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Abstract: In this study, we develop physics-informed neural networks (PINNs) to solve an isothermal
fixed-bed (IFB) model for catalytic CO2 methanation. The PINN includes a feed-forward artificial
neural network (FF-ANN) and physics-informed constraints, such as governing equations, boundary
conditions, and reaction kinetics. The most effective PINN structure consists of 5–7 hidden layers,
256 neurons per layer, and a hyperbolic tangent (tanh) activation function. The forward PINN
model solves the plug-flow reactor model of the IFB, whereas the inverse PINN model reveals an
unknown effectiveness factor involved in the reaction kinetics. The forward PINN shows excellent
extrapolation performance with an accuracy of 88.1% when concentrations outside the training
domain are predicted using only one-sixth of the entire domain. The inverse PINN model identifies
an unknown effectiveness factor with an error of 0.3%, even for a small number of observation
datasets (e.g., 20 sets). These results suggest that forward and inverse PINNs can be used in the
solution and system identification of fixed-bed models with chemical reaction kinetics.

Keywords: catalytic CO2 methanation; fixed-bed reactor; reaction kinetics; system identification;
machine learning; physics-informed neural network

1. Introduction

Power-to-gas technology using intermittent surplus renewable electricity has gained
attention for mitigating CO2 emissions to the atmosphere [1,2]. The intermittency of
renewable energy sources is a major hurdle in their seamless integration with existing
energy systems [3]. CO2 methanation [4,5] combining captured CO2 with H2, produced via
water electrolysis [6], is an alternative to existing energy systems that could be integrated
with renewable electricity sources. CO2 methanation technologies could considerably
reduce carbon emissions by encouraging industrial symbiosis from industries with large
CO2 footprints [7], such as thermal power plants [8]. Because CH4 is easier to store and
transport than H2 [1], the synergistic integration of renewable electricity with a natural gas
grid is expected via CO2 methanation [4].

Among the various reactor types, fixed-bed reactors (FBs) are the most commonly
used types for CO2 methanation. As the CO2 methanation reaction is thermodynamically
favored at low temperatures and high pressures [9], an isothermal fixed-bed reactor (IFB)
without a hot spot produces high methane selectivity, exhibits stable operation, and pre-
vents deactivation of catalyst particles through processes such as thermal degradation (i.e.,
nickel sintering [2]). However, the IFB usually requires high recycling and dilution ratios,
and adiabatic reactors to maintain suitable productivity [10–12]. The first commercial
CO/CO2 methanation process developed by Lurgi and Sasol (USA, North Dakota) that
produces 1.53 billion Nm3/year is composed of an IFB and two adiabatic FB reactors with
recycling [10]. In Germany, Linde designed an IFB reactor with an indirect heat exchanger
to generate steam from the exothermic heat of reaction [11].
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To develop advanced CO2 methanation technologies, researchers have explored the
use of modeling and simulations in the optimization of reactor designs. In particular,
computational fluid dynamics (CFD) involving process modeling has been used to un-
derstand the hydro- and thermo-dynamics of a reactor following geometrical and oper-
ational modifications [13]. CFD studies of CO2 methanation have been reported for a
single fixed-bed [14], multi-stage fixed-beds [14–17], fixed-beds with a plate-type heat
exchanger [18,19], monolith reactors [20,21], gas–solid fluidized beds [1,5,22], three-phase
slurry bubble columns [23], and microchannel reactors [24,25]. However, there are several
limitations of traditional modeling and CFD, such as (1) high computational cost for three-
dimensional (3D) multiscale and multiphase CFD [13,18], (2) difficulties in the efficient
discretization of complex geometries [13,21], (3) numerical diffusion and round-off errors
stemming from numerical differentiation [26], and (4) difficulties in the identification of
physical model parameters [1,17,19,27].

Despite advances in first principles and empirical elucidation, artificial neural network
(ANN) models in the category of data-driven models, black-box models, or surrogate
models (SMs), have become an alternative functional mapping between input and output
data because of their prompt predictions, automated knowledge extraction, and high
inference accuracy [28–30]. The structure of ANNs relies on the availability of experimental
data, observation data [28], or data generated by first-principle models such as CFD [31,32].
The automatic differentiation (AD) technique, which calculates both functions and their
derivative values implementing the chain rule, is used across the ANN layers to efficiently
estimate gradients [33]. AD has a lower computational cost than symbolic differentiation
and a higher accuracy than numerical differentiation [26].

Recently, ANNs and conservation equations coupled with AD that solve ordinary
differential equations (ODEs) and partial differential equations (PDEs) called physics-
informed neural networks (PINNs) have been reported [32,34,35]. As PINNs are con-
strained to respect any symmetries, invariances, or first-principle laws [34], they present
great potential for solving chemical engineering problems, which usually deal with com-
plex geometries and physics phenomena. In contrast to common ANNs, PINNs do not
depend on empirical data because the initial and boundary conditions are directly used to
adjust the network parameters, such as weights and biases [34]. In addition, the extrapo-
lation capability of PINNs is enhanced owing to physical constraints [36]. Nevertheless,
there are few applications of PINNs in process modeling and chemical reactor design.

PINNs can be used to solve two types of problems: (1) forward and (2) inverse
problems [34]. In the forward problem, the PINN solves ODEs/PDEs, like other numerical
solvers of ODEs/PDEs, revealing its inference capability. In the inverse problem, unknown
physical model parameters are identified using both the well-trained forward PINN and
external input/output datasets. Previous PINN studies focused on a general solution of
ODEs/PDEs [32,34,35] and elementary reaction rates [29]. Few researchers have addressed
PINNs for complex reaction rate models showing high nonlinearity.

In this study, forward and inverse PINNs coupled with AD were developed for the
solution and parameter identification of a highly nonlinear reaction rate model for catalytic
CO2 methanation in an IFB reactor. The results obtained from the PINNs were compared
with those obtained using a common numerical solver of ODEs (ode15s in MATLAB). The
hyper-parameters of the ANN used in the forward PINN, such as (1) the number of hidden
layers, (2) number of neurons per hidden layer, (3) activation functions, and (4) number
of collocation training points, were systematically determined. In the forward PINN
problem, the extrapolation capability was analyzed by narrowing the collocation-training
domain and detaching the collocation-training domain from the boundary. In the inverse
PINN problem, a reaction effectiveness factor was identified using observation datasets
containing 5% and 20% random noises in exact results. The influence of the observation
data range on the prediction accuracy of the inverse PINN model was also investigated.
This study demonstrates that the forward and inverse PINNs can solve fixed-bed models
with highly nonlinear chemical reaction kinetics and identify unknown model parameters.
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2. Isothermal Fixed-Bed Reactor for CO2 Methanation

A single-tube IFB, which is a type of industrial-scale multi-tubular fixed-bed reac-
tor [37,38], with a length (L) of 3 m and a tube diameter (Dtube) of 0.01 m was filled with
spherical catalyst particles with a particle diameter (dp) of 1 mm. The single-tube IFB was
assumed to be equipped with a heat exchanger that was able to transfer immediately the
heat generated in the exothermic reactions to the coolant. The catalytic CO2 methanation
reaction, known as the Sabatier reaction, is [4,14]

CO2 + 4H2 � CH4 + 2H2O, ∆H298K
r = −165 kJ·mol−1 (1)

Figure 1 shows a tube in the IFB reactor at the reactor and particle scales. The IFB
is composed of a single-path tubular reactor at the center and a heat exchanger on the
outer wall, where the reactor is externally cooled. The bed voidage (ε) between the catalyst
particles was assumed to be 0.4 [14]. The operating conditions were set as a temperature
(T) of 450 ◦C, a pressure (P) of 5 bar, and a volumetric flow rate (Q) of 10 Nm3/s. The pure
gas reactants were fed to the inlet at a CO2/H2 molar ratio of 1/4.
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Figure 1. Single tube of an isothermal fixed-bed (IFB) reactor for catalytic CO2 methanation in the
reactor and particle scales.

2.1. Governing Equations for the Isothermal Fixed-Bed Reactor

The IFB was modeled as a one-dimensional (1D) plug-flow reactor at a steady state [14,38].
The momentum and energy balances were neglected because of the low pressure drop and
isothermal conditions, respectively. The mass balances for the ith species (i = CO2, H2, CH4,
and H2O) participating in the CO2 methanation reaction in Equation (1) are formulated
as follows:

1
At

dFi
dz

= ηvir (2)

where z (m) is the reactor tube axial position, Fi (mol/s) is the molar flow rate of a species i
at position z, At (m2) is the tube cross-sectional area, νi is the stoichiometric coefficient of
species i, and r (mol/m3/s) is the volumetric reaction rate. η is the effectiveness factor of
the chemical reaction, which is defined as the volume-averaged reaction rate with diffusion
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within catalyst particles divided by the area-averaged reaction rate at the catalyst particle
surface [14]. For the sake of simplicity, the value of η was assumed as one in this study.

The boundary conditions for the molar flow rate (Fi) of the species at the inlet (z = 0)
are as follows:

Fi|z=0 = xi,0F0 (3)

where xi,0 and F0 (mol/s) are the inlet mole fraction of gas species i and the total molar flow
rate of the inlet gas mixture, respectively. The IFB reactor model expressing the species
material balance includes four spatial ODEs in Equation (2) with the boundary condition
in Equation (3).

2.2. Reaction Kinetics Model

A reaction kinetics model proposed by Koschany et al. (2016) [39] for catalytic CO2
methanation, which was tested within a wide range of Ni contents and industrial operating
conditions, was adopted in this study.

r = ρcat(1− ε)k·
p0.31

H2
p0.16

CO2

1 + Kad
pH2O

p0.5
H2

(
1−

pCH4 p2
H2O

p4
H2

pCO2 Keq

)
(4)

k = 6.41× 10−5 exp
(

93.6
R

(
1

555
− 1

T

))
(5)

Kad = 0.62× 10−5 exp
(

64.3
R

(
1

555
− 1

T

))
(6)

Keq = 137·T−3.998 exp
(

158.7
RT

)
(7)

where R (=8.314 × 10−3 kJ/mol/K) is the gas constant, T (K) is the temperature, pi (bar) is
the partial pressure of species i, k (mol/gcat/s) is the reaction rate constant, Kad (1/bar0.5) is
the adsorption constant, and Keq is the thermodynamic equilibrium constant. The catalyst
density (ρcat) was set to 2300× 103 gcat/m3

cat [39]. The reaction rate in Equation (4) includ-
ing inhibition by adsorbed water (Kad), equilibrium constant (Keq), and non-stoichiometric
reaction orders is far from the elementary reaction rate.

3. Physics-Informed Neural Networks (PINN) Model

The 1D IFB reactor model coupled with the reaction kinetics in Equations (2)–(7) is
typically solved using a stiff ODE solver. In this study, the solution of the 1D IFB reactor
model obtained from a stiff ODE solver was compared with that obtained with the PINNs.

The PINN solving the system of ODEs in the IFB reactor model was composed of an
FF-ANN, AD, and a governing equation. A strategy for adjusting the hyper-parameters of
the FF-ANN was presented in the forward PINN problem. An unknown model parameter
(i.e., η) was identified in the inverse PINN problem. The two PINN structures were
the same, while the forward PINN exploited training data self-generated for the initial
condition and the inverse PINN used observation data from an external source as the
training data.

3.1. PINN Structure in the Forward Problem

The architecture of the forward PINN problem is shown in Figure 2. The objective of
the forward PINN problem is to solve the given governing equation with initial, boundary,
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and operating conditions. The initial conditions were the target values (Fi,0) over the reactor
length (0 < z ≤ L) except z = 0 at the beginning of the reaction, which are given as follows:

Fi,0(z) =


94.74 mol

s for CO2
378.9 mol

s for H2
0 for CH4
0 for H2O

, 0 < z ≤ L (8)
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Figure 2. Architecture of the physics-informed neural network (PINN) forward problem for CO2

methanation in an isothermal fixed-bed (IFB) reactor.

However, any initial condition must be acceptable in theory to adjust w and b be-
cause the forward PINN converges to a solution (Fi,PINN) satisfying the physics-informed
constraints. The Dirichlet boundary conditions at z = 0 were implemented separately in
the PINN:

Fi(0) = xi,0F0 =


94.74 mol

s for CO2
378.9 mol

s for H2
0 for CH4
0 for H2O

(9)

The operating conditions of the IFB, such as T, P, and F0, were used to calculate the
partial pressure (pi) and reaction kinetic rate (r). The FF-ANN structure contained one
input (z), four outputs (Fi), n hidden layers, and m neurons for each layer. The input and
output datasets of the FF-ANN were randomly sampled from the initial and boundary
conditions, Equations (8) and (9), respectively, in the training stage. The activation function
(fa), such as the sigmoid and hyperbolic tangent (tanh), was applied for each neuron. The
weights (wj,k) and biases (bj,k) for the jth hidden layer and the kth neuron must be adjusted

to minimize the loss function (Loss). The AD for spatial derivatives ( dFi
dz ) was calculated

via the reverse accumulation mode, which propagates derivatives backward from a given
output [26]. The governing equations as the physics-informed part of the ANN included
the reaction kinetic rate (r) in Equation (4), the four ODEs in Equation (2), and the boundary
conditions in Equation (3).
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The optimized weights and biases (w∗ and b∗) were obtained from the following
optimization problem:

{w∗, b∗} = argmin
w,b

{
Loss = MSEg(w, b) + MSEb(w, b)

}
(10)

MSEg(w, b) =
1

Ntrain

Ntrain

∑
j=1

Ncomp

∑
i=1

∣∣∣∣∣ 1
At

(
dFi
dz

)
j
− ηνirj

∣∣∣∣∣
2

(11)

MSEb(w, b) =
1

Nbnd

Nbnd

∑
k=1

Ncomp

∑
i=1

∣∣Fi,k
∣∣z=0 − xi,0F0

∣∣2 (12)

where MSEg and MSEb are the mean squared errors for the governing equation and
boundary condition, respectively. Ntrain, Ncomp, and Nbnd are the number of training data
sets, species (or components), and boundary condition sampling points, respectively. The
loss function (Loss) sums MSEg and MSEb.

In Equation (8), for the initial condition, 1000–10,000 training data were randomly
and uniformly sampled for the adjustment of the ANN parameters (w and b) and de-
termination of the hyper-parameters (n, m, fa, and Ntrain). An Adam optimizer [40] was
used to solve Equation (10), which combines a stochastic gradient descent with adaptive
momentum, because of its good convergence speed [41], as confirmed in several PINN
models [29,35,42,43]. An initial learning rate of 0.001 and decay rate of 0.005 were chosen
for the Adam optimizer.

Negative intermediate outputs (Fi) appeared frequently when the stochastic gradient
optimizer was used in the PINN. However, a negative Fi was unfavorable for solving the
IFB reaction model with the reaction kinetics. In addition, as the ODE system of the reactor
model with chemical reaction rates was stiff, it was desirable to avoid negative Fi and
improve the convergence of the PINN. An exponential mapping of the output values from
each hidden layer [29] was used:

aj,l = exp

(
fa

m

∑
k=1

[
wj,kaj−1,k + bj,k

])
(13)

where aj,l is the value exiting the lth neuron of the jth hidden layer.
Gusmao et al. (2020) [29] presented forward and inverse PINNs to create an SM for the

solution of chemical reaction kinetics and to acquire kinetic parameters from experimental
data. In our study, the PINN concept was applied to a complex and stiff reaction kinetic
problem for CO2 methanation.

3.2. PINN Structure in the Inverse Problem

The weights (w) and biases (b) of the FF-ANN are the optimized variables in the
forward PINN problem, whereas unknown model parameters are identified in the inverse
PINN using the optimized weights (w∗) and biases (b∗) obtained from the forward PINN.
The inverse PINN included the governing equations, boundary, and operating conditions
that were used in the forward PINN, as shown in Figure 3. Rather than using the initial
condition as the training data, the inverse PINN problem uses observation data from an
external source, such as experimental data. Therefore, the values of z and Fi(z) are different
from those in Figure 2.
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Figure 3. Architecture of the physics-informed neural networks (PINN) inverse problem for CO2

methanation in an isothermal fixed-bed (IFB) reactor.

In the inverse PINN, the effectiveness factor (η) as an unknown model parameter was
identified using the following optimization with a loss function:

{η∗} = argmin
η

{
Loss = MSEg(η) + MSEb(η)

}
(14)

MSEg(η) =
1

Nobs

Nobs

∑
j=1

Ncomp

∑
i=1

∣∣∣∣∣ 1
At

(
dFi
dz

)
j
− ηνirj

∣∣∣∣∣
2

(15)

MSEb(η) =
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Nbnd

Nbnd

∑
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∑
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∣∣Fi,k
∣∣z=0 − xi,0F0

∣∣2 (16)

where Nobs is the number of observation data points (or the experimental data). MSEg was
evaluated for the observation data. The MSEb in the inverse PINN used the same training
data for the Dirichlet boundary condition that was used in the forward problem. The loss
function (Loss) sums MSEg and MSEb as functions of η.

3.3. Hyper-Parameters Setting and Accuracy of PINN Solution

For the FF-ANN, a mini-batch size of 128, which had a minor effect on the PINN
training results, was used. The number of training epochs was set to 1000. The number
of the hidden layers (n) ranged from 2 to 11. The number of neurons (m) for each layer
was 64–256. The sigmoid and tanh functions were considered the activation functions (fa).
The number of training data points (Ntrain) varied from 1000 to 10,000. The training data
were used to adjust w and b, and to determine the hyper-parameters (m, n, fa, and Ntrain),
because the validation data for determining hyper-parameters were not necessary in the
PINN, which provides a solution for physical models.

In the FF-ANN, the biases (b) were initialized to zeros and the weights (w) were
initialized by the following commonly used heuristic called Xavier’s method [44]:

w = U

[
−

√
6

Nin + Nout
,

√
6

Nin + Nout

]
(17)
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where U is the uniform distribution in the interval of ±
√

6
Nin+Nout

. Nin and Nout are the
neuron numbers of the previous and present layers, respectively. A pseudo-random
generator “philox” [45] with 10 rounds and a seed value of “1234” was used to provide the
same initial weights for all trainings according to different hyper-parameters. The training
data were sampled using Sobol’s quasi-random sequence generator [46], which filled the z
space in a highly uniform manner.

The PINNs were implemented using the deep learning toolbox of MATLAB (Math-
works, R2021a, Natick, MA, USA, 2021). The PINNs were executed on a single NVIDIA
Quadro RTX 6000 GPU device. The computational time was 5 min to 3 h to train each
forward PINN according to the number of hidden layers and neurons. The inverse PINN
model required less than 20 s.

The governing equation in Equation (2) with the boundary conditions in Equation (3)
was also solved using a stiff ODE numerical solver, ode15s in MATLAB, with a strict
relative and absolute tolerance of 1 × 10−8. The solution was considered as an exact
solution. The accuracy of the PINN model was measured using an L2 relative error norm
(L2,rel) [30] between the PINN solution (Fi,PINN) and stiff ODE solution (Fi,ODE):

L2,rel =

√√√√√√∑
Ncomp
i=1 ∑Ntest

j=1

(
Fj

i,PINN − Fj
i,ODE

)2

∑
Ncomp
i=1 ∑Ntest

j=1

(
Fj

i,ODE

)2 (18)

Ntest (=1000) is the number of test data in the forward PINN, whereas Ntest is the number
of observation data points (Nobs) in the inverse PINN. The test and observation data were
generated uniformly over a given range of reactor lengths (z).

4. Results and Discussion

The hyper-parameters (m, n, fa, and Ntrain) of the forward PINN were first deter-
mined. Then, the extrapolation performance of the forward PINN was investigated using
10,000 training data points sampled at a limited reactor length (z) and 1000 test data points
sampled at the full reactor length (0 ≤ z ≤ 3). Using the optimized structure of the forward
PINN, the effects of the number and range of the observation data on unknown model
parameters (e.g., η) were examined in the inverse PINN problem.

4.1. Determination of Hyper-Parameters

Activation functions such as the sigmoid and tanh functions were first tested in an
FF-ANN structure with four hidden layers and 64 neurons per layer. Then the number of
layers and neurons were determined for the FF-ANN using an activation function selected
previously. The sigmoid activation function showed good performance for a specific FF-
ANN structure (e.g., four hidden layers and 64 neurons), while the tanh activation function
exhibited good results for almost all network structures.

Figure 4 shows the comparison between sigmoid and tanh in terms of (a) the loss
function and (b) Fi along the reactor length (z) for 1000 test data points evenly distributed
in 0 ≤ z ≤ 3. The 10,000 training data points used to adjust w and b were distributed by
Sobol’s quasi-random sequence generator, as mentioned earlier. The loss function (Loss)
obtained using tanh was lower by three orders of magnitude than that obtained using the
sigmoid function (Figure 4a). Here, the iteration number is the number of mini-batches
multiplied by the number of epochs. As a result, the mole flow rates (Fi,PINN) obtained
from the PINN with tanh were closer to the ODE solution (Fi,ODE) than those obtained from
the PINN with the sigmoid function (Figure 4b). The L2,rel of the sigmoid and tanh functions
were 0.05251 and 0.02372, respectively. Therefore, the tanh activation function for all the
hidden layers was chosen for further investigation. The mixed activation functions and
other activation functions, such as the rectified linear unit (ReLU), were outside the scope
of this study.
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Figure 4. (a) History of the loss function (Loss) and (b) comparison of the mole flow rates
(Fi) of the exact ODE solutions (Fi,ODE) and PINN solutions (Fi,PINN) with the sigmoid and tanh
activation functions.

Figure 5 shows the influence of the number of hidden layers and neurons in each
layer on the loss function (Loss), L2 relative error (L2,rel), and training time (t). The loss
function and training time were obtained from the PINN with tanh for 10,000 training data
points. L2,rel was measured for 1000 test data compared to the ODE solution. The red spot
indicates the forward PINN structure with n = 7 layers and m = 256 neurons achieved a
minimum loss.
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Loss and L2,rel sharply decrease for 2 ≤ n ≤ 5 and slowly converge to a certain value
for all the investigated numbers of neurons (see Figure 5a,b). The number of neurons (m)
weakly influenced Loss and L2,rel , which were the lowest for the forward PINN structure
with 256 neurons. Although the minimum values of Loss = 2.3× 10−6 and L2,rel = 0.00881
were obtained with the forward PINN structure with seven layers and 256 neurons, the
variation in L2,rel was negligible for forward PINN structures with more than four layers,
at less than 0.69%. The computational time (t) for the training increased almost linearly
with the number of hidden layers (m). However, the training time (t) did not increase as the
number of neurons in each layer increased. This may be attributed to the fast convergence
achieved with a high number of neurons. The FF-ANN structure with seven hidden layers
and 256 neurons was chosen for the CO2 methanation IFB reactor model.

Figure 6 compares the performance of the PINN with two, five, and seven hidden
layers, using 256 neurons for each layer. The L2,rel decreases with an increase in the number
of hidden layers, as shown in Figure 5. The solution obtained from the PINN with two
layers and 256 neurons deviated significantly from the ODE solution (Figure 6a). The
solution obtained from the PINN with seven layers showed excellent agreement with the
ODE solution at high computational cost (Figure 6c).

Using the PINN with seven layers and 256 neurons, the influences of the number of
training data points (Ntrain) on the loss function (Loss) and training time (t) are depicted
in Figure 7. As Ntrain increases, the Loss converges, and t increases proportionally. For the
error between the PINN and ODE solutions to be sufficiently small, it is desirable that
Ntrain for the 1D reactor model be over 5000.

4.2. Computational Efficiency of the PINN

A single training time (t) was approximately two hours for the PINN with m = 256,
n = 7, tanh, and Ntrain = 10,000, as shown in Figure 7. A substantial computational time
was required to determine all hyper-parameters of PINN, whereas the ODE numerical
solver (e.g., ode15s) showed fast calculation due to no training stage. However, once the
hyper-parameters were determined, and weights (w) and biases (b) were optimized, the
PINN surrogate model against the ODE numerical solver had the advantage in computa-
tional time.

In Figure 8, the computational times of the PINN surrogate model and the ODE
numerical solver are compared with respect to the number of spatial points from 1000
to 200,000 with an interval of 1000. The PINN with n = 7, m = 256 and tanh activation
function was used. The calculation time (t) increases with the increase in the number of
spatial points or Ntest. The calculation time of PINN is less than 0.1 s at Ntest = 200,000,
while that of ODE solver with 200,000 spatial points is approximately 0.95 s. The PINN
surrogate model has computational efficiency over the ODE solver and it will be useful for
optimization problems repeating the calculation of ODEs/PDEs.

4.3. Extrapolation Capability of the PINN

If a sufficient amount of training data is provided (see Figure 7), the forward PINN
guarantees a solution (Fi,PINN) that satisfies the governing equation, as mentioned earlier.
The PINN has an extrapolation capability when applied for the range out of training data,
which is similar to solving first-principle laws in a computational domain.
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Figure 9 shows the performance of the forward PINN for 10,000 training data points
in a limited range of z and 1000 test data points in a full range of z (0 ≤ z ≤ 2), using five
hidden layers, 256 neurons per layer, and the tanh activation function. The collocation
range of the training data starts from z = 0 and ends at z = 0.5–1.0, with an interval of 0.1 in
Figure 9a–f. Even though the PINN was trained within one sixth (0 ≤ z ≤ 0.5) of the full
range, the PINN output (Fi,PINN) for the test data of the full range (0 ≤ z ≤ 2) agrees well
the ODE solution (Fi,ODE) outside the training range (Figure 9a). L2,rel decreases, and the
training time tends to increase as the training range increases.
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Figure 9. Performance of the forward PINN model using five hidden layers, 256 neurons, and the
tanh activation function for 10,000 training data points in a limited range of the reactor length (z) and
1000 test data points in the full range of z: (a) 0 < z < 0.5 m, (b) 0 < z < 0.6 m, (c) 0 < z < 0.7 m,
(d) 0 < z < 0.8 m, (e) 0 < z < 0.9 m, (f) 0 < z < 1.0 m, (g) 0.1 < z < 0.8 m, (h) 0.2 < z < 0.8 m, and
(i) 0.3 < z < 0.8 m.

Figure 9g–i show the performance of the PINN that was trained for three data ranges
detached from z = 0, reducing the width of the range of z. The value of Fi|z=0 is correct
for all data ranges detached from z = 0 owing to the boundary condition in Equation (3).
However, Fi,PINN between z = 0 and the beginning point of the training data is far from
Fi,ODE, and the errors between Fi,PINN and Fi,ODE are persistent in the other ranges. As the
governing equation used in this study is a type of initial value problem, sufficient training
data close to z = 0 must be provided to obtain reliable PINN solutions.

The extrapolation capability of the PINN is remarkable, unlike that of common
ANNs [28,30]. The accuracy of the PINN solution is closely related to the range and
distribution of the training data [35]. The present forward PINN model for solving govern-
ing equations can overcome the drawbacks of traditional CFD modeling and simulation
methods, as mentioned in the introduction. Once the PINN parameters (hyper-parameters,
weights, and biases) are optimized, the PINN instantly predicts outputs (Fi) corresponding
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to inputs (z), which can be used as an excellent SM of the governing equation. Because
training data at spatial collocation points (z) are generated independently against the
specific spatial domain, the forward PINN model is appropriate for solving governing
equations with complex geometries or moving boundary conditions [47]. In addition,
numerical diffusion and round-off errors are minimized in PINNs with the aid of AD [48].

4.4. Identification of Unknown Model Parameters with the Inverse PINN

The trained PINN with seven layers, 256 neurons per layer, and the tanh activation
function was used in the inverse PINN problem to identify an unknown parameter (i.e., η).
The number of epochs, initial learning rate, and decay rate of the inverse PINN model were
set to 500, 0.03, and 0.005, respectively. The initial η value was assumed to be 1 × 10−6.

Figure 10 shows the influence of the number of observation data points (Nobs) and
noise ratios on the identification performance of the effectiveness factor (η). Nobs had a
range of 20–1000. Initially, the ODE solution (Fi,ODE) for the governing equation with η = 1
and 0 ≤ z ≤ 2 was obtained using a stiff ODE solver (i.e., ode15s in MATLAB), which is
the mean value of Fi(z). The observation data were randomly and uniformly generated,
satisfying a normal distribution with a mean of Fi(z) and standard deviation as the noise
ratios of 5% and 20%. The Fi,PINN displayed by the solid, dashed, and dotted lines in
Figure 10 was acquired from the forward PINN with η* obtained from the inverse PINN.

It is expected that the six inverse PINN problems in Figure 10 result in η* = 1 because all
observation data were generated for η = 1. Nobs influence the value of η* more significantly
than the noise ratio. If the number of observation data is the same, the noise ratio hardly
affects η*. Even though a small amount of observation data (Nobs = 20) were used, the error
between the exact and predicted η values was only 0.3% (see Figure 10a,b). The inverse
PINN model inherits the accuracy of the forward PINN model. Thus, the inverse PINN
model with well-trained weights and biases can accurately identify model parameters,
even for a small amount of observation data.

The effect of the collocation range of observation data on η* was investigated for the
inverse PINN model, as shown in Figure 11. The collocation range of the observation
data significantly influences the identification of η. High accuracy was achieved when the
collocation range of the observation data was close to the boundary (z = 0), as shown in
Figure 11a,b. When observation data far from the boundary are provided, it was difficult
for the inverse PINN model to identify the model parameter (η), as shown in Figure 11c.
The inverse PINN problem took approximately 20 s for 1000 observations. If the forward
PINN is well-trained and the observation data are properly provided, the inverse PINN
model can identify unknown model parameters more efficiently than other computationally
intensive methods such as CFD.

4.5. Extension of PINN to Different Effectiveness Factors

The current PINN can be extended to the ODE solutions for different process condi-
tions, such as the effectiveness factor (η). One more neuron for 0 ≤ η ≤ 1 was added into
the input layer, which results in the input layer with z and η, and the identical output layer
(Fi). The boundary condition with the combination of z and η was used as follows:

Fi(0, η0) = xi,0F0 and Fi(0, η1) = xi,0F0 (19)

where η0 = 0 and η1 = 1 are the bounds of η.
The previous optimized network structure with five hidden layers, 256 neurons per

layer, and tanh activation function was used. The number of training points (Ntrain) was
increased from 10,000 to 30,000 because the two input variables (z and η) were applied.
The number of epochs was also increased from 1000 to 2000 to enhance the convergence
during training. Figure 12 shows the PINN predictions Fi(z) for η = 0.6, 0.8, and 1.2,
where Ntest = 1000. The PINN captured the Fi(z) at any η. Excellent prediction for Fi(z) at
η = 1.2, as an extrapolation was observed, as shown in Figure 12c. The PINN surrogate
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model can be used for an optimization problem of the CO2 methanation process with
computational efficiency.
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Figure 10. Influence of the number of observation data points (Nobs) and noise ratios on the identifi-
cation performance of the effectiveness factor (η) of an inverse PINN with seven layers, 256 neurons
per layer, and the tanh activation function: (a) 20 data and 5% noise, (b) 20 data and 20% noise,
(c) 100 data and 5% noise, (d) 100 data and 20% noise, (e) 1000 data and 5% noise, and (f) 1000 data
and 20% noise.
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Figure 11. Performance of the inverse PINN model with seven hidden layers, 256 neurons, and the
tanh activation function for 1000 observation data points in a limited range of the reactor length (z):
(a) 0 < z < 0.5 m, (b) 0.5 < z < 1.0 m, and (c) 1.0 < z < 2.0 m.
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Figure 12. Performance of forward PINN models with two inputs (z and η) at η = 0.6 (a), 0.8 (b),
and 1.2 (c).

5. Summary and Conclusions

A physics-informed neural network (PINN) was developed for an isothermal fixed-
bed (IFB) reactor model for catalytic CO2 methanation. The PINN was composed of
a feed-forward artificial neural network (FF-ANN), automatic differentiation (AD) for
derivatives, and governing equations with a stiff reaction kinetic rate. The loss function
of the PINN included two mean squared errors (MSEs) for the governing equations and
boundary conditions. The one-dimensional reactor was initialized at a molar flow rate that
was the same as the boundary condition at the reactor inlet.

For the forward problem, the PINN solved the material balance expressed by ordinary
differential equations (ODEs) for the IFB reactor model, where hyper-parameters, weights,
and biases of FF-ANN were determined. For the inverse problem, the PINN used the
weights and biases of the trained forward PINN model and identified unknown model
parameters, such as the effectiveness factor of the CO2 methanation reaction, using obser-
vation data. Future work is to implement the PINN for the solution of the fixed-bed reactor
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model with a wide range of operating conditions (temperature, pressure, flow rate, and
inlet composition), where the reactor model includes the heat and mass balances. The key
conclusions drawn are as follows.

• The PINN with the tanh activation function, 5–7 hidden layers, and 256 neurons per
hidden layer was found to have the most effective combination of hyper-parameters
for the IFB reactor model.

• The reliability of the PINN depended on the number and range of the training data.
• When the molar flow rates of the reactor were predicted as out of the range of training

data, the forward PINN model exhibited an excellent extrapolation performance
because the PINN provides a solution satisfying physics-informed constraints.

• The inverse PINN model identified unknown model parameters when the observation
data were properly provided to the inverse PINN.

• The training time of the forward PINN was almost proportional to the number of
hidden layers and the number of training data points. The training time of the inverse
PINN was relatively short, and the inverse PINN was more efficient at identifying
unknown model parameters compared to other numerical methods such as computa-
tional fluid dynamics (CFD).

• The present PINN model was extended to different process conditions such as effec-
tiveness factors.

• The current approach is useful for building a surrogate model for CO2 methanation
process design and optimization.
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