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Abstract: 1,2,3,4-Tetrahydroisoquinolines form a valuable scaffold for a variety of bioactive sec-
ondary metabolites and commercial pharmaceuticals. Due to the harsh or complex conditions of
the conventional chemical synthesis of this molecular motif, alternative mild reaction pathways are
in demand. Here we present an easy-to-operate chemoenzymatic one-pot process for the synthe-
sis of tetrahydroisoquinolines starting from benzylic alcohols and an amino alcohol. We initially
demonstrate the oxidation of 12 benzylic alcohols by a laccase/TEMPO system to the corresponding
aldehydes, which are subsequently integrated in a phosphate salt mediated Pictet–Spengler reaction
with m-tyramine. The reaction conditions of both individual reactions were analyzed separately,
adapted to each other, and a straightforward one-pot process was developed. This enables the
production of 12 1,2,3,4-tetrahydroisoquinolines with yields of up to 87% with constant reaction
conditions in phosphate buffer and common laboratory glass bottles without the supplementation of
any additives.

Keywords: laccase; TEMPO; chemoenzymatic cascade; pharmaceutical scaffold; heterogeneous
catalysis; homogeneous catalysis; Pictet–Spengler reaction; biocatalysis

1. Introduction

1,2,3,4-Tetrahydroisoquinolines (1, THIQs) form the backbone of numerous plant-
derived and mammalian bioactive alkaloids and their derivatives [1,2]. Their potential
pharmacological applications include their use as antidepressants, antitumor, anti-HIV and
antimalarial drugs [3–6]. THIQs 1 available on the market include the antihypertensive
quinapril and the antitussive noscapine [7,8]. The pharmacological and structural diversity
of natural and synthetic THIQs 1 makes them a relevant motive for the synthesis of
compound libraries in drug development (Scheme 1) [9].

Different strategies for obtaining THIQs 1 have been developed. In addition to the
extraction of alkaloids from higher plants, which provides insufficient amounts of the target
compounds and complex product mixtures, application of biocatalysts (Pictet–Spenglerases)
of the corresponding biosynthetic pathways is the focus of current research [10]. One of
the best-studied examples is norcoclaurine synthases (NCS) catalyzing the formation of a
THIQ 1 between dopamine and 4-hydroxyphenylacetaldehyde in plants [11–16]. A major
limitation of the use of these biocatalysts, however, is their narrow substrate spectrum,
which is constantly being expanded by examining the protein structures and reaction
mechanisms coupled with enzyme engineering [17–22].
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hydes, but these catalysts are not commercially available, and the reactions can only be 

carried out under inert conditions [29]. 

In recent years, the use of phosphate salts and buffers for the production of THIQs 1 

by the Pictet–Spengler reaction involving a wide range of substrates including aliphatic, 

aromatic, and heterocyclic aldehydes and ketones has been reported (Scheme 1) [20,30–
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sponding carboxylic acid when stored; one of the best-known examples is the autoxida-

tion of benzaldehyde to benzoic acid [37]. Therefore, the in situ generation of aldehydes 

from their corresponding primary alcohols could provide an appropriate solution in cas-
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ganic metal salts, are known in chemistry, but they still cause problems due to environ-

mental pollution or safety aspects. 

As a biocompatible method, the use of the multi-copper enzyme laccase together 

with the air-stable organocatalyst (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (2, TEMPO) has 
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which is in turn recycled in a second catalytic cycle by the primary oxidant oxygen and 

the multicopper oxidase (Scheme 2). 

Scheme 1. Access to 1,2,3,4-Tetrahydroisoquinolines 1 by the Pictet–Spengler reaction or Bischler-Napieralski reaction with
subsequent reduction.

In classical synthetic processes, either the Pictet–Spengler reaction, starting from β-
arylethylamines and aldehydes, or the Bischler-Napieralski reaction combined with a subse-
quent reduction provide access to the corresponding THIQ 1 scaffolds (Scheme 1) [23,24].
However, the use of these reactions is accompanied by harsh reaction conditions such
as high reaction temperatures (>100 ◦C) and the use of strong acids as well as Lewis
acids [25–28]. They are therefore not suitable for use in chemoenzymatic cascades. An-
other alternative is the synthetic application of calcium hexafluoroisopropoxide complexes,
which is a mild variant for the synthesis of THIQs 1 from β-arylethylamines and aldehydes,
but these catalysts are not commercially available, and the reactions can only be carried
out under inert conditions [29].

In recent years, the use of phosphate salts and buffers for the production of THIQs
1 by the Pictet–Spengler reaction involving a wide range of substrates including aliphatic,
aromatic, and heterocyclic aldehydes and ketones has been reported (Scheme 1) [20,30–33].
These low-cost phosphate salts allow mild reaction conditions and are also compatible
with chemoenzymatic reaction cascades. In the recent literature, there is a considerable
number of reviews focusing on in vitro chemoenzymatic and biocatalytic cascades, their
great benefits in synthesis routes of complex molecules, and the potential for their opti-
mization [34–36].

Another critical aspect in the synthesis of THIQs 1 is the dependence on aldehydes.
This functional group is characterized by its reactivity and tends to oxidize into the corre-
sponding carboxylic acid when stored; one of the best-known examples is the autoxidation
of benzaldehyde to benzoic acid [37]. Therefore, the in situ generation of aldehydes from
their corresponding primary alcohols could provide an appropriate solution in cascade
reactions. Several methods for this kind of oxidation, such as the application of inorganic
metal salts, are known in chemistry, but they still cause problems due to environmental
pollution or safety aspects.

As a biocompatible method, the use of the multi-copper enzyme laccase together with
the air-stable organocatalyst (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (2, TEMPO) has been
described in literature in recent years and was also implemented in cascade reactions [38–51].
The oxidation of the primary alcohol is catalyzed by the mediator TEMPO (2), which is in
turn recycled in a second catalytic cycle by the primary oxidant oxygen and the multicopper
oxidase (Scheme 2).
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Scheme 2. Catalytic cycles of a laccase/TEMPO (2) system for the oxidation of primary alcohols to their corresponding
aldehydes (adapted from Tromp et al.) [41]. THIQs 1 are formed by the consecutive Pictet–Spengler reaction with the amino
alcohol m-tyramine (4).

Here, we develop a straightforward one-pot chemoenzymatic process for the pro-
duction of 1-phenyl-1,2,3,4-THIQs 1 using benzylic alcohols 3 and the ß-arylethylamine
m-tyramine (4). Based on the reaction conditions for the phosphate salt-mediated Pictet–
Spengler reaction, first a suitable laccase/TEMPO (2) system was investigated for the
oxidation of benzylic alcohols 3 to their corresponding benzaldehydes 5. Subsequently, the
two reactions were combined in a one-pot process.

2. Results and Discussion

For the development of an easy-to-operate one-pot chemoenzymatic process towards
THIQs 1, the following objectives were initially defined: The entire process should be
performed in a standard glass vessel in potassium phosphate (KPi) buffer with minimal
or no supplementation of additives (no co-solvents and antioxidants) at constant reaction
conditions (temperature, constant pH and ionic strength of the buffer) in a common device
(incubator shaker, oxygen atmosphere).

2.1. Oxidation of Benzylic Alcohols 3 via the Laccase/TEMPO (2) System

Studies on the laccase-catalyzed oxidation of alcohols to the corresponding aldehydes
or ketones using TEMPO (2) as a mediator have been published in recent years. Common
to most publications is the use of the fungal laccase from Trametes versicolor, which has a
pH optimum at pH 4.5–5.0 in acetate buffer (usually with the addition of co-solvents like
toluene, acetonitrile or MTBE) [40–46]. As the subsequent phosphate salt-mediated Pictet–
Spengler reaction was to take place in KPi buffer, the acetate buffer was not compatible. In
addition, computer-based DFT and MP2 calculations of the phosphate-mediated reaction
with formaldehyde and 3-hydroxyphenylethylamines showed that an alkaline pH value
of 8–9 represents an energetic minimum for the reaction. In this pH range both HPO4

2−

and H2PO4
− ions are present, which are necessary for the abstraction of protons (for a

suggested mechanism see S4.2.3, Scheme S1) [32]. Therefore, the two-domain laccase Ssl1
(Streptomyces sviceus laccase 1) from a mesophilic source organism was introduced as an
alternative. Depending on suitable substrates, this laccase shows an alkaline activity profile
with a pH optimum around pH 8–9 and also exhibits high stability over a wide pH range
(pH 5–11) and elevated temperatures [52–54].

The heterologous expression of the laccase gene ssl1 was performed in Escherichia coli
BL21 (DE3) at 25 ◦C in Terrific Broth (TB) medium supplemented with 2 mM copper sulfate
and 40 µM IPTG for induction. Higher concentrations of IPTG led to a reduction of the
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active enzyme amount. The cell lysates (either from frozen cell pellets or freeze-dried cells)
were treated with heat at 65 ◦C for 20 min to deactivate non-specific enzyme activities. The
determination of the laccase activity of the clarified cell supernatants was then performed
in a colorimetric assay using 2,6-dimethoxyphenol (2,6-DMP) as the substrate (for further
information on expression, preparation and activity determination see S3.1–S3.3). As a
result of the heat treatment, the clarified cell supernatants could be directly used in the
oxidation reactions without the requirement of time-consuming enzyme purification.

The substrate benzyl alcohol (3a), which was initially chosen for the standard reaction,
proved to be unsuitable for closer analysis of the oxidation reaction towards benzalde-
hyde (5a), as no variation of the reaction conditions allowed a complete conversion to
be achieved. Therefore, 2-bromobenzyl alcohol (3b) and its corresponding aldehyde 2-
bromobenzaldehyde (5b) were applied as alternative substrates for all analyses of the
laccase/TEMPO (2) system and the subsequent Pictet–Spengler reaction. Furthermore, the
use of a halogenated substrate allows for a future entry point of chemical derivatizations.

The oxidation was carried out in KPi buffer with a concentration of 0.2 M and a pH
value of 8 (activity optimum of laccase) at 37 ◦C without any addition of a co-solvent. These
reaction conditions represented a compromise between previously published parameters:
studies on the laccase Ssl1 were mainly performed at room temperature, whereas for the
phosphate salt-mediated Pictet–Spengler reaction temperatures ranging from 50 to 70 ◦C
and phosphate concentrations between 0.1 and 1.0 M were reported [20,30,33,52,55]. In
analytical approaches in glass vials, the oxidation of 2-bromobenzyl alcohol (3b, c = 0.12 M;
batch size 1 mL) was initially investigated as a function of the volumetric activity of the
laccase Ssl1 and the equivalents of TEMPO (2) as the mediator (Figure 1).
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Figure 1. Analysis of the laccase/TEMPO (2) system for the oxidation of 2-bromobenzyl alcohol (3b,
c = 0.12 M) to the corresponding 2-bromobenzaldehyde (5b). (A) To determine the conversion for
individual volumetric activities of Ssl1 a constant amount of TEMPO (2, 0.175 equiv) was chosen; (B)
in order to determine the conversion for individual amounts of TEMPO (2), a constant volumetric
activity of Ssl1 of 1 U/mL was chosen. (The rel. conversion is derived from the ratio (benzylic
alcohol:benzaldehyde) by GC; the data was analyzed by a logistic regression.).

It could be observed that complete conversion of the starting material was achieved at
a laccase activity of >0.5 U/mL and a TEMPO (2) quantity of > 0.15 equivalents (referring
to 1 equiv of 2-bromobenzyl alcohol (3b)). A subsequent upscaling on a semi-preparative
batch with 2-bromobenzyl alcohol (3b, c = 0.12 M; batch size 10 mL) also showed complete
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conversion under these conditions without the formation of the possible over-oxidized
product 2-bromobenzoic acid. In contrast, in control studies without TEMPO (2) or laccase
(buffer only or heat-treated clarified cell supernatants of E. coli bearing an empty vector)
no conversion could be detected. This proved that a specific purification of the laccase via
protein tags is therefore not essential for the preparative application in biocatalytic reactions.
Likewise, no co-solvents are obligatory, despite the reaction being a heterogeneous mixture.
Regarding different molarities of the KPi buffer, an increase of the concentration had a
negative effect on conversion. A significant reduction to only 50% is apparent at the
concentration of 1 M, as previously applied in the literature for the subsequent phosphate
salt-mediated Pictet–Spengler reaction with aldehydes.

The conditions of the analytical approaches with 2-bromobenzyl alcohol (3b) were
transferred to benzyl alcohol (3a) and 10 additional benzyl alcohol derivatives 3c–l con-
taining substitutions at the ortho and para positions with electron withdrawing (EWG) and
electron donating (EDG) groups (Scheme 3 and Table 1). While hydroxylated benzylic
alcohols (compounds not shown; R=OH) were also tested, there was—as expected—a con-
siderable formation of side product as seen from the discoloration of the reaction solution
to dark brown, hinting to the formation of oligo-/polymers. As a trend, a slightly adverse
effect of activating EDG groups was observed in both positions. Except for benzyl alcohol
(3a), all substrates applied in the laccase/TEMPO (2) system demonstrated a conversion
of at least 72%—a considerable number of them even a complete conversion. For consis-
tency, the conditions of the oxidation of benzylic alcohols 3 were applied unchanged to the
subsequent cascade development.
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Scheme 3. Oxidation of benzylic alcohols 3a–l towards their corresponding benzaldehydes 5a–l in
the laccase/TEMPO (2) system; for results see Table 1.

Table 1. Conversion of laccase-mediated oxidation.

Benzylic
Alcohol Benzaldehyde R Conversion [%] 1

3a 5a H 28
3b 5b 2-Br 100
3c 5c 2-F 73
3d 5d 2-NO2 100
3e 5e 2-OMe 72
3f 5f 4-Br 100
3g 5g 4-Cl 92
3h 5h 4-F 98
3i 5i 4-CF3 100
3j 5j 4-NO2 84
3k 5k 4-Me 100
3l 5l 4-OMe 90

1 The conversion was derived from the ratio (benzylic alcohol; benzaldehyde) by GC.

2.2. Phosphate Salt-Mediated Pictet–Spengler Reaction

In recent years it has been shown that phosphate compounds (KH2PO4, NaH2PO4,
Na4P2O7, glucose-1-phosphate, uridine monophosphate) can be used as mediators in
the Pictet–Spengler reaction [30,33]. The application of the low-cost KPi buffer avoids the
aforementioned harsh reaction conditions and the use of metals as Lewis acids or complex
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catalysts. For the evaluation of the parameters of the selected standard reaction with 2-
bromobenzaldehyde (5b) and m-tyramine hydrobromide (4·HBr), the previously published
reactions of Erdmann et al. were referred to, in which the phosphate salt-mediated Pictet–
Spengler reaction between 2-bromobenzaldehyde (5b) and metaraminol—an m-tyramine (4)
derivative—was performed [20]. Erdmann et al. implemented their reaction in a 1:10 (v/v)
mixture of KPi buffer (0.2 M or 1.0 M, pH 7) and the co-solvent DMSO supplemented with
the antioxidant sodium ascorbate (0.5 eq.) under an inert gas atmosphere at 60 ◦C for 18 h
(54% yield). Taking the previous optimizations for the oxidation of the benzylic alcohols
3a–l in the laccase/TEMPO (2) system into account, KPi buffer (0.2 M) was chosen as the
reaction medium without the addition of a co-solvent for the Pictet–Spengler reaction. By
omitting the co-solvent (beside DMSO, acetonitrile, ethanol, and methanol are mentioned
in literature) the product precipitates during the reaction and is therefore removed from a
possible equilibrium. With the chosen reaction parameters, the corresponding THIQ 1b
was formed in 74% yield as a racemic mixture at pH 7 and 60 ◦C (Scheme 4 and Table 2).
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Scheme 4. Analysis of the reaction parameters for the phosphate salt-mediated Pictet–Spengler
reaction with 2-bromobenzaldehyde (5b) and m-tyramine hydrobromide (4·HBr) towards the THIQ
1b; for results see Table 2.

Table 2. Parameters influencing the Pictet-Spengler reaction.

pH T [◦C] Sodium
Ascorbate Atmosphere Yield [%] 1

5 60 + N2 2
7 60 + N2 74
7 37 + N2 65
8 37 + N2 67
8 37 - N2 65
8 37 - O2 68

1 The yields are related to the quantity of m-tyramine hydrobromide (4·HBr) used.

With the envisioned goal of a straightforward one-pot process, the temperature and
pH were adjusted to the established reaction conditions of the benzylic alcohol 3 oxidation
in the laccase/TEMPO (2) system (37 ◦C, pH 8; yield 67%, Table 2). The slightly alkaline
pH value thus also corresponds to the aforementioned optimum of the phosphate salt-
mediated Pictet–Spengler reaction and the activity optimum of the laccase Ssl1 [32,52]. The
high influence of an alkaline pH is also confirmed by a control experiment at pH 5 (optimum
of the fungal laccase from T. versicolor), resulting in a yield of only 2%. By choosing these
reaction conditions the following predefined objectives of the one-pot process were already
considered: constant temperature, pH, and ionic strength of the buffer; no co-solvents. In
a second series of experiments, the requirement for the additive sodium ascorbate and
reaction handling under inert gas atmosphere to avoid possible oxidation side reactions
were evaluated. However, no significant influence of these parameters could be determined,
enabling the reaction to be carried out under oxygen atmosphere and avoiding additives
completely (Scheme 4). In addition, the reaction can be carried out with the same efficiency
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both in glass flasks with magnetic stirring bars and glass vials in an incubator shaker.
Furthermore, the downstream process for the extraction and purification of THIQs 1 was
also improved compared to the methods currently described in the literature for semi-
preparative and preparative reaction scales [20,30,33]. The extracted raw material could
be effectively purified from remaining aldehyde 5 by substituting aqueous HCl to HCl
dissolved in diethyl ether resulting in the precipitation of only the final THIQ 1 and a single
by-product (which will be discussed later).

The newly defined conditions for the phosphate salt-mediated Pictet–Spengler reaction
with 2-bromobenzaldehyde (5b) and m-tyramine hydrobromide (4·HBr) were then imple-
mented for benzaldehyde (5a) and the 10 additional derivatives 5c–l already produced
in the laccase/TEMPO (2) system. For the 1-phenyl-1,2,3,4-THIQs 1a,c–l, yields between
52–93% were achieved, but no trend was observed for the substitutions in ortho and para
position and their attributed electronic effects (Scheme 5 and Table 3). Due to the use of
m-tyramine (4) as the amino alcohol, all products were obtained as racemic mixtures.

Catalysts 2021, 11, x FOR PEER REVIEW 7 of 13 
 

 

these reaction conditions the following predefined objectives of the one-pot process were 

already considered: constant temperature, pH, and ionic strength of the buffer; no co-sol-

vents. In a second series of experiments, the requirement for the additive sodium ascor-

bate and reaction handling under inert gas atmosphere to avoid possible oxidation side 

reactions were evaluated. However, no significant influence of these parameters could be 

determined, enabling the reaction to be carried out under oxygen atmosphere and avoid-

ing additives completely (Scheme 4). In addition, the reaction can be carried out with the 

same efficiency both in glass flasks with magnetic stirring bars and glass vials in an incu-

bator shaker. Furthermore, the downstream process for the extraction and purification of 

THIQs 1 was also improved compared to the methods currently described in the literature 

for semi-preparative and preparative reaction scales [20,30,33]. The extracted raw material 

could be effectively purified from remaining aldehyde 5 by substituting aqueous HCl to 

HCl dissolved in diethyl ether resulting in the precipitation of only the final THIQ 1 and 

a single by-product (which will be discussed later). 

The newly defined conditions for the phosphate salt-mediated Pictet–Spengler reac-

tion with 2-bromobenzaldehyde (5b) and m-tyramine hydrobromide (4·HBr) were then 

implemented for benzaldehyde (5a) and the 10 additional derivatives 5c–l already pro-

duced in the laccase/TEMPO (2) system. For the 1-phenyl-1,2,3,4-THIQs 1a,c–l, yields be-

tween 52–93% were achieved, but no trend was observed for the substitutions in ortho and 

para position and their attributed electronic effects (Scheme 5 and Table 3). Due to the use 

of m-tyramine (4) as the amino alcohol, all products were obtained as racemic mixtures. 

 

Scheme 5. Phosphate salt-mediated Pictet–Spengler reaction with benzaldehydes 5a–l and m-tyra-

mine hydrobromide (4·HBr) towards 1-phenyl-1,2,3,4-THIQs 1a–l; for results see Table 3. 

Table 3. Yields of phosphate salt-mediated Pictet-Spengler reaction. 

THIQ R Yield [%] 1 

1a H 93 

1b 2’-Br 76 

1c 2’-F 92 

1d 2’-NO2 76 

1e 2’-OMe 86 

1f 4’-Br 79 

1g 4’-Cl 84 

1h 4’-F 88 

1i 4’-CF3 52 

1j 4’-NO2 91 

1k 4’-Me 60 

1l 4’-OMe 65 
1 The yields are related to the quantity of m-tyramine hydrobromide (4·HBr) used. 

In all reactions, the formation of a strongly yellow-colored and fluorescent under UV 

light (Figure S9) by-product was observed, which was analyzed in the standard reaction 

Scheme 5. Phosphate salt-mediated Pictet–Spengler reaction with benzaldehydes 5a–l and m-tyramine
hydrobromide (4·HBr) towards 1-phenyl-1,2,3,4-THIQs 1a–l; for results see Table 3.

Table 3. Yields of phosphate salt-mediated Pictet-Spengler reaction.

THIQ R Yield [%] 1

1a H 93
1b 2’-Br 76
1c 2’-F 92
1d 2’-NO2 76
1e 2’-OMe 86
1f 4’-Br 79
1g 4’-Cl 84
1h 4’-F 88
1i 4’-CF3 52
1j 4’-NO2 91
1k 4’-Me 60
1l 4’-OMe 65

1 The yields are related to the quantity of m-tyramine hydrobromide (4·HBr) used.

In all reactions, the formation of a strongly yellow-colored and fluorescent under UV
light (Figure S9) by-product was observed, which was analyzed in the standard reaction
containing 2-bromobenzaldehyde (5b) and m-tyramine hydrobromide (4·HBr). The eval-
uation of mass and NMR data of the by-product 6 confirmed the in situ reaction of the
produced THIQ 1b with a second molecule of 2-bromobenzaldehyde (5b); under basic
conditions the dihydroisoquinolinone 6 is formed via a contingent imine tautomerism
(Scheme 6; for a detailed suggested reaction mechanism, see S4.2.4, Scheme S2).
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Scheme 6. Side reaction of the phosphate salt-mediated Pictet–Spengler reaction towards the by-product dihydroisoquinoli-
none 6 under alkaline conditions.

A direct correlation between the amount of the by-product 6 and the increase in
aldehyde 5b concentration in the Pictet–Spengler reaction could be identified, providing a
further opportunity for optimization with regard to increasing yields.

2.3. Chemoenzymatic One-Pot Process

The final easy-to-operate chemoenzymatic one-pot process is designed as a consecutive
reaction sequence. First, the oxidation of the benzylic alcohols 3 to the corresponding
aldehydes 5 takes place in the laccase/TEMPO (2) system and subsequently the formation
of the THIQs 1 is initiated by adding the amino alcohol m-tyramine hydrobromide (4·HBr)
(Scheme 7 and Table 4).
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Scheme 7. Chemoenzymatic one-pot process with benzylic alcohols 3a–l and m-tyramine hydrobro-
mide (4·HBr) towards 1-phenyl-1,2,3,4-THIQs 1a–l; for results see Table 4.

Table 4. Yields of sequential one-pot process.

Benzylic Alcohol R THIQ Yield [%] 1

3a H 1a 322

3b 2-Br 1b 493

3c 2-F 1c 64
3d 2-NO2 1d 473

3e 2-OMe 1e 572

3f 4-Br 1f 70
3g 4-Cl 1g 552

3h 4-F 1h 71
3i 4-CF3 1i 37
3j 4-NO2 1j 872

3k 4-Me 1k 583

3l 4-OMe 1l 43
1 The yields are related to the quantity of m-tyramine hydrobromide (4·HBr) used. 2 First reaction was shaken for
40–45 h. 3 0.20 equiv TEMPO (2), Laccase SSL1 1 U/mL.

The results of first reaction setups containing 0.20 equiv of TEMPO (2) suggest that the
components of the first reaction step of the cascade have an influence on the phosphate salt-
mediated Pictet–Spengler reaction. Therefore, the second reaction step was investigated with
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2-bromobenzaldehyde (5b) as substrate in the presence of different amounts of TEMPO (2).
In the presence of 0.2 equiv TEMPO (2), a 57% yield of THIQ 1b was obtained, whereas a
reduction to 0.1 equiv increased the yield to 73%. Continued reduction of TEMPO (2) to
0.067 equiv did not result in a further increase in yield (71%).

As decreasing the amount of TEMPO (2) in the cascade reaction should simply lead
to slightly increased reaction times in the chemoenzymatic oxidation step (see Figure 1),
the equivalents were reduced to 0.15 in further cascade reactions and samples taken for
GC measurement to follow the reaction progress. Following this reasoning, the volumetric
activity of laccase was also reduced to 0.6 U/mL in an effort to facilitate workup with ethyl
acetate. The cascade reaction starting with the oxidation of, e.g., 3e was performed for 44 h,
resulting in a conversion of 93%. For more detailed reaction times and conversions of the
first step in the reaction cascade, see Supplementary Table S1. As expected based on the
literature and confirmed by measuring the optical rotation, the presence of laccase during
the Pictet–Spengler reaction did not result in any asymmetric induction [56].

It was found that in the consecutive cascade with respect to all benzyl alcohols 3 the
intended THIQs 1 could be isolated after column chromatography with yields ranging
from 32–87%. Again, no clear trend based on the electronic effects of the substituents in
ortho and para position was observed. When compared to the theoretical yield (calculated
by the multiplication of the conversion and yield of the individual steps), it was observed
that the yield of all but three cascade reactions was within 16% of the theoretical yield. The
cascades resulting in 1a and 1j even slightly exceeded expectations (Scheme 8 and Table 5).
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Scheme 8. Comparison of obtained and theoretical yields of the chemoenzymatic one-pot process
with benzylic alcohols 3a–l and m-tyramine hydrobromide (4·HBr) towards 1-phenyl-1,2,3,4-THIQs
1a–l; for results see Table 5.

Table 5. Obtained and theoretical yields of chemoenzymatic one-pot process.

R Conversion 1

1st step [%]
Yield 2

2nd step
Theor. Yield 3

Cascade [%] Yield [%] 1 THIQ

H 28 93 26 32 1a
2-Br 100 76 76 49 1b
2-F 73 92 67 64 1c

2-NO2 100 76 76 47 1d
2-OMe 72 86 62 57 1e

4-Br 100 79 79 70 1f
4-Cl 92 84 77 55 1g
4-F 98 88 86 71 1h

4-CF3 100 52 52 37 1i
4-NO2 84 91 76 87 1j
4-Me 100 60 60 58 1k

4-OMe 90 65 59 43 1l
1 The conversion is derived from the ratio (benzylic alcohol:benzaldehyde) by GC. 2 The yields are related to the
quantity of m-tyramine hydrobromide (4·HBr) used. 3 The theoretical yield is calculated by the multiplication of
the conversion and yield of the individual steps.

The reaction sequence is carried out under constant conditions and can be performed
using standard laboratory equipment, with the following parameters allowing an easily
parallelized experiment setup:
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• Laccase Ssl1 from S. sviceus (heat-treated clarified cell supernatant, prepared as a batch,
aliquoted, thawed as needed).

• 1.00 equiv benzylic alcohol 3, 0.15 equiv TEMPO (2), 0.33 equiv m-tyramine hydrobro-
mide (4·HBr).

• KPi buffer (0.2 M, pH 8).
• Glass bottle, constant shaking in incubator at 37 ◦C, oxygen atmosphere, no additives.

3. Materials and Methods

All materials and methods are given in detail in the Supplementary Materials. The
procedure for the chemoenzymatic one-pot process as a combination of both single reaction
steps is described in the following:

The chemoenzymatic one-pot process was performed in a 100 mL Schott® flask fitted
with a PTFE/silicon septum perforated with a cannula for oxygen exchange under constant
shaking at 400 rpm on an orbital shaker for culture flasks at 37 ◦C.

The benzylic alcohol 3 (1.38 mmol, 1.00 equiv) and TEMPO (2, 32 mg, 0.21 mmol,
0.15 equiv) were added to a freshly thawed laccase solution (0.6 U/mL) in KPi buffer
(10 mL, 200 mM, pH 8.0) with 0.3 mM CuSO4. The reaction mixture was shaken for
20−45 h at 37 ◦C. Afterwards, m-tyramine hydrobromide (4·HBr, 100 mg, 0.46 mmol,
0.33 equiv) in KPi buffer (10 mL, 200 mM, pH 8.0) was added to the reaction mixture and
shaken for another 18−24 h. The solution was then cooled to room temperature (25 ◦C)
and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried over
MgSO4 and the solvent was removed under reduced pressure. The THIQs 1a–l were
precipitated by adding small amounts of cold HCl solution in diethyl ether (1 M) to the
residue. The resulting solid was washed with cold diethyl ether, filtered, and resuspended
in MeOH. The solvent was removed under reduced pressure and the THIQs 1a–l were
purified via column (length = 10−16 cm, diameter = 3 cm) chromatography on silica with
dichloromethane/MeOH [4% (v/v)]/ammonia in MeOH (7 N) [1% (v/v)] providing the
THIQs 1a–l as free amines and racemic mixtures. The yields are related to the quantity of
m-tyramine hydrobromide (4·HBr) used.

4. Conclusions

In summary, we successfully developed an easy-to-operate chemoenzymatic one-
pot process for the synthesis of tetrahydroisoquinoline libraries with yields of up to 87%
starting from benzylic alcohols and an amino alcohol. The reaction conditions of the
individual processes, the oxidation of benzylic alcohols and the phosphate salt-mediated
Pictet–Spengler reaction, were adapted to each other and, furthermore, a by-product of the
latter reaction was identified. After demonstrating the feasibility of this cascade, future
studies could focus on expanding the library by substituting m-tyramine with different
β-arylethylamines or combining the chemoenzymatic oxidation with a stereoselective
Pictet–Spengler reaction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11111389/s1, S1: Overview of compounds (including numbers); S2: General methods
(materials and analytics); S3: Methods in biology [S3.1–S3.3: strains, vectors, protein production,
laccase activity assay; S3.4: oxidation of benzylic alcohols 3a–l using the laccase/TEMPO (2) system];
S4: Chemical syntheses [S4.1: synthesis and analysis (NMR, IR, LC-MS) of m-tyramine·HBr (4·HBr);
S4.2: phosphate salt mediated Pictet–Spengler reaction + suggested mechanism (Scheme S1), analysis
of by-product 6 (NMR, IR, HRMS) + suggested mechanism (Scheme S2)]; S5: Chemoenzymatic
one-pot cascade towards THIQs 1a–l; S6: Compound characterization of THIQs 1a–l (NMR, IR,
LC-MS, HRMS); S7: Reaction monitoring (Supplementary Table S1).
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