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Abstract: K-promoted Mo-based catalysts showed great promise for the hydrogenation of CS2 to
methyl mercaptan (CH3SH). However, the research on the synergistic effect of K and Mo, and the
active site of CS2 hydrogenation to CH3SH were unexplored widely. To solve this problem, the
synergistic effect of K and Mo in the K-promoted Mo-based catalysts for CS2 hydrogenation to
prepare CH3SH was investigated. The mesoporous alumina was the support and loaded the active
components potassium and molybdenum to prepare the catalyst. The results suggested that the
active components K and Mo can not only cooperatively regulate the acid-base sites on the catalyst
surface, but also stabilize the molybdate species at +5 valence during the reduction process and
increase the Mo unsaturated coordination sites. Combined with the results of the catalytic activity
evaluation, indicating that the main active site of the catalysts is the weak Lewis acid-base site, and
the strong acidic site and strong alkaline site are not conducive to the formation of CH3SH. Moreover,
the possible catalytic mechanism of CS2 hydrogenation to CH3SH on the weak Lewis acid-base sites
of the catalysts was proposed. The research results of this paper can provide an experimental basis
and theoretical guidance for the design of high-performance CH3SH synthesis catalyst and further
mechanism research.

Keywords: methyl mercaptan; CS2; alumina; synergistic effect; KMo/Al2O3

1. Introduction

Methanethiol, also known as methyl mercaptan (CH3SH), is one of the raw materials
for the industrial production of methionine. At present, methyl mercaptan is mainly
synthesized by methanol thiolation (CH3OH-H2S method) in industry [1–6], which has
some disadvantages, such as high reaction temperature (340~400 ◦C), many byproducts,
and serious three wastes. More and more researchers are mainly focused on finding a more
economical and environmentally friendly synthesis routes in recent years. Among them,
the catalytic synthesis of CH3SH from sulfur-containing synthesis gas has aroused great
interest among researchers [7–14], but the conversion and yield of CH3SH are relatively
low, which does not meet the requirements of large-scale industrialization. CS2 is relatively
surplus and the price is low at present, and the one-step synthesis of CH3SH by CS2
hydrogenation has the advantages of low reaction temperature (260~280 ◦C) and fewer
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three wastes. At present, the study of one-step synthesis of CH3SH from carbon disulfide
(CS2) hydrogenation is rare [15–17]. Therefore, it is necessary to synthesis of CH3SH by
one-step hydrogenation of CS2, which not only has positive significance in promoting and
enriching the synthesis of CH3SH but also can realize clean production, which has good
economic and social value.

In the field of catalytic synthesis of methanethiol, transition metal sulfides are generally
considered to be the main active phase [10,11,14,17–20]. Among them, MoS2-based catalysts
promoted by alkali metals have potential application prospects because of their unique
properties, such as sulfur resistance, not ease to coking and avoiding expensive deep
desulfurization in industry, which have been also widely used in water-gas shift [21–24],
syngas to higher alcohols [25–30], hydrodesulfurization [31–34] and hydrogenation [35–38].
The research results of active phase MoS2 in these fields can also provide some reliable basis
for the synthesis of CH3SH. For example, for the synthesis of higher alcohols from syngas,
it is generally believed that the synthesis of higher alcohols mainly occurs on the MoS2
phase promoted by alkali metals, while the pure MoS2 phase is beneficial to the formation
of hydrocarbons. The Johannes A. Lercher research group [16,18] found a similar view in
the process of catalytic synthesis of CH3SH from carbonyl sulfide. It is considered that
the catalyst used has two active phases named the pure MoS2 phase and the potassium-
decorated MoS2 phase. The synthesis of CH3SH mainly occurs on the potassium-decorated
MoS2 phase, while the pure MoS2 phase is beneficial to the formation of by-products.
Since the 1990s, Yang’s group has carried out a detailed study on the catalytic synthesis of
CH3SH from sulfur-containing syngas [8,9,39–42]. Supported molybdate potassium oxide
(Mo-O-K) and molybdenum sulfide potassium (Mo-S-K) catalysts supported on silica and
modified catalysts containing Ni, Co and Te promoters were developed. The relationship
between the preparation method of the catalyst, the optimization of active components,
the optimization of reaction conditions, and the catalytic performance was systematically
studied, and the mechanism of synthesis of CH3SH from sulfur-containing syngas over
MoSx-K+ catalyst was proposed [8]. It is considered that the by-product methane is easily
formed in the MoS2 active phase, while the CH3SH is formed in the Mo-S-K active phase.

Herein, to further insight the effect of active components potassium and molybdenum
on the selectivity of CH3SH and how they cooperate in the synthesis of CH3SH, we chose
mesoporous alumina (Al2O3) as the support and loaded active components potassium
and molybdenum to prepare catalysts to study the one-step synthesis of CH3SH by CS2
hydrogenation. The mesoporous alumina was prepared in an aqueous system using hy-
droxysafflor yellow A derived from safflower as a template. In recent years, our research
group has been committed to the research and application development of safflower [43,44].
Due to its unique molecular framework rigidity and reaction with metal ions, hydroxysaf-
flor yellow A in safflower is expected to be used as an ideal template for the preparation of
mesoporous alumina in an aqueous system. For K-Mo/Al2O3 catalyst, K and Mo loading
and their molar ratio are in the optimal range for CS2 hydrogenation to CH3SH. The results
of the catalytic activity evaluation showed that the selectivity of by-product CH3SCH3
was higher when the catalyst was loaded with a single active component, for example, the
selectivity of CH3SCH3 was as high as 92.9% at 260 ◦C on the K/Al catalyst. When K and
Mo were introduced simultaneously, the selectivity of CH3SH increased rapidly, and it
reached 91.2% at 260 ◦C over the K-Mo/Al catalyst. Moreover, the synergistic effect of K
and Mo was discussed, and the possible catalytic mechanism for the hydrogenation of CS2
to CH3SH on the active site was proposed.

2. Results and Discussion
2.1. Catalytic Performances of the Catalysts

The relationship between the selectivity of the products and the reaction temperature
over Al, Mo/Al, K/Al, and K-Mo/Al catalysts is shown in Figure 1. Since the conversion of
CS2 is 100% in the whole reaction temperature range, it is not shown in the figure. It can be
seen from Figure 1 that the Al2O3 (Al) itself is a highly active catalyst for the hydrogenation
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of CS2. For Al catalyst, the selectivity of CH3SH, CH3SCH3 and CH4 was 31.5%, 67.5% and
1% at 260 ◦C, respectively. When the active component Mo is introduced, the changing
trend of the selectivity of the products is similar to that of Al catalyst with the increase
of reaction temperature, except that the selectivity of CH3SCH3 decreases slightly, while
the selectivity of CH3SH increases slightly. As far as K/Al catalyst is concerned, it can
be concluded that the addition of potassium alone can greatly reduce the selectivity of
CH3SCH3, while increasing the selectivity of CH3SH, that is, the addition of potassium
promotes the disproportionation of CH3SH to CH3SCH3, which is especially significant at
low temperature (T < 300 ◦C). When potassium and molybdenum were introduced into the
support at the same time, the selectivity of CH3SH was greatly improved over K-Mo/Al
catalyst, and the selectivity of CH3SH reached 91.2%, the selectivity of CH4 was only 0.1%
at 260 ◦C; even at 300 ◦C, the selectivity of CH3SH was 85.8%, and the selectivity of CH4
was 1.5%; which shows that the disproportionation and further hydrogenation process
of methyl mercaptan are inhibited with the addition of potassium and molybdenum. In
addition, for all catalysts, the selectivity of CH4 increases with the increase of reaction
temperature, which is consistent with the reports in the literature [15,16]. For example, the
selectivity of CH4 on K-Mo/Al catalysts is 0.1%, 1.5%, 9.5%, and 25.2% at 260, 300, 340
and 380 ◦C, respectively, which increased about 16.8 times from 300 to 380 ◦C (Figure S1).
To sum up, we can conclude: when the active component potassium or molybdenum is
introduced alone, it is not conducive to the formation of CH3SH, and when potassium
and molybdenum are added at the same time, potassium and molybdenum can play a
synergistic catalytic role and jointly promote the formation of CH3SH.
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Figure 1. The selectivities toward CH4, CH3SCH3 and CH3SH as a function of reaction tem-
perature over the Al, Mo/Al, K/Al and K-Mo/Al catalysts. Reaction conditions: p = 0.3 MPa,
R(CS2) = 1.6 mL/h, R(H2) = 30 mL/min, 2 mL of the Catalyst.

2.2. Textural Properties

The fundamental physical and chemical properties of Al, Mo/Al, K/Al and K-Mo/Al
catalysts, including BET specific surface area, pore volume and average pore size, are
shown in Figure 2. It can be seen from the figure that the specific surface area and pore
volume of alumina decrease rapidly with the addition of potassium and molybdenum.
For instance, the specific surface area and pore volume of alumina (Al) are 327 m2·g−1

and 0.41 cm3·g−1 respectively, while that of the K-Mo/Al catalyst are 196 m2·g−1 and
0.31 cm3·g−1 respectively, which may be largely due to the increase of catalyst density
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after the addition of potassium and molybdenum, causing the surface area per unit mass
is reduced. At the same time, it was found that the average pore size increased with the
addition of potassium and molybdenum, which were 2.55, 2.98, 3.64 and 2.99 nm respec-
tively on Al, Mo/Al, K/Al and K-Mo/Al catalysts, which may be due to the formation of
some large particle species with the introduction of potassium and molybdenum during
the preparation of the catalyst, resulting in some small pores being blocked.
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2.3. Crystalline Phase and Morphology

The crystalline phases of Al, Mo/Al, K/Al and K-Mo/Al catalysts before and after
reaction were characterized by X-ray diffraction, the XRD patterns are shown in Figure 3.
Because the crystalline phase of pure alumina (Al) does not change before and after
the reaction, the spectra of the spent Al are not listed in the diagram. The diffraction
peak of Al2O3 was detected on all the catalysts [JCPDS File Number: 00–029–0063]. The
diffraction peaks of 2θ = 12.5, 23.3, 25.5, 27.3, 33.5, 35.5 and 56.3◦ belonging to MoO3
[JCPDS File Number: 00–005–0508] were detected on the fresh Mo/Al catalyst, while on the
spent Mo/Al catalyst, there were mainly diffraction peaks belonging to MoS2 [JCPDS File
Number: 00–024–0513], and the diffraction peak belonging to MoO2 [JCPDS File Number:
01–078–1070] was detected at 2θ = 26◦ at the same time. In the case of the K/Al catalyst,
the diffraction peaks of K2Al19O29.5 [JCPDS File number: 00044–1009] and K2O [JCPDS
File number: 01–089–5956] were detected on the fresh catalyst, which was consistent with
the results of the scanning electron microscope (Figure 4b). The results of SEM showed
that new species were formed on the surface of the K/Al catalyst. However, only the
diffraction peak belonging to K2SO4 [JCPDS File Number: 00–0030608] was detected on
the spent catalyst. When potassium and molybdenum were introduced at the same time,
no diffraction peaks belonging to potassium and molybdenum species were detected on
the fresh K-Mo/Al catalyst, indicating that they were amorphous or highly dispersed on
the surface of γ-Al2O3, which was consistent with the results of the corresponding EDS
mapping images (Figure 4e–h). While on the spent K-Mo/Al catalyst, diffraction peaks
belonging to MoS2 and K2SO4 were detected at the same time. According to the report
of references [16,18], the active phase MoS2 phase is formed during the pre-sulfurization
process, while the K2SO4 phase is formed through the intermediates K2MoS4 and K2S in
the activity evaluation process. The sulfided K2MoS4 is first transformed into K2S, and
then the irreversible reaction between K2S and oxygen-containing species leads to the
accumulation of the K2SO4 phase. Whereas, we did not detect the diffraction peaks of
K2MoS4 and K2S species in the XRD diffraction pattern, indicating that K2MoS4 and K2S
species are highly dispersed on the alumina support. In addition, we did not perform a
pre-sulfurization process for the catalysts before evaluating the activity of the catalysts,
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indicating the catalysts can be sulfided by using sulfur-containing raw materials and
product H2S in the reaction process. Finally, on the spent Mo/Al catalyst, not only the
diffraction peak of MoS2 species was detected, but also the diffraction peak belonging to
MoO2 species was detected, demonstrating molybdenum oxide had not been completely
sulfided at this time.
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Figure 4. (a) SEM image of the fresh Mo/Al catalyst, (b) SEM image of the fresh K/Al catalyst,
(c) SEM image of the fresh K-Mo/Al catalyst, (d) SEM image of the fresh K-Mo/Al catalyst and the
corresponding EDS mapping images for O (e), Al (f), K (g) and Mo (h), (i) EDS spectra of the fresh
K-Mo/Al catalyst.

2.4. H2-TPR Studies

The H2-TPR characterization of the fresh catalysts is shown in Figure 5. It can be
seen that, in terms of Al2O3, there is a weak low-temperature peak at 202 ◦C and a wide
overlapping peak in the range of 250~600 ◦C which is mainly attributed to the reduction
process of Al species. When the active component is loaded, the low-temperature peak
shifts to low temperature, while the wide overlapping peak shifts to a higher temperature,
indicating that the interaction between the active component and the Al2O3 support
becomes stronger after loading the active component and a new H2 consumption peak
appears at 633 ◦C on the Mo-containing catalysts, which is attributed to the reduction of Mo
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species. For the attribution of the reduction peak, it is generally believed that Mo species
exist in two states: one is a highly dispersed state (monolayer dispersed structure), and
the other is aggregated state (double layer or multilayer structure). Monolayer dispersed
Mo-O species are easier to be reduced than double-multilayer dispersed Mo-O species.
Brito et al. [45] observed two kinds of reduction peaks on MoO3/Al2O3 catalysts named
MoI (455–500 ◦C) and MoII (780–860 ◦C). The former belongs to the partial reduction
of Mo species with high dispersion, while the latter belongs to the deep reduction of
this species and the reduction of Mo species which are more difficult to reduce (such as
tetrahedral coordination Mo species). Feng et al. [46] found that the low-temperature
reduction peak can be attributed to the reduction process of +6 to +4 valence of octahedral
coordination Mo(Oh) species, and the high-temperature reduction peak is the reduction
process of +6 to +4 valence of tetrahedral coordination Mo(Td) species. It should be pointed
out that the distribution of Mo species on the support is often affected by preparation
methods, such as the properties of the support, molybdenum precursors, calcination
conditions, and other factors. When the temperature is less than 800 ◦C, the supported
molybdenum-oxygen catalyst can’t be reduced to the metal state [46,47]. It is generally
believed that the molybdenum oxygen species on the support mainly exist in the form
of tetrahedral coordination and octahedral coordination, and the molybdenum oxygen
species with tetrahedral coordination structures are difficult to be reduced [48]. To sum
up, for the Mo/Al and K-Mo/Al catalysts in this paper, the H2 consumption peak in
the range of 250~500 ◦C can be classified as the Mo (VI)→Mo (IV) reduction process
of octahedral molybdenum oxygen species, and at 550~800 ◦C, it can be attributed to
the Mo(VI)→Mo(IV) reduction process of tetrahedral molybdenum species. With the
addition of alkali auxiliaries, the surface Mo-O species structure has changed, so that the
surface Mo-O structure is more transformed into a tetrahedral structure, and the octahedral
coordinated Mo-O species decreases. For the H2 consumption peak of K-Mo/Al catalyst at
low temperature (250~500 ◦C), the two splitting peaks may be attributed to the Mo (VI)
→Mo (V)→Mo (IV) reduction process of octahedral molybdenum species, indicating the
addition of alkali can stabilize Mo-O species at +5 valence during the reduction process,
which is consistent with the results reported in reference [49,50]. The effect of alkali is
considered to delay the reduction of Mo. Chen et al. [51] believe that the addition of alkali
strengthens the Mo-O bond and leads to the increase of reduction activation energy.
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2.5. Surface Acid-Base Properties

The acid-base sites on the surface of the catalysts are often determined by CO2/NH3-
TPD. From the CO2-TPD spectrum (Figure 6a), it can be seen that all the catalysts have a
CO2 desorption peak attributed to the weak base center at about 100 ◦C. There are only
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weak basic sites on Al, Mo/Al and K-Mo/Al catalysts, and the quantities of weak base sites
decrease greatly when the active component Mo is introduced alone, but when K and Mo
are introduced at the same time, the quantities of weak base sites is slightly more than that
of the Al catalyst. For the K/Al catalyst, due to the addition of strong basic components,
a wide overlapping CO2 desorption peak belonging to weak, medium and strong basic
sites appeared. In addition, according to the NH3-TPD spectrum (Figure 6b), there are
weak, medium and strong acid sites on the surface of the four catalysts, and their relative
quantities are summarized in Table 1. Combining the activity evaluation result of the
catalyst, it can be considered that strong acid sites and strong base sites are not conducive
to the selectivity of methyl mercaptan.
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Table 1. The quantity distribution of acid-basic sites on the surface of the catalysts.

Catalysts
Basic Site Distribution from

CO2-TPD [a]
Acid Site Distribution from

NH3-TPD [a]

Weak Medium Strong Total Weak Medium Strong Total

Al 1.0 - - 1.0 0.41 0.34 0.25 1.0
Mo/Al 0.03 - - 0.03 0.53 0.40 0.33 1.26
K/Al 3.67 1.84 2.35 7.86 0.26 0.11 0.03 0.4

K-Mo/Al 1.42 - - 1.42 0.14 0.15 0.28 0.57
[a] The quantity of acid sites and basic sites of Al catalyst is defined as 1.0, and other catalysts are compared
with it.

The surface acidic sites of the catalysts can also be characterized by pyridine adsorption
infrared spectroscopy. As shown in Figure 7, there are five characteristic peaks with
different intensities at 1612, 1593, 1577, 1490 and 1444 cm−1, respectively, which are
attributed to the different adsorption forms of pyridine on alumina [52]. The absorption
peaks at 1612 and 1593 cm−1 belong to the 8a ring vibration mode of the coordination
bond between pyridine and Lewis acid site, which belongs to the strong Lewis acid
site [4]. When the active component Mo was introduced, a new pyridine desorption peak
belonging to the Brønsted acid site appeared at 1540 cm−1, and the intensity of the pyridine
desorption peak belonging to the Lewis acid site increased. When K is introduced, all
the pyridine adsorption peaks shift to low wavenumber, which may be due to the strong
interaction between K and the Al2O3 support [4]. The quantities of Lewis acid sites are in
the following order: Mo/Al > Al > K/Al > K-Mo/Al. In addition, the intensity of pyridine
desorption peak on the surface of K/Al and K-Mo/Al catalysts decreased with the increase
of desorption temperature, and pyridine was desorbed completely on K/Al and K-Mo/Al
catalysts at 250 ◦C (Figure S2), indicating that the Lewis acid on the surface of K/Al and
K-Mo/Al catalysts is mainly a weak Lewis acid site.
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2.6. XPS Study of Catalysts

The XPS spectra of Mo/Al and K-Mo/Al were shown in Figure 8. The peaks of
binding energy at ~229, ~231 and ~232.7 eV represent the +4, +5, and +6 valence states of
Mo, respectively, and the acromion at 226.6 eV is the peak of S(2 s) [53,54]. Molybdenum
species on fresh catalysts are present mainly in the form of Mo6+, and Mo4+ appears after
the reaction, which is consistent with the results of XRD experiments (Figure 3). MoS2
(Mo4+) was detected in XRD experiments on both Mo/Al and K-Mo/Al catalysts after the
reaction.
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The fitting results of the Mo(3d) XPS spectra are shown in Figure 9, and the quantitative
results are shown in Table 2. From the results of Table 2, it can be seen that the addition of
potassium affects the valence equilibrium among Mo species, increasing the concentration
of Mo5+ species and decreasing the concentration of Mo4+ species on the sulfided K-
Mo/Al catalyst, reducing the reducibility of K-Mo/Al catalyst, which was consistent
with the characterization results of H2-TPR. The research results [46,48,55] show that the
Mo-O species mainly have octahedral and tetrahedral configurations, and tetrahedral
configurations are more difficult to reduce and sulfurization than octahedral configurations.
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Due to the interaction between K and Mo, some octahedral species are transformed into
tetrahedral species, so the addition of potassium reduces the reducibility of molybdenum
species, resulting in that the Mo5+ species being more stable on the K-Mo/Al catalyst, while
the Mo4+ species is more likely to be formed on the Mo/Al catalyst, which is consistent
with the results reported by Kantschewa et al. [55] and Ozkan et al. [50]. Some scholars [51]
believe that the addition of alkaline auxiliaries inhibits the reducibility of MoO3, and the
existence of alkali enhances the bond energy of the Mo-O bond and increases the activation
energy of reduction.
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Table 2. The fitting results of Mo(3d) XPS spectra of the spent catalysts.

Catalysts
Binding Energy of Mo(3d5/2) eV Concentration (%)

Mo4+ Mo5+ Mo6+ Mo4+ Mo5+ Mo6+

Mo/Al 229.4 - 232.6 55.1 0 44.9
K-Mo/Al 229.0 232.0 232.9 38.0 30.8 31.2

Figure 10 shows the S(2p) XPS spectrum of the sulfided catalyst, in which SH represents
the sulfur species of high valence state and SL represents the sulfur species of low valence
state. Low-valent sulfur species can be classified into elements S (164.0 eV), S2− (162.0 eV),
S2

2− (162.5 eV), oxy-sulfides (162.3~163.2 eV) and polysulfides (162.9~164.4 eV) [56]. The
high valence sulfur species is SO4

2− (169.1 eV), confirmed by the XRD experimental results.
The XRD experimental results detected the existence of K2 SO4 (Figure 3), caused by the
oxidation of low-valent sulfur species by oxygen-containing species and other oxidants in
the reaction system [16,18]. It can be seen from Figure 10 that the addition of K increases the
quantities of the high-valence S6+ species, while the low-valence sulfur species decreases
(Figure 10). For the MoS2-based catalyst, it has been proved that low-valent sulfur ions
such as S2− and S2

2− can activate hydrogen [57,58]. In the process of reduction and
sulfurization of oxidized Mo (VI) species to Mo5+ and Mo4+ species in CS2/H2 atmosphere,
the coordination number of Mo-S and Mo-Mo in the sulfided catalyst is significantly less
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than that of the oxidized catalyst, and the surface reconstruction occurs, leading to the
increase of Mo unsaturated coordination sites on the catalysts surface [49,59], which is
beneficial to the formation of methyl mercaptan.
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2.7. Proposed Mechanism on the Acid-Base Site

Combined with the activity test data of the catalysts and the aforementioned charac-
terization results, illustrating the surface performance of the catalysts directly affects the
distribution of the products. When alumina is treated with alkali, the Lewis acid site on the
surface of the catalyst decreases rapidly, and the strong base site increases greatly, so the
selectivity of CH3SH decreases significantly, and the selectivity of by-product CH3SCH3
increases greatly. This is mainly due to the strong adsorption of CH3SH on the surface of
the catalyst, and CH3SH cannot be separated from the catalyst surface in time, which leads
to the further disproportionation of CH3SH to CH3SCH3. Comparing the activity results of
Mo/Al and Al catalysts, the selectivity of CH3SH on Mo/Al catalyst is slightly higher than
that of Al, because the introduction of Mo slightly increases the weak acidity site of the
catalyst, which is beneficial to the formation of CH3SH. After the simultaneous introduction
of K and Mo, alkaline K and acidic Mo have a synergistic effect, which jointly regulates
the acid-base sites on the surface of the catalyst, thus affecting the adsorption performance
of the products on the catalyst surface, and cooperatively catalyzes the hydrogenation of
CS2 to CH3SH. XPS results show that the increase of Mo5+ species concentration on the
K-Mo/Al catalyst leads to the increase of Mo coordination unsaturated sites on the catalyst
surface, which is beneficial to the activation of CS2 [15,16,18]. To sum up, as far as the
synthesis of CH3SH by CS2 hydrogenation is concerned, we have concluded that the main
active site of the catalysts is the weak Lewis acid-base site, and the strong acidic site and
strong basic site are not conducive to the formation of CH3SH. In addition, it is generally
believed that the active phase for the synthesis of CH3SH over K-promoted MoS2-based
catalysts is the K-Mo-S phase [8,10,11,16], but in this paper, we did not pre-sulfurization
the catalyst before the reaction, so it can be considered that apart from the K-Mo-S phase,
the K-Mo-O phase may also be the main active phase.

The possible reaction mechanism for the hydrogenation of CS2 to CH3SH is presented
in Scheme 1. Firstly, the molecule H2 is dissociated and adsorbed on the two adjacent basic
centers, while the CS2 molecule is non-dissociated and adsorbed on the acid site (Step I).
The S=C=S double bond is broken and interacts with the nearby dissociated adsorbed
H to produce the intermediate fragment HSCSH (Step II). Then, another molecule H2
is dissociated and adsorbed on the alkaline center (Step III), after the C-S bond breaks
and rearranges, the intermediate fragment HSCH is formed, and a molecule of H2S is
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released (Step IV). Finally, another molecule H2 is dissociated and adsorbed on the base
center (Step V), and interacts with the intermediate fragment HSCH and rearranges to
form CH3SH, detached from the surface of the catalyst (step VI). As a result, the catalyst
returns to its initial state.
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Scheme 1. Reaction mechanism for the hydrogenation of CS2 to CH3SH on the weak Lewis acid-base
surface centers. (M represents the Lewis acid centers and O represents the Lewis base centers).

3. Experimental Section

For the experimental section, including the preparation, activity tests and characteri-
zation of the catalysts, please refer to the Supporting Information for details.

4. Conclusions

In the present study, to further understand the effect of active components potassium
and molybdenum on the selectivity of CH3SH and how they cooperate in the synthesis
of CH3SH, we chose Al2O3 as the support and supported active components potassium
and molybdenum to prepare catalysts to study the one-step synthesis of CH3SH by CS2
hydrogenation. The introduction of alkali metal potassium alone will enhance the surface
basicity of the catalyst and lead to the stronger adsorption of the product CH3SH, which
is beneficial to the formation of the by-product CH3SCH3. After loading potassium and
molybdenum at the same time, the basic potassium species will interact with the acidic
molybdenum species to coordinate the acid-base sites on the surface of the catalyst to
promote the formation of CH3SH. On the K-Mo/Al catalyst, the selectivity of CH3SH
reached 91.2%. The characterization results show that due to the interaction between K and
Mo, some octahedral species are transformed into tetrahedral species, so the reducibility of
molybdenum species decreases with the addition of K, resulting in the Mo5+ species being
more stable on the K-Mo/Al catalyst, while the Mo4+ species is more likely to be formed
on the Mo/Al catalyst. In the process of reduction and sulfurization of oxidized Mo (VI)
species to Mo5+ and Mo4+ species in the reaction atmosphere of CS2/H2, the coordination
number of Mo-S and Mo-Mo in the sulfided catalyst decreased significantly compared
with that of the oxidized catalyst, and the surface reconstruction occurred, which led to the
increase of Mo unsaturated coordination sites on the catalyst surface, which was beneficial
to the formation of CH3SH. In addition, the catalysts were not pre-sulfurization before
the reaction, but the presence of MoS2 was detected in the catalysts after the reaction,
indicating that the catalysts can use the reaction atmosphere for self-sulfurization during
the reaction. It is considered that apart from the K-Mo-S phase, the K-Mo-O phase may
also be the main active phase.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11111365/s1, Figure S1: The selectivities toward CH4, CH3SCH3 and CH3SH as
a function of reaction temperature over the Al, Mo/Al, K/Al and K-Mo/Al catalysts. Reaction
conditions: P = 0.3 MPa, R(CS2) = 1.6 mL/h, R(H2) = 30 mL/min, 2 mL of the Catalyst. Figure S2:
Spectra of pyridine adsorbed on the catalysts at (a) 50 ◦C, (b) 100 ◦C, (c) 150 ◦C, (d) 250 ◦C.
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