc oxide, IO = iron oxide, P = palladium, E = extracellular, I = intracellular. 

3.3. Algal Synthesis 

Algae are an economically important group of organisms and are unicellular or mul-

ticellular. They are present in various environments such as marine water and freshwater. 

They are classified into macroalgae and microalgae and are used for various commercial 

purposes. They possess various advantages such as less toxicity, requiring low tempera-

ture for synthesis. The production of nanoparticles by algae involves three major steps, 

i.e., the algal extract is obtained by boiling or heating algae in an organic solvent or water 

for a fixed period. Then, molar solutions of ionic metal compounds are prepared. Lastly, 

the molar solutions of the ionic metal compounds and the algal extract solution are mixed 

and incubated under controlled culture conditions with continuous mixing or without 

mixing for a fixed period [108]. The production of metallic nanoparticles depends largely 

on the algal species being used and its concentration. The reduction of metal ions is carried 

out by various biomolecules, such as peptides, polysaccharides, and pigments. The aque-

ous solution of metal nanoparticles is capped and stabilized with the help of cysteine res-

idues and amino groups present in different proteins or by polysaccharides having a sul-

fur group [109]. Production of nanoparticles using algae occurs at a faster rate as com-

pared to the synthesis using other biological agents. Various seaweeds such as Ulva faciata, 

Sargassum wightii, and Chaetomorpha linum have been employed to produce silver nano-

particles with various sizes and shapes (Table 3). Marine algae species are rarely studied 

for the production of nanoparticles. Chlorella vulgaris can bind to tetrachloroaurate ions 
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firmly to reduce the bonding of gold to Au (0). Gold bound to the algal species was con-

verted into a metallic state in almost 90% of cases, and gold crystals were deposited inside 

and outside the cells and they had icosahedral, decahedral, and tetrahedral structures 

[110]. Mata et al. [111] reported a reduction of Au (III) to Au (0) using the biomass of the 

brown alga Fucus vesiculosus, and the synthesized nanoparticles were spherical. Shakibaie 

et al. [112] used a marine green microalgae Tetraselmis suecica for the synthesis of gold 

nanoparticles and found that the synthesized nanoparticles were spherical with a size 

range of 51–59 nm. A study on the in vitro and in vivo synthesis of silver nanoparticles 

using Chlamydomonas reinhardtii was reported in [113]. It was found that the in vitro syn-

thesis was slower and produced round-shaped nanoparticles 5–15 nm in size, whereas, in 

the case of in vivo synthesis, it was moderately faster and produced rectangular-shaped 

nanoparticles 5–35 nm in size [113]. A study reported the synthesis of silver nanoparticles 

using Spirulina plantesis, where the average size of the nanoparticles was approximately 

12 nm [114]. Senapati et al. [115] reported the synthesis of gold nanoparticles using T. 

kochinensis and it was found that the size of the synthesized nanoparticles was 18 nm. A 

study reported that Spirogyra submaxima was able to convert Au3+ to Au0 ions, which 

means that they were able to synthesize gold nanoparticles that were spherical, hexagonal, 

and triangular-shaped with a size of 2–50 nm [116]. Suganya et al. [117] reported the syn-

thesis of gold nanoparticles using Spirulina platensis, and they were uniform in shape with 

an average size of 5 nm. The Amphiroa fragilissima was used in a separate study for the 

synthesis of silver nanoparticles, and it was found that crystalline nanoparticles were pro-

duced. Arsiya et al. [118] used Chlorella vulgaris for palladium nanoparticle synthesis, and 

the synthesized nanoparticles were crystalline with a size range of 5–20 nm. Sanaeimeh et 

al. [119] used Sargassum muticum for the synthesis of zinc oxide nanoparticles and evalu-

ated its potential anticancer activity against liver cancer cell lines. A study reported the 

synthesis of silver nanoparticles using Portieria hornemannii, where the nanoparticles were 

spherical in shape with a size between 70 and 75 nm [120]. There are different shapes of 

nanomaterials are produced by differently bacterial synthesis (Figure 4). 
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Table 3. Nanoparticles synthesized from algae. 

Source Metal Involved Size  Shape  References 

Sargassum spp. G - Hexagonal, triangular [121] 

Sargassum wightii G 8–12 Thin planar structures [109] 

Sargassum Wightii S 8–27 Spherical [122] 

Gelidiella acerosa S 22 Spherical [123] 

Stoechospermum marginatum G 18.7–93.7 Spherical [124] 

Ulva fasciata S 28–41  Spherical [124] 

Sargassum myriocystum G 10–23  Triangular and spherical [125] 

Ulva reticulata S 40–50  Spherical [126] 

Chaetomorpha linum S 3–44  - [127] 

Gracilaria corticate G 45–57 - [128] 

Bifurcaria bifurcate CO 5–45 Spherical [129]  

Enteromorpha flexuosa S 2–32 Circular [130] 

Prasiola crispa G 5–25 Cubic [131]  

Sargassum Alga P 5–10 Octahedral  [132] 

Caulerpa racemose S 5–25 Spherical [133] 

Acanthophora specifera S 33–81 Cubic [134] 

Isochrysis sp. S 98.1–193 Spherical [135] 

Laurencia papillosa S - Cubic  [136] 

Spirulina platensis S 5–50  Spherical [137] 

Caulerpa serrulate S 10 Spherical [138] 

Botryococcus braunii S 40–100 
Cubical, spherical, and truncated trian-

gular 
[139] 

Padina pavonia S 49.58–86.37 
Spherical, triangular, rectangle, polyhe-

dral, and hexagonal 
[140] 

Gelidium amansii  S 27–54 Spherical [141] 

Padina sp.  S 25–60 Spherical [142] 

Gelidium corneum S 20–50 Spherical [143] 
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Figure 4. TEM images of different bacterial synthesized nanoparticles. (A) Silver nanoparticles (from 

Pseudoduganella eburnea); (B) copper oxide nanoparticles (from Streptomyces); (C) silver nanoparticles 

(from Sargassum incisifolium), and (D) gold nanoparticles (from Sargassum incisifolium) [144–146]. 

4. Applications of Nanomaterials/Nanocatalysts 

4.1. Nanocatalysts in Biological Applications 

Biologically synthesized nanoparticles have been extensively used in various appli-

cations (Figure 5). Silver and gold nanoparticles were also found to generally be used as 

antimicrobial agents against several microorganisms. They also possess anti-cancerous, 

anti-viral, antimalarial, and antifungal activities [1,3]. In addition to biomedical applica-

tions, they are also used in electronics, optics, cosmetics, coatings, sensing devices, thera-

peutics, environmental health, and chemical industries. [12]. They have appeared as a new 

drug delivery system for drug and gene transportation. A study reported that silver na-

noparticles with a different shape can show varied antimicrobial activity due to their dif-

ferent surface area and active faces [147]. Mishra et al. [148] reported the synthesis of gold 

nanoparticles mediated by Penicillium brevicompactum and evaluated its potential role 

against mouse mayo blast cancer cells. Chauhan et al. [149] reported the synthesis of gold 

nanoparticles using Candida albicans and evaluated its anticancer potential against liver 

cancer cells. In another study, silver nanoparticles synthesized from Stoechospermum mar-

ginatum were used to evaluate the antibacterial activity against Enterobacter faecalis. It was 

found to have a higher antibacterial activity compared to tetracycline, whereas, in the case 

of E. coli, no positive effect was observed [124]. Soni and Prakash [150] used Aspergillus 

niger for the synthesis of gold nanoparticles and evaluated its anti-larval activity against 

Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. It was observed that nano-

particles were more effective against C. quinquefasciatus. Sunkar and Nachiyar [151] re-

ported the synthesis of silver nanoparticles from Bacillus cereus. It was found to have an-

tibacterial activity against S. aureus, K. pneumonia, E. coli, S. typhi, and P. aeruginosa [151]. 
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Abdeen et al. [152] reported the synthesis of silver and iron nanoparticles using Fusarium 

oxysporum and evaluated their antimicrobial properties against E. coli, Bacillus, P. aeru-

ginosa, K. pneumoniae, Proteus vulgaris, and Staphylococcus sp. A study reported the synthe-

sis of silver nanoparticles using Ulva lactuca and found that at low concentration, it was 

able to inhibit the growth of Plasmodium falciparum [153]. A study reported the synthesis 

of selenium nanorods using Streptomyces bikiniensis and evaluated their potential anti-

cancer activity against human cancer cells [154]. Borse et al. [155] tested the anticancer 

activity of platinum nanoparticles against MCF-7 and A431 cell lines, which were synthe-

sized from Saccharomyces boulardii. Mohamed et al. [156] synthesized iron nanoparticles 

using Alternaria alternate and tested their antibacterial properties against E. coli, B. subtilis, 

S. aureus, and P. aeruginosa. It was found that iron nanoparticles possess the maximum 

inhibition of B. subtilis. In another study, Streptomyces cyaneus was used to synthesize gold 

nanoparticles and to investigate their anticancer activity against liver and breast cells. It 

was found that gold nanoparticles stimulated mitochondrial apoptosis, DNA damage, 

and induced cytokinesis arrest [157]. A study reported the synthesis of gold and silver 

nanoparticles using Streptomyces sp. and evaluated its potential antibacterial activity 

against Salmonella infantis, S. aureus, Bacillus subtilis, Proteus mirabilis, K. pneumoniae, P. ae-

ruginosa, and E. coli [158]. Arya et al. [139] used Botryococcus braunii for the synthesis of 

copper nanoparticles and evaluated their antimicrobial activity. It was found to show 

toxicity against E. coli, K. pneumoniae, P. aeruginosa, and S. aureus. Husain et al. [159] re-

ported that the synthesis of silver nanoparticles using cyanobacteria showed potential 

photocatalytic activity against dye. Dananjaya et al. [160] reported the synthesis of Spir-

ulina maxima-mediated gold nanoparticles and evaluated its cytotoxicity and anticandidal 

activity. It was found that nanoparticles do not possess any cytotoxicity against cell lines, 

because they act as potent anticandidal agents. In a study, Escherichia sp. was used to syn-

thesize copper nanoparticles and was utilized for the degradation of azo dye and textile 

effluent treatment. It was found that 83.90% of the congo red dye was removed and, in 

textile effluents, there was a significant reduction in electrical conductivity, pH, turbidity, 

total dissolved solids, total suspended solids, hardness, chlorides, and sulfates compared 

to nontreated samples [161]. 
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Figure 5. Biological applications of nanocatalyst [162]. 

4.2. Nanocatalysts in Dye Degradation 

Due to the increasing population and use of dye in textiles, food, and other industries, 

the release of untreated waste into the water bodies is contaminating the environment at 

a rapid rate, due to which there is a growing demand for newer and more efficient tech-

nologies for the removal of these substances from the environment. Nanosized materials 

can be used to detoxify harmful organic and inorganic chemicals from the environment 

due to their ultrafine size, high aspect ratio, and interaction-dominating characteristics. 

Nanoparticles have generated a lot of interest due to their numerous uses in disciplines 

such as catalysts, detection, and environmental cleanup, such as the adsorption and deg-

radation of different pollutants from liquid medium (Figure 6). Various bacterial and fun-

gal species have been used for the synthesis of nanoparticles, and these synthesized nano-

catalysts can be further used for the degradation of dyes (Table 4). 
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Table 4. Degradation of dyes using bacterial-derived nanoparticles. 

Dye  
Nanoparticle 

Used 
Synthesis of Nanoparticles Source % Degradation References 

Malachite green  Silver Bacillus paralicheniformis 90 [163] 

Reactive black 5 Palladium Pseudomonas putida 100 [164] 

Methyl orange Palladium Clostrodium sp. 90 [165] 

Amaranth  Iron Shewanella decolorotionis  90.5 [166] 

Methyl orange Tin(iv) oxide Erwinia herbicola 94 [167] 

Congo red  Silver Pleurotus sajor caju 78 [168] 

Malachite green Silver Acremonium kiliense 95.4 [169] 

Methylene Blue Silver Saccharomyces cerevisiae 80 [170] 

Congo red Silver Pestalotiopsis versicolor 91.56 [171] 

Direct blue 71 Palladium Saccharomyces cerevisiae 98 [172] 

Naphthol Green B Iron–sulfur Pseudoalteromonas sp. CF10-13 19.46 [173] 

Bismarck brown Zinc-oxide Aspergillus niger 89 [174] 

Methyl orange Platinum  Fusarium oxysporum - [175] 

Acid Brilliant Scarlet GR Gold Trichoderma sp. 94.7  [176] 

Rhodamine B Gold Cladosporium oxysporum AJP03 - [177] 

Malachite green Copper Escherichia sp. SINT7 90.55 [178] 

Rhodamine B Gold Turbinaria conoides  - [179] 

Malachite green Silver Gracilaria corticata - [180] 

Methylene blue, rhodamine B, 

and methyl orange 
Gold and silver Sargassum serratifolium - [181] 

 

Figure 6. Remediation of industrial wastewater using a nanocatalyst [179]. 

  



Catalysts 2021, 11, 1494 16 of 24 
 

 

4.3. Nanocatalysts in Heavy Metal Remediation 

Heavy metals are detrimental contaminants that are toxic both in soluble and ele-

mental forms. Diverse activities, including the development of industries, absurd waste 

management, defective landfill operations, and manufacturing and mining, lead to in-

creased contamination of metals in soil and water [182]. The traditional method for heavy 

metal removal includes reverse osmosis, chemical precipitation, ion exchange filtration, 

evaporation, and membrane technology. However, the cost of these methods is occasion-

ally higher; therefore, a cost-efficient and environmentally friendly method is of prime 

importance [183,184]. Various microbial-derived nanocatalysts have been reported to 

show remediated heavy metals (Figure 7). In a study, palladium nanoparticles were syn-

thesized from Enterococcus faecalis, and these nanoparticles were used for the removal of 

hexavalent chromium from contaminated water. [185]. In another study, iron oxide nano-

particles derived from Aspergillus tubingensis were able to remove heavy metals such as 

copper 92.19%, nickel 96.45%, lead 98%, and zinc 93.99% from wastewater, and the reus-

ability study showed that iron nanoparticles possess a high regeneration capacity [186]. 

 

Figure 7. Nanocatalyst in heavy metal remediation [187]. 

5. Conclusions 

The development of environmentally friendly and cost-effective techniques for pro-

ducing nanomaterials and their concomitant applications in various fields is in great de-

mand. Although a range of physical and chemical techniques have been found to be suit-

able for the synthesis of various nanomaterials, these methods show a nonnegligible con-

cern because of the production of various toxic and nonbiodegradable by products. In this 

regard, the biogenic synthesis of nanomaterials offers an alternative solution to overcome 

the existing drawbacks that come from physical and chemical methods. The biological 

method offers a rigid control on the synthesized particles size and uniform shape, while 

the physical characteristics are retained at the same level as physical and chemical meth-

ods. Biologically synthesized nanomaterials are more prepared for biomedical application 

because of their lower toxicity. Nanomaterials provide various applications such as dye 

degradation, heavy metal remediation, and biological activity. However, in biological 

methods, many parameters affect the synthesis of nanoparticles, including pH, tempera-
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ture, and whether they are manufactured internally or externally in the cell. These param-

eters should be studied in order to optimize the synthesis process. It is easy to manipulate 

bacteria genetically, whereas, in the case of fungi, the downstream process has been 

shown to be suitable for the large-scale production of nanomaterials. Regardless of the 

biological sources used, it is crucial to recognize the mechanism behind nanoparticle syn-

thesis for maximum synthesis, which is important for commercialization purposes. Non-

pathogenic sources are beneficial for the production of nanoparticles in an effective way. 

In addition, nanotoxicity should also be considered because it sometimes causes adverse 

effects on human health and animals. This can be tackled by the implementation of regu-

lation and legislation, and researchers must conduct joint multidisciplinary studies in var-

ious fields of medical sciences, nanomedicine, nanotechnology, and biomedical engineer-

ing. 
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