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Abstract: A gold-catalyzed cascade process for the synthesis of dihydroquinazolinone scaffolds
was developed. A series of gold catalysts were screened for this tandem transformation, and the
(PPh3)AuCl/AgOTf catalyst combination was found to be the best catalyst system. This method is
characterized by good yields, high regioselectivity, and broad substrate scope. This method is also
applicable to the synthesis of tetracyclic dihydroquinazolinones and seven-membered ring-fused
dihydroquinazolinones.
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1. Introduction

Nitrogen-containing heterocycles [1–3] are important molecular architectures frequently
found in bioactive natural products and drug candidates. As bioactive alkaloids [4–6], dihydro-
quinazolinones [7–9] are not only an important class of compounds but also substructures
of structurally complex polycyclic alkaloids with a wide range of biological activities. More
specifically, fused dihydroquinazolinones such as cruciferane [10], phaitanthrin D [11],
evodiamine [12], and their synthetic congeners [13,14] have attracted medicinal chemists’
attention due to their unique structural features and promising bioactivities, which have
prompted the research on synthetic dihydroquinazolinones with pharmacological potential
(Figure 1). Although various synthetic approaches to bicyclic dihydroquinazolinone scaf-
folds have been described [15–20], effective strategies for more complex tri- and polycyclic
dihydroquinazolinones, which operate under mild conditions on readily accessible simple
substrates, are rare and of high value.

Figure 1. Bioactive fused dihydroquinazolinone alkaloids.

Thus far, a number of synthetic methodologies for various heterocyclic systems have
been developed. Nevertheless, highly selective and efficient synthetic strategies, which
allow a rapid increase in molecular complexity with a reduced number of transformation
steps and purification processes, are still in demand. In this context, clean ‘one-pot cas-
cade reactions’ [21–25] can reduce the number of synthetic steps and tedious purification
processes. These reactions rapidly increase molecular complexity and diversity in a single
operation in which reactive intermediates are produced and utilized for the next step of
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reaction without isolation. ‘One-pot cascade reactions’ may also save the time and labor
required for multistep synthesis and minimize waste production during synthesis. Due to
these advantages, ‘one-pot cascade reactions’ have emerged as an important tool for the
efficient construction of more complicated polycyclic molecular skeletons.

Over the past two decades, homogeneous gold catalysis [26,27] has become one of the
most promising fields in organic and organometallic chemistry. Due to its high reactivity
toward π-systems and broad functional group compatibility, homogeneous gold catalysis
has been established as a powerful tool for one-pot cascade reactions [28,29]. Gold catalysts
act as carbophilic π-Lewis acids and efficiently activate C–C multiple bonds to form reac-
tive intermediates [30], which further promote subsequent reactions with various types of
partners. Specifically, when the activated C–C multiple bonds are combined with heteronu-
cleophiles, enol/enamine-type reactive species are generated in situ, and several types of
cascade cyclization reactions can be promoted (Scheme 1) [31,32]. Therefore, enol/enamine-
type reactive species are considered as synthetically valuable and useful for gold-catalyzed
one-pot cascade reactions [33,34]. Here, we have attempted to develop an efficient one-pot
cascade synthetic method and report a gold-catalyzed one-pot cascade process for the
synthesis of dihydroquinazolinones, which involves a double hydroamination process.

Scheme 1. Gold-catalyzed one-pot cascade reaction using enol/enamine-type species.

2. Results and Discussion

To investigate the feasibility of the gold-catalyzed one-pot cascade process for the
synthesis of dihydroquinazolinone scaffolds, we initially focused on the double cascade
cyclization of alkyne-tethered anthranilamide 1a as a benchmark substrate, which was
readily prepared in one step from commercially available isatoic anhydride and 1-amino-4-
pentyne. When 1a was subjected to a catalyst mixture of (PPh3)AuCl/AgOTf (10 mol%)
dissolved in toluene, the substrate 1a was completely consumed at 60 ◦C in 5 h. The
desired dihydroquinazolinone product 2a was obtained in 52% yield along with 6% of
ketone byproduct 3a (Table 1, entry 1), which presumably was formed from the gold-
catalyzed addition of H2O to the alkyne moiety of 1a. Although the formation of the
ketone 3a was suppressed by the addition of the 4Å molecular sieve, it could not be
completely prevented.

Initially, we optimized solvent conditions to screen for various cationic gold catalysts
and silver cocatalysts. The double cascade cyclization reaction of 1a was investigated in
various solvents including CH3CN, THF, CH2Cl2, 1,4-dioxane, cyclopentyl methyl ether
(CPME), dimethyl carbonate (DMC), and dichloroethane (DCE) (Table 1, entries 2–8). The
reactions were effective in all the solvents except CH3CN; only a small amount of product
2a was observed and isolated in the reaction in CH3CN (Table 1, entry 2). Considering
the yield of the product, DCE was the best solvent for the reaction (Table 1, entry 8);
thus, DCE was chosen for further study. We also briefly examined other Au/Ag catalyst
combinations. The (PPh3)AuCl catalyst systems combined with AgNO3, AgBF4, AgOTs,
and AgSbF6 were examined for cyclization at 60 ◦C in DCE solvent (Table 1, entries 9–12).
The reactions using AgNO3, AgBF4, and AgOTs were fairly clean and comparable to the
reaction with (PPh3)AuCl/AgOTf. Particularly, the reaction with (PPh3)AuCl/AgNO3
proceeded smoothly but slowly and provided the cyclic dihydroquinazolinone product 2a
in 80% yield after 10 h (Table 1, entry 9).
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Table 1. Optimization of reaction conditions 1.

Entry Catalyst Solvent Time (h)
Yield (%) 2

2a 3a

1 (PPh3)AuCl/AgOTftoluene 5 52 6
2 (PPh3)AuCl/AgOTfCH3CN 24 15 10
3 (PPh3)AuCl/AgOTf THF 2 67 5
4 (PPh3)AuCl/AgOTfCH2Cl2 4 68 2
5 (PPh3)AuCl/AgOTfdioxane 1 76 8
6 (PPh3)AuCl/AgOTfCPME 18 33 4
7 (PPh3)AuCl/AgOTf DMC 4 66 0
8 (PPh3)AuCl/AgOTf DCE 1 80 0
9 (PPh3)AuCl/AgNO3 DCE 10 80 1

10 (PPh3)AuCl/AgBF4 DCE 1 76 2
11 (PPh3)AuCl/AgOTs DCE 1 74 1
12 (PPh3)AuCl/AgSbF6 DCE 24 40 15
13 (PPh3)AuCl DCE 24 17 1
14 AgOTf DCE 24 23 0
15 (PPh3)AuNTf2 DCE 2 78 7
16 (XPhos)AuCl/AgOTfDCE 1 56 7
17 (IPr)AuCl/AgOTf DCE 3 80 4
18 (IPr)AuCl/AgNTf2 DCE 1 68 4
19 (IPr)AuCl/AgNO3 DCE 24 20 4

20 3 TfOH DCE 24 4 0
21 4 (PPh3)AuCl/AgOTf DCE 1 76 0
22 5 (PPh3)AuCl/AgOTf DCE 1 67 6

1 Reaction conditions: 1a (80.9 mg, 400 µmol), Au catalyst (40.0 µmol), Ag catalyst (40.0 µmol), solvent (4 mL), 4Å
molecular sieve (500 mg). 2 Isolated yields. 3 Starting material was recovered. 4 A total of 5 mol% of catalyst was
loaded. 5 A total of 1 mol% of catalyst was loaded.

Although the reaction was not effective with (PPh3)AuCl or AgOTf alone, a single
(PPh3)AuNTf2 catalyst was as effective as the (PPh3)AuCl/AgOTf catalyst combination,
which gave the desired double cyclized product 2a without silver (Table 1, entries 13 and
14 vs. entry 15). In comparison with (PPh3)AuCl or AgOTf alone, the improved reactivity
of the (PPh3)AuCl/AgOTf catalyst combination may be attributed to the anion effect rather
than the silver effect. Changing PPh3 with a biphenyl monodentate phosphine ligand
(XPhos) did not improve the reactivity (Table 1, entry 16). The phosphine ligand was not
essential for the reaction. Replacing the phosphine ligand PPh3 with IPr did not change
the reactivity significantly (Table 1, entries 17–19). Interestingly, 10 mol% Brønsted acid
(TfOH) did not catalyze the cyclization efficiently and generated the cyclized product 2a
only in a trace amount (Table 1, entry 20). In addition, the effect of the catalyst loading
on catalytic activity was also examined using 5 mol% and 1 mol% of (PPh3)AuCl/AgOTf
(Table 1, entries 21 and 22). It is noteworthy that catalyst loading could be reduced to as
low as 1 mol% with a slight decrease in yield (67%; Table 1, entry 22). Based on these
observations, we chose to set the catalyst loading at 10 mol% for sterically hindered and
unreactive substrates as shown in Table 2.
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Table 2. Reaction scope 1.

Entry Substrate Product T (◦C ) Time (h) Yield (%) 2

1 rt 1.5 85

2 rt 3 90

3 rt 1 98

4 60 24 80

5 3 120 4 10

6 4 120 1 30

7 120 2.5 94

8 120 1.25 84

9 120 0.3 57

10 120 1 61
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Table 2. Cont.

Entry Substrate Product T (◦C ) Time (h) Yield (%) 2

11 5 120 1 31

12 rt 0.5 96

13 rt 0.5 97

14 rt 2 92

15 rt 0.5 97

16 rt 8 91

17 rt 24 76

18 rt 3 72

19 rt 1 86

20 60 1.5 97

1 Reaction conditions: 1b–u (400 µmol), (PPh3)AuCl (19.8 mg, 40.0 µmol, 10 mol%), Ag catalyst (10.3 mg,
40.0 µmol, 10 mol%), DCE (4 mL), 4Å molecular sieve (500 mg). 2 Isolated yields. 3 6% of ketone 3f was also
isolated. 4 15% of ketone 3g was also isolated. 5 17% of ketone 3l was also isolated.
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After identifying (PPh3)AuCl/AgOTf as the best catalyst, we investigated the scope
of gold(I)-catalyzed one-pot cascade reactions for alkyne-tethered anthranilamides using
(PPh3)AuCl/AgOTf at room temperature under optimized conditions (Table 2). The
double cascade cyclization reaction worked well with a wide variety of alkyne-tethered
anthranilamide substrates and showed broad functional group compatibility. When the
(PPh3)AuCl/AgOTf catalyst combination was used at room temperature, the substrates
1b and 1c containing pentyne tethers smoothly provided double cyclized products (five-
membered ring-fused dihydroquinazolinones 2b and 2c) in excellent yields (85% and 90%,
entries 1 and 2). Likewise, the substrate 1d containing a fused-aromatic substituent on the
tether also readily underwent double cascade cyclization and afforded the corresponding
dihydroquinazolinone product 2d in 98% yield (entry 3). Furthermore, the double cascade
cyclization reaction worked well with the internal alkyne substrate 1e, which was smoothly
cyclized to 2e at 60 ◦C in 80% yield (entry 4). However, the reaction with the phenyl
substituted internal alkyne substrate 1f needed a higher temperature for cyclization due to
the unfavorable electronic and steric effects of the phenyl group. Interestingly, the reaction
of 1f provided the five-membered ring-fused dihydroquinazolinone 2f (entry 5). Although
coordination of the π-acidic cationic gold catalyst to alkyne may increase the electrophilic
nature of the benzylic position, 5-exo-dig cyclization was more favored than 6-endo-dig
cyclization (Scheme 2).

Scheme 2. Regioselectivity in ring closure.

On the other hand, the double cascade reaction was also effective for the synthesis of
six-membered ring-fused dihydroquinazolinones. However, six-membered ring formation
was slower than five-membered ring formation at ambient temperature owing to the higher
energy barrier for ring closure. Therefore, the reaction was carried out at 120 ◦C under
sealed-tube conditions in a microwave reactor; the substrates 1g–j containing hexyne
tethers and 1k containing a fused-aromatic substituent on the tether were converted into
the corresponding six-membered ring-fused dihydroquinazolinones 2g–k in moderate
yields (30–75%, entries 6–10). Notably, this reaction worked well for seven-membered
ring formation as well. Despite unfavorable enthalpic and entropic factors associated with
seven-membered ring closure [35–37], our method was applicable to the synthesis of the
seven-membered ring-fused dihydroquinazolinone 2l, which was obtained in 31% yield in
the presence of (IPr)AuCl/AgOTf at 120 ◦C in 1 h (entry 11).

Next, we investigated the substrate scope with respect to the electronic effect of sub-
stituents. The method showed good compatibility for electron-withdrawing and electron-
donating functional groups such as chloro, bromo, nitro, alkyl, and methoxy groups. The
substrates containing electron-withdrawing substituents (1m–p) smoothly afforded the cy-
clized products 2m–p at room temperature in excellent yields (92–97%, entries 12–15). The
substrates containing electron-donating substituents (1q–t) also provided the correspond-
ing cyclized products in good to excellent yields (72–91%, entries 16–19). Furthermore,
the reaction was tolerant of the N-alkyl substituent of the anthranilamide substrate; the N-
methyl substituent of the anthranilamide substrate 1u did not affect the second cyclization
reaction and afforded the dihydroquinazolinone 2u in 97% yield at 60 ◦C.
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Based on our observation and previous reports about gold(I)-catalyzed alkyne hy-
droamination [38,39], the possible mechanism is proposed in Scheme 3. First, the gold(I)
chloride complex precursor condenses with silver salts, which would scavenge chloride
ions as insoluble AgCl and generate the active gold(I) catalyst A. The coordination of the
active gold(I) species A to the alkyne moiety of the substrate 1a leads to the formation of the
gold π-alkyne complex B, which could be cyclized to the gold–alkyl complex C or hydrated
to the ketone 3a by the adventitious addition of water. Upon the protodeauration of C, the
enamine intermediate D is released, and the active gold(I) catalyst A is regenerated. Next,
the second cyclization reaction would begin with the re-coordination of the π-acidic cationic
gold catalyst A to the alkene moiety of the enamine intermediate D, which catalyzes the
formation of the iminium intermediate E and accelerates the second intramolecular cy-
clization reaction. The resultant gold–alkyl complex F readily undergoes protodeauration
and decomposes to yield the double cyclized product 2a and the cationic gold(I) catalyst
A. This proposed mechanism involves repeated coordination and subsequent cyclization
mediated by the gold(I) catalyst.

Scheme 3. Proposed mechanism.

3. Materials and Methods
3.1. General Information

All reactions were performed in oven-dried glassware fitted with glass stoppers
under positive pressure of Ar with magnetic stirring, unless otherwise noted. Air- and
moisture-sensitive liquids and solutions were transferred via syringe or stainless-steel
cannula. TLC was performed on 0.25 mm E. Merck (Darmstadt, Germany) silica gel 60
F254 plates and visualized under UV light (254 nm) or by staining with cerium ammonium
molybdenate (CAM), potassium permanganate (KMnO4), ninhydrin, or p-anisaldehyde.
Flash chromatography was performed on E. Merck (Darmstadt, Germany) 230–400 mesh
silica gel 60. Medium-pressure liquid chromatography (MPLC) was performed on a
prepacked column (silica gel, 10 µm) with a UV detector. Reagents were purchased
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from commercial suppliers and used without further purification unless otherwise noted.
Solvents were distilled from proper drying agents (CaH2 or Na wire) under Ar atmosphere
at 760 mmHg. All moisture- and/or oxygen-sensitive solids were handled and stored in a
glovebox under N2. NMR spectra were recorded on Agilent (Santa Clara, CA, USA) Unity
400 instruments or Bruker (Billerica, MA, USA) Avene II 400 MHz NMR spectrometer
system equipped at Ewha Drug Development Research Core Center at 24 ◦C. Chemical
shifts are expressed in ppm relative to TMS (1H, 0 ppm), CDCl3 (1H, 7.26 ppm; 13C,
77.2 ppm), DMSO-d6 (1H, 2.50 ppm; 13C, 39.5 ppm), C6D6 (1H, 7.16 ppm; 13C, 128.1 ppm),
CD3OD (1H, 3.31 ppm; 13C, 49.1 ppm); coupling constants are expressed in Hz. High
resolution mass spectra (HRMS) were obtained by electrospray ionization (ESI, TOF),
electron ionization (EI, magnetic sector), Chemical ionization (CI, magnetic sector), or fast
atom bombardment (FAB, magnetic sector). Infrared spectra were recorded with peaks
reported in cm−1 (see Supplementary Materials).

3.2. Representative Procedure for the Synthesis of Dihydroquinazolinone 2a–u

To a 10 mL oven-dried round-bottom flask with a side arm were added 1b (92.1 mg,
400 µmol) and 4Å MS (500 mg). The flask was brought into the glovebox, and (PPh3)AuCl
(19.8 mg, 40.0 µmol, 10 mol%) and AgOTf (10.3 mg, 40.0 µmol, 10 mol%) were added
inside a glovebox. Then, the flask was brought out of the glovebox, and anhydrous DCE
(4.0 mL) was added. The reaction mixture was stirred at room temperature for 1.5 h.
Upon completion of the reaction, the precipitate was filtered off through a pad of Celite®

and rinsed with CH2Cl2 (50 mL). The filtrate was concentrated by rotary evaporation.
The residue was purified by column chromatography (1.5:1 hexanes/EtOAc) to afford
dihydroquinazolinone 2b (78.5 mg, 340 µmol, 85%) as a white solid.

3.2.1. 3a-Methyl-2,3,3a,4-tetrahydropyrrolo[2,1-b]quinazolin-9(1H)-one (2a)

Reaction time: 1 h (60 ◦C). White solid (64.7 mg, 80%). TLC: Rf 0.08 (1:1 hexane/EtOAc).
mp: 168.9–170.9 ◦C. 1H NMR (400 MHz, C6D6): δ 8.36 (dd, J = 7.6, 1.6 Hz, 1H), 7.09–6.98
(m, 1H), 6.71 (td, J = 7.5, 1.0 Hz, 1H), 6.31–6.24 (m, 1H), 3.69 (dt, J = 12.2, 8.1 Hz, 1H), 3.47
(brs, 1H), 3.45–3.37 (m, 1H), 1.60–1.51 (m, 1H), 1.37–1.30 (m, 2H), 1.27–1.18 (m, 1H), 0.88 (s,
3H). 13C NMR (100 MHz, C6D6): δ 160.8, 146.2, 132.8, 128.9, 119.4, 118.1, 115.0, 75.0, 44.4,
40.6, 24.9, 21.0. HRMS (ESI) m/z calcd for C12H15N2O [M + H]+ 203.1179, found 203.1179.

Ketone 3a: Colorless liquid. TLC: Rf 0.14 (1:1 hexane/EtOAc). 1H NMR (400 MHz,
C6D6): δ 7.24–7.17 (m, 1H), 7.12 (td, J = 7.6, 1.2 Hz, 1H), 6.60 (td, J = 7.6, 1.2 Hz, 1H),
6.40–6.33 (m, 1H), 5.98 (brs, 1H), 5.65 (brs, 2H), 3.25 (q, J = 6.4 Hz, 2H), 1.94 (t, J = 6.8 Hz,
2H), 1.67 (s, 3H), 1.60 (p, J = 6.8 Hz, 2H). 13C NMR (100 MHz, C6D6): δ 207.3, 169.5, 149.9,
132.2, 127.6, 117.3, 116.1, 116.1, 40.8, 39.4, 29.4, 23.6. HRMS (ESI) m/z calcd for C12H17N2O2
[M + H]+ 221.1285, found 221.1287.

3.2.2. 2,2,3a-Trimethyl-2,3,3a,4-tetrahydropyrrolo[2,1-b]quinazolin-9(1H)-one (2b)

Reaction time: 1.5 h (room temperature). White solid (78.5 mg, 85%). TLC: Rf 0.25
(1.5:1 hexanes/EtOAc). mp: 172.3–174.3 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.89 (ddt, J = 7.8,
1.5, 0.6 Hz, 1H), 7.27 (ddd, J = 8.0, 7.3, 1.6 Hz, 1H), 6.85 (ddd, J = 7.8, 7.3, 1.0 Hz, 1H), 6.62
(ddd, J = 8.0, 1.0, 0.5 Hz, 1H), 4.18 (brs, 1H), 3.95 (dd, J = 11.6, 1.6 Hz, 1H), 3.13 (dd, J = 11.6,
0.8 Hz, 1H), 2.05 (dd, J = 13.1 Hz, 1.6 Hz, 1H), 1.97 (d, J = 13.1 Hz, 2H), 1.48 (s, 3H), 1.21
(s, 3H), 1.19 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 161.2, 145.7, 133.2, 128.6, 119.4, 116.7,
115.1, 76.1, 57.6, 55.6, 37.5, 28.3, 27.4, 27.2. HRMS (ESI) m/z calcd for C14H19N2O [M + H]+

231.1492, found 231.1488.

3.2.3. 3a′-Methyl-3a′,4′-dihydro-1′H-spiro[cyclohexane-1,2′-pyrrolo[2,1-b]quinazolin]-
9′(3′H)-one (2c)

Reaction time: 3 h (room temperature). White solid (96.9 mg, 90%). TLC: Rf 0.25 (3:1
hexanes/EtOAc). mp: 241.1–243.1 ◦C. 1H NMR (400 MHz, C6D6): δ 8.39 (dd, J = 7.5, 1.6 Hz,
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1H), 7.05 (ddd, J = 8.0, 7.5, 1.6 Hz, 1H), 6.72 (td, J = 7.5, 1.1 Hz, 1H), 6.21 (dd, J = 8.0, 1.1 Hz,
1H), 4.26 (d, J = 11.9 Hz, 1H), 3.28 (brs, 1H), 2.85 (d, J = 11.9 Hz, 1H), 1.59 (d, J = 13.0 Hz,
1H), 1.30 (d, J = 13.0 Hz, 1H), 1.38–1.04 (m, 10H), 1.00 (s, 3H). 13C NMR (100 MHz, C6D6): δ
160.6, 146.0, 132.8, 129.2, 119.4, 117.6, 114.9, 75.0, 40.7, 37.3, 36.3, 26.8, 26.1, 24.1, 23.3. HRMS
(ESI) m/z calcd for C17H23N2O [M + H]+ 271.1805, found 271.1807.

3.2.4. 4b-Methyl-4b,12-dihydroisoindolo[1,2-b]quinazolin-10(5H)-one (2d)

Reaction time: 1 h (room temperature). White solid (98.1 mg, 98%). TLC: Rf 0.26
(1:1 hexane/EtOAc). mp: 159.2–161.2 ◦C. 1H NMR (400 MHz, CDCl3): δ 8.00 (dd, J = 7.8,
1.6 Hz, 1H), 7.45–7.32 (m, 5H), 7.02–6.93 (m, 1H), 6.87–6.80 (m, 1H), 5.14 (d, J = 15.8 Hz,
1H), 4.76 (d, J = 15.8 Hz, 1H), 4.49 (brs, 1H), 1.66 (s, 3H). 13C NMR (100 MHz, CDCl3): δ
161.4, 144.7, 143.3, 135.8, 133.5, 129.2, 128.6, 128.3, 123.7, 120.8, 120.7, 118.8, 117.1, 78.7, 50.1,
27.5. HRMS (ESI) m/z calcd for C16H15N2O [M + H]+ 251.1179, found 251.1182.

3.2.5. 3a-Ethyl-2,2-dimethyl-2,3,3a,4-tetrahydropyrrolo[2,1-b]quinazolin-9(1H)-one (2e)

Reaction time: 24 h, (60 ◦C). White solid (77.8 mg, 80%). TLC: Rf 0.18 (3:1 hex-
anes/EtOAc). mp: 44.2–46.2 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.87 (dd, J = 7.8, 1.6 Hz,
1H), 7.31–7.22 (m, 1H), 6.84 (ddd, J = 7.8, 7.3, 1.1 Hz, 1H), 6.65–6.58 (m, 1H), 4.37 (brs, 1H),
3.99 (dd, J = 11.6, 1.8 Hz, 1H), 3.10 (dd, J = 11.6, 0.8 Hz, 1H), 2.01 (d, J = 13.2 Hz, 1H), 1.94
(dq, J = 13.6, 7.4 Hz, 1H), 1.84 (dd, J = 13.2, 1.7 Hz, 1H), 1.66 (dq, J = 13.6, 7.4 Hz, 1H), 1.21
(s, 3H), 1.18 (s, 3H), 0.86 (t, J = 7.4 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 161.4, 145.4,
133.2, 128.6, 119.2, 117.1, 114.9, 78.8, 58.4, 52.2, 37.7, 31.9, 28.1, 26.9, 8.5. HRMS (ESI) m/z
calcd for C15H21N2O [M + H]+ 245.1648, found 245.1649.

3.2.6. 5a-Phenyl-5,5a,6,7,8,9-hexahydro-11H-pyrido[2,1-b]quinazolin-11-one (2f)

Reaction time: 4 h (120 ◦C). White solid (11.5 mg, 10%). The reaction mixture was irra-
diated with microwave in a 5 mL microwave process vial. TLC: Rf 0.15 (2:1 hexanes/EtOAc).
mp: 151.1–153.1 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.94 (dd, J = 7.7, 1.6 Hz, 1H), 7.40–7.27
(m, 4H), 7.12–7.04 (m, 2H), 6.90 (td, J = 7.5, 1.0 Hz, 1H), 6.66 (ddd, J = 8.0, 1.1, 0.5 Hz,
1H), 4.52 (brs, 1H), 3.95–3.83 (m, 1H), 3.72–3.61 (m, 1H), 3.18 (dd, J = 13.3, 1.3 Hz, 1H),
2.79 (d, J = 13.3 Hz, 1H), 2.38–2.29 (m, 1H), 2.14–2.01 (m, 1H), 2.01–1.82 (m, 2H). 13C NMR
(100 MHz, CDCl3): δ 161.6, 145.3, 136.2, 133.6, 130.4, 128.8, 128.6, 127.3, 119.6, 117.6, 115.1,
77.8, 45.1, 41.9, 36.8, 21.1. HRMS (ESI) m/z calcd for C18H19N2O [M + H]+ 279.1492, found
279.1494.

Ketone 3f: Ivory solid (6.8 mg, 6%). TLC: Rf 0.50 (1:1 hexane/EtOAc). 1H NMR
(400 MHz, CDCl3): δ 8.01–7.93 (m, 2H), 7.61–7.52 (m, 1H), 7.51–7.42 (m, 2H), 7.36 (dd,
J = 7.8, 1.5 Hz, 1H), 7.20 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 6.71–6.62 (m, 2H), 6.30 (s, 1H), 5.50
(s, 2H), 3.46 (td, J = 6.8, 5.7 Hz, 2H), 3.06 (t, J = 6.8 Hz, 2H), 1.92–1.80 (m, 2H), 1.76–1.65
(m, 2H). 13C NMR (100 MHz, CDCl3): δ 200.3, 169.5, 148.8, 137.0, 133.3, 132.3, 128.8, 128.2,
127.3, 117.4, 116.8, 116.4, 39.4, 38.1, 29.3, 21.3. HRMS (ESI) m/z calcd for C18H21N2O2
[M + H]+ 297.1598, found 297.1601.

3.2.7. 5a-Methyl-5,5a,6,7,8,9-hexahydro-11H-pyrido[2,1-b]quinazolin-11-one (2g)

Reaction time: 1 h (120 ◦C). White solid (25.7 mg, 30%). The reaction mixture was irra-
diated with microwave in a 5 mL microwave process vial. TLC: Rf 0.20 (2:1 hexanes/EtOAc).
mp: 139.8–141.8 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.90 (dd, J = 7.9, 1.6 Hz, 1H), 7.31–7.22
(m, 1H), 6.80 (ddd, J = 7.9, 7.3, 1.0 Hz, 1H), 6.56 (d, J = 7.9, 1.0 Hz, 1H), 4.54 (m, 1H), 4.03
(brs, 1H), 2.74 (m, 1H), 1.98–1.89 (m, 1H), 1.87–1.81 (m, 3H), 1.65–1.50 (m, 2H), 1.47 (s, 3H).
13C NMR (100 MHz, CDCl3): δ 163.9, 144.7, 133.6, 128.9, 118.9, 115.8, 114.3, 70.7, 39.2, 38.6,
24.4, 22.3, 20.6. HRMS (ESI) m/z calcd for C13H17N2O [M + H]+ 217.1335, found 217.1335.

Ketone 3g: Colorless liquid (14.0 mg, 15%). TLC: Rf 0.15 (1.5:1 hexanes/EtOAc). 1H
NMR (400 MHz, CDCl3): δ 7.34 (dd, J = 7.9, 1.5 Hz, 1H), 7.20 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H),
6.71–6.61 (m, 2H), 6.24 (s, 1H), 5.50 (s, 2H), 3.40 (td, J = 6.6, 5.6 Hz, 2H), 2.51 (t, J = 6.8 Hz,
2H), 2.15 (s, 3H), 1.73–1.59 (m, 4H). 13C NMR (100 MHz, CDCl3): δ 163.9, 144.7, 133.6, 128.9,
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118.9, 115.8, 114.3, 70.7, 39.7, 38.6, 24.4, 22.3, 20.6. HRMS (ESI) m/z calcd for C13H19N2O2
[M + H]+ 235.1441, found 235.1442.

3.2.8. 2-methoxy-5a-methyl-5,5a,6,7,8,9-hexahydro-11H-pyrido[2,1-b]quinazolin-11-one (2h)

Reaction time: 2.5 h (120 ◦C). A total of 754 µmol of 1h was used. White solid (175 mg,
94%). The reaction mixture was irradiated with microwave in a 5 mL microwave process
vial. TLC: Rf 0.30 (2:1 hexanes/EtOAc). mp: 146.7–147.8 ◦C. 1H NMR (400 MHz, DMSO-d6):
δ 7.14 (d, J = 3.0 Hz, 1H), 6.91 (dd, J = 8.7, 3.0 Hz, 1H), 6.61 (d, J = 8.7 Hz, 1H), 6.34 (s, 1H),
4.35–4.13 (m, 1H), 3.67 (s, 3H), 2.65 (td, J = 13.4, 3.5 Hz, 1H), 1.90–1.65 (m, 4H), 1.62–1.34
(m, 2H), 1.32 (s, 3H). 13C NMR (100 MHz, DMSO-d6): δ 162.7, 151.1, 140.4, 121.3, 115.7,
114.5, 110.3, 70.4, 55.3, 38.0, 37.8, 24.0, 20.9, 19.8. HRMS (EI) m/z calcd for C14H18N2O2
[M]+ 246.1368, found 246.1364.

3.2.9. 2,3-dimethoxy-5a-methyl-5,5a,6,7,8,9-hexahydro-11H-pyrido[2,1-b]quinazolin-11-one (2i)

Reaction time: 1.25 h (120 ◦C). A total of 719 µmol of 1i was used. White solid (167 mg,
84%). The reaction mixture was irradiated with microwave in a 5 mL microwave process
vial. TLC: Rf 0.30 (1:1 hexanes/EtOAc). mp: 195.5–196.7 ◦C. 1H NMR (400 MHz, DMSO-d6):
δ 7.09 (s, 1H), 6.40 (s, 1H), 6.22 (s, 1H), 4.22 (dd, J = 12.4, 4.3 Hz, 1H), 3.74 (s, 3H), 3.66 (s, 3H),
2.61 (td, J = 13.5, 3.3 Hz, 1H), 1.87–1.65 (m, 4H), 1.62–1.44 (m, 1H), 1.37 (td, J = 8.8, 4.3 Hz,
1H), 1.32 (s, 3H). 13C NMR (100 MHz, DMSO-d6): δ 162.8, 153.9, 141.8, 141.1, 110.4, 105.5,
97.5, 70.4, 55.9, 55.3, 38.1, 37.7, 24.1, 20.6, 19.9. HRMS (ESI) m/z calcd for C15H21N2O3
[M + H]+ 277.1547, found 277.1546.

3.2.10. 5a,8,8-Trimethyl-5,5a,6,7,8,9-hexahydro-11H-pyrido[2,1-b]quinazolin-11-one (2j)

Reaction time: 20 min (120 ◦C). White solid (55.2 mg, 57%). The reaction mixture
was irradiated with microwave in a 5 mL microwave process vial. TLC: Rf 0.20 (2:1
hexanes/EtOAc). mp: 121.6–123.6 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.91 (dd, J = 7.8, 1.6
Hz, 1H), 7.27 (m, 1H), 6.81 (td, J = 7.5, 1.1 Hz, 1H), 6.57 (dd, J = 8.1, 1.1 Hz, 1H), 4.22 (dd,
J = 13.7, 1.9 Hz, 1H), 4.03 (brs, 1H), 2.49 (dd, J = 13.7, 0.8 Hz, 1H), 2.13 (td, J = 12.7, 5.5 Hz,
1H), 1.72 (dt, J = 12.7, 4.1 Hz, 1H), 1.54–1.45 (m, 2H), 1.44 (d, J = 0.8 Hz, 3H), 1.03 (s, 3H),
1.02 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 164.0, 144.7, 133.6, 128.9, 118.9, 114.3, 77.4,
70.3, 49.1, 35.7, 33.8, 30.1, 29.0, 23.9, 22.4. HRMS (ESI) m/z calcd for C15H21N2O [M + H]+

245.1648, found 245.1651.

3.2.11. 13a-Methyl-5,6,13,13a-tetrahydro-8H-isoquinolino[1,2-b]quinazolin-8-one (2k)

Reaction time: 1 h (120 ◦C). White solid (64.6 mg, 61%). The reaction mixture was irra-
diated with microwave in a 5 mL microwave process vial. TLC: Rf 0.20 (2:1 hexanes/EtOAc).
mp: 187.3–189.3 ◦C. 1H NMR (400 MHz, CDCl3): δ 8.01 (dd, J = 7.9, 1.5 Hz, 1H), 7.42 (dd,
J = 7.9, 1.5 Hz, 1H), 7.39–7.28 (m, 3H), 7.21 (dd, J = 7.5, 1.6 Hz, 1H), 6.92 (ddd, J = 8.2, 7.3,
1.1 Hz, 1H), 6.76–6.70 (m, 1H), 5.07–4.94 (m, 1H), 4.36 (brs, 1H), 3.12–2.95 (m, 2H), 2.89–2.76
(m, 1H), 1.78 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 162.7, 144.4, 138.9, 134.6, 133.6, 129.6,
129.0, 128.2, 127.5, 124.6, 120.0, 117.3, 116.2, 71.5, 36.0, 29.2, 26.3. HRMS (ESI) m/z calcd for
C17H17N2O [M + H]+ 265.1335, found 265.1336.

3.2.12. 5a,9,9-Trimethyl-5a,6,7,8,9,10-hexahydroazepino[2,1-b]quinazolin-12(5H)-one (2l)

Reaction time: 1 h (120 ◦C). White solid (31.5 mg, 31%). The reaction mixture was irra-
diated with microwave in a 5 mL microwave process vial. TLC: Rf 0.25 (4:1 hexanes/EtOAc).
mp: 177.9–179.9 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.87 (dd, J = 7.5, 1.6 Hz, 1H), 7.24 (ddd,
J = 8.0, 7.5, 1.6 Hz, 1H), 6.78 (td, J = 7.5, 1.0. Hz, 1H), 6.59 (dd, J = 8.0, 1.0 Hz, 1H), 4.29 (dd,
J = 14.1, 2.1 Hz, 1H), 4.10 (brs, 1H), 2.62 (d, J = 14.1 Hz, 1H), 2.21–2.04 (m, 1H), 1.98–1.75
(m, 2H), 1.59–1.43 (m, 2H), 1.40 (s, 3H), 1.29–1.14 (m, 1H), 0.96 (s, 3H), 0.91 (s, 3H). 13C
NMR (100 MHz, CDCl3): δ 164.0, 145.6, 133.3, 129.1, 118.9, 115.8, 114.5, 74.3, 49.3, 44.8, 43.8,
35.5, 29.7, 25.6, 23.4, 19.2. HRMS (ESI) m/z calcd for C16H23N2O [M + H]+ 259.1805, found
259.1806.
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Ketone 3l: Colorless liquid (18.8 mg, 17%). TLC: Rf 0.08 (4:1 hexanes/EtOAc). 1H
NMR (400 MHz, CDCl3): δ 7.43 (dd, J = 8.1, 1.5 Hz, 1H), 7.23–7.15 (m, 1H), 6.71–6.62 (m,
2H), 6.49 (s, 1H), 5.48 (s, 2H), 3.28 (d, J = 6.4 Hz, 2H), 2.44 (t, J = 6.7 Hz, 2H), 2.13 (s, 3H),
1.62–1.50 (m, 2H), 1.23–1.16 (m, 2H), 0.92 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 209.4,
169.6, 148.8, 132.2, 127.3, 117.3, 116.8, 116.7, 48.1, 43.8, 39.0, 34.8, 30.2, 25.4, 17.9. HRMS
(ESI) m/z calcd for C16H25N2O2 [M + H]+ 277.1911, found 277.1913.

3.2.13. 8-Chloro-4b-methyl-4b,12-dihydroisoindolo[1,2-b]quinazolin-10(5H)-one (2m)

Reaction time: 30 min (room temperature). White solid (109.8 mg, 96%). TLC: Rf

0.34 (2:1 hexane/EtOAc). mp: 207.3–209.2 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.95 (d,
J = 2.5 Hz, 1H), 7.45–7.35 (m, 4H), 7.30 (dd, J = 8.5, 2.5 Hz, 1H), 6.80 (d, J = 8.5 Hz, 1H),
5.10 (d, J = 15.8 Hz, 1H), 4.74 (d, J = 15.8 Hz, 1H), 4.67 (brs, 1H), 1.65 (s, 3H). 13C NMR (100
MHz, CDCl3): δ 160.3, 143.2, 142.8, 135.5, 133.5, 129.3, 128.4, 128.2, 125.8, 123.7, 120.8, 119.8,
118.6, 78.9, 50.1, 27.5. HRMS (ESI) m/z calcd for C16H14ClN2O [M + H]+ 285.0789, found
285.0789.

3.2.14. 7-Chloro-4b-methyl-4b,12-dihydroisoindolo[1,2-b]quinazolin-10(5H)-one (2n)

Reaction time: 30 min (room temperature). White solid (110.7 mg, 97%). TLC: Rf 0.28
(2:1 hexane/EtOAc). mp: 232.3–233.7 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.92 (d, J = 8.3 Hz,
1H), 7.44–7.39 (m, 3H), 7.39–7.33 (m, 1H), 6.92 (dd, J = 8.3, 1.9 Hz, 1H), 6.83 (d, J = 1.9 Hz,
1H), 5.12 (d, J = 16.0 Hz, 1H), 4.74 (d, J = 16.0 Hz, 1H), 4.57 (brs, 1H), 1.67 (s, 3H). 13C NMR
(100 MHz, CDCl3): δ 160.2, 143.6, 142.8, 136.3, 135.5, 131.2, 129.3, 128.4, 123.7, 120.8, 120.0,
118.8, 112.7, 78.9, 50.1, 27.5. HRMS (ESI) m/z calcd for C16H14ClN2O [M + H]+ 285.0789,
found 285.0790.

3.2.15. 8-Bromo-4b-methyl-4b,12-dihydroisoindolo[1,2-b]quinazolin-10(5H)-one (2o)

Reaction time: 2 h (room temperature). White solid (121.6 mg, 92%). TLC: Rf 0.28 (2:1
hexane/EtOAc). mp: 213.1–215.1 ◦C. 1H NMR (400 MHz, CDCl3): δ 8.11 (d, J = 2.3 Hz,
1H), 7.45 (dd, J = 8.5, 2.4 Hz, 1H), 7.42–7.39 (m, 3H), 7.39–7.35 (m, 1H), 6.73 (d, J = 8.5 Hz,
1H), 5.12 (d, J = 16.0 Hz, 1H), 4.75 (d, J = 16.0 Hz, 1H), 4.48 (brs, 1H), 1.66 (s, 3H). 13C NMR
(100 MHz, CDCl3): δ 160.2, 143.6, 142.8, 136.3, 135.5, 131.2, 129.3, 128.4, 123.7, 120.8, 120.0,
118.8, 112.7, 78.9, 50.1, 27.5. HRMS (ESI) m/z calcd for C16H14BrN2O [M + H]+ 329.0284,
found 329.0285.

3.2.16. 4b-methyl-7-nitro-4b,12-dihydroisoindolo[1,2-b]quinazolin-10(5H)-one (2p)

Reaction time: 30 min (room temperature). Yellow solid (114.8 mg, 97%). TLC: Rf 0.25
(1:1 hexane/EtOAc). mp: 279.1–281.4 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 8.15 (brs, 1H),
7.93 (d, J = 8.5 Hz, 1H), 7.68 (d, J = 2.3 Hz, 1H), 7.62–7.53 (m, 2H), 7.51–7.36 (m, 3H), 4.99 (d,
J = 16.0 Hz, 1H), 4.70 (d, J = 16.0 Hz, 1H), 1.58 (s, 3H). 13C NMR (100 MHz, DMSO-d6): δ
158.5, 150.7, 146.9, 142.8, 134.7, 129.2, 128.7, 128.0, 123.5, 121.3, 120.0, 111.9, 109.8, 78.5, 49.5,
27.1. HRMS (ESI) m/z calcd for C16H14N3O3 [M + H]+ 296.1030, found 296.1031.

3.2.17. 4b,8-Dimethyl-4b,12-dihydroisoindolo[1,2-b]quinazolin-10(5H)-one (2q)

Reaction time: 8 h (room temperature). White solid (96.2 mg, 91%). TLC: Rf 0.14 (2:1
hexane/EtOAc). mp: 191.2–192.7 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.76 (d, J = 1.6 Hz,
1H), 7.49–7.42 (m, 1H), 7.39–7.28 (m, 3H), 7.16 (dd, J = 8.2, 2.0 Hz, 1H), 6.84 (d, J = 8.2 Hz,
1H), 5.11 (brs, 1H), 5.06 (d, J = 15.8 Hz, 1H), 4.69 (d, J = 15.8 Hz, 1H), 2.29 (s, 3H), 1.63
(s, 3H). 13C NMR (100 MHz, CDCl3): δ 161.5, 143.2, 142.1, 135.6, 134.4, 130.4, 129.0, 128.4,
128.2, 123.5, 121.2, 118.9, 117.8, 78.9, 49.9, 27.0, 20.7. HRMS (ESI) m/z calcd for C17H17N2O
[M + H]+ 265.1335, found 265.1335.

3.2.18. 8-Methoxy-4b-methyl-4b,12-dihydroisoindolo[1,2-b]quinazolin-10(5H)-one (2r)

Reaction time: 24 h (room temperature). White solid (84.7 mg, 76%). TLC: Rf 0.26 (1:2
hexane/EtOAc). mp: 192.5–193.8 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.54 (d, J = 2.9 Hz, 1H),
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7.44–7.37 (m, 4H), 7.01 (dd, J = 8.7, 3.0 Hz, 1H), 6.90 (d, J = 8.7 Hz, 1H), 5.12 (d, J = 15.9 Hz,
1H), 4.75 (d, J = 15.9 Hz, 1H), 3.85 (s, 3H), 1.61 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 161.2,
155.0, 143.4, 137.9, 135.9, 129.2, 128.3, 123.6, 121.5, 121.4, 121.3, 120.9, 110.7, 79.1, 55.9, 49.8,
27.1. HRMS (ESI) m/z calcd for C17H16N2NaO2 [M + Na]+ 303.1104, found 303.1107.

3.2.19. 7,8-dimethoxy-4b-methyl-4b,12-dihydroisoindolo[1,2-b]quinazolin-10(5H)-one (2s)

Reaction time: 3 h (room temperature). White solid (88.9 mg, 72%). TLC: Rf 0.22 (1:1
hexane/EtOAc). mp: 154.6–156.1 ◦C. 1H NMR (400 MHz, CD3OD): δ 7.55–7.49 (m, 1H),
7.46–7.38 (m, 3H), 7.33 (s, 1H), 6.50 (s, 1H), 5.01 (d, J = 15.9 Hz, 1H), 4.70 (d, J = 15.9 Hz, 1H),
3.87 (s, 3H), 3.82 (s, 3H), 1.62 (s, 3H). 13C NMR (100 MHz, CD3OD): δ 163.6, 156.3, 144.8,
144.3, 143.8, 136.4, 129.9, 129.2, 124.3, 122.3, 111.4, 109.0, 100.5, 80.4, 57.0, 56.3, 50.7, 26.2.
HRMS (ESI) m/z calcd for C18H19N2O3 [M + H]+ 311.1390, found 311.1393.

3.2.20. 6,7,8-trimethoxy-4b-methyl-4b,12-dihydroisoindolo[1,2-b]quinazolin-10(5H)-one (2t)

Reaction time: 1 h (room temperature). White solid (116.5 mg, 86%). TLC: Rf 0.16 (1:1
hexane/EtOAc). mp: 190.4–192.4 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.43 (dtd, J = 5.7, 3.1,
1.1 Hz, 1H), 7.41–7.33 (m, 3H), 7.28 (s, 1H), 5.10 (d, J = 15.8 Hz, 1H), 4.81 (brs, 1H), 4.74 (d,
J = 15.8 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 1.64 (s, 3H). 13C NMR (100 MHz,
CDCl3): δ 160.9, 146.9, 146.4, 143.1, 141.0, 135.4, 133.7, 128.9, 128.1, 123.4, 120.8, 112.1,
105.7, 79.0, 60.9, 60.9, 56.3, 50.0, 26.8. HRMS (ESI) m/z calcd for C19H20N2NaO4 [M + Na]+

363.1315, found 363.1318.

3.2.21. 4b,5-dimethyl-4b,12-dihydroisoindolo[1,2-b]quinazolin-10(5H)-one (2u)

Reaction time: 1.5 h (60 ◦C). White solid (102.5 mg, 97%). TLC: Rf 0.15 (5:1 hex-
ane/EtOAc). mp: 133.0–134.8 ◦C. 1H NMR (400 MHz, CDCl3): δ 8.05 (dd, J = 7.7, 1.4 Hz,
1H), 7.55–7.44 (m, 2H), 7.44–7.38 (m, 3H), 7.14–7.03 (m, 2H), 5.13 (d, J = 15.9 Hz, 1H), 4.81
(d, J = 15.9 Hz, 1H), 2.74 (s, 3H), 1.54 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 161.5, 149.0,
140.7, 136.4, 133.4, 129.2, 128.1, 127.7, 124.4, 123.7, 122.4, 121.9, 119.7, 83.4, 50.4, 37.1, 25.5.
HRMS (ESI) m/z calcd for C17H16N2NaO [M + Na]+ 287.1155, found 287.1158.

4. Conclusions

In conclusion, we developed a gold(I)-catalyzed one-pot cascade process for alkyne-
tethered anthranilamides, which allows facile access to polycyclic dihydroquinazolinones in
good to excellent yields under mild reaction conditions. This one-pot cascade methodology
is widely applicable to the synthesis of bioactive privileged natural product scaffolds and of-
fers a straightforward approach to increase molecular complexity and structural diversity in
a few synthetic steps. The use of this method to construct polycyclic dihydroquinazolinone-
like libraries is currently underway in our laboratory.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11121436/s1, detailed synthetic procedure of 1a–u and copies of 1H and 13C NMR
spectra of 1a–u and 2a–u.
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