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Abstract: A recent work demonstrated the example of the Landolt-type reaction system and how 

the simplest autocatalytic loop is described by the kinetic mass action law and proper parametriza-

tion of direct and autocatalytic pathways. Using a methodology of non-equilibrium thermodynam-

ics, the thermodynamic consistency of that kinetic model is analyzed and the mass action descrip-

tion is generalized, including an alternative description by the empirical rate equation. Relation-

ships between independent and dependent reactions and their rates are given. The mathematical 

modeling shows that following the time evolution of reaction rates provides additional insight into 

autocatalytic behavior. A brief note on thermodynamic driving forces and coupling with diffusion 

is added. In summary, this work extends and generalizes the kinetic description of the Landolt-type 

system, placing it within the framework of non-equilibrium thermodynamics and demonstrating its 

thermodynamic consistency. 

Keywords: autocatalysis; Landolt reaction; non-equilibrium thermodynamics; reaction rate; ther-

modynamic consistency 

 

1. Introduction 

Autocatalysis refers to the acceleration of a reaction by its product [1–5]. The simplest 

example is the formal reaction A + X  2X with the rate (in the forward direction) given 

by the traditional mass action law as ����� [3,6]. Autocatalysis is thus essentially a kinetic 

concept and phenomenon. 

Autocatalytic reactions are found in real chemically reacting systems including bio-

logical and pharmaceutical applications. Thus, Khot and Pushpavanamcan [7] claim that 

autocatalysis can be viewed as a mechanism to explain self-replication. They studied a 

system of two species undergoing autocatalysis to obtain the conditions for extinction or 

complete conversion of one of the species. The studied system can represent the intercon-

version of two social groups or isomers into each other. Rich, dynamic behavior including 

bifurcations and multiplicity of steady states was demonstrated. The results were used to 

reveal how a mixture of isomers can be driven to a final state consisting of only one iso-

mer. In this way a possible mechanism for obtaining pure enantiomer from a racemic 

mixture could be suggested.  

Woolf [8] included autocatalysis in an article titled “A Hypothesis About the Origin 

of Biology”, which discusses the (potential) mechanisms of that origin. Autocatalysis, be-

sides selection of molecules for linkage by their electrical characteristics or evolution by 

survival selection, was among the processes that initiated biology. As stated in that work, 

“autocatalysis is a process where an object or system uses the energy and material re-

sources of the environment to grow itself, or something closely resembling itself.” It is 

claimed that initially autocatalytic processes produced biological membranes. Autocatal-

ysis results in dissipative structures, which result from environmental energy flow and 

provide order that replaces the order lost in decay processes. To build higher levels of 
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structure, an autocatalytic system should be coupled to some heterocatalytic action. By 

linking the autocatalytic system to heterocatalytic action the reaction network of life was 

able to expand. 

Veldhuis et al. [9] describe how an ecosystem organization emerges through ecolog-

ical autocatalysis. Ecological autocatalysis is analogous to autocatalytic loops in systems 

chemistry and is claimed to be the backbone of the organization in systems ecology. It 

forms a set of species populations that promote each other in a loop through positive feed-

back, and in this way a “core engine” of many ecosystems is created. This is an extension 

of the original autocatalysis operation in biochemical systems in which reactions catalyze 

enough substrate for the next reaction, leading to a self-sustaining set of chemical reac-

tions under sufficient input of energy and essential materials [10–12]. As an example of 

such an autocatalytic loop, the regular and reverse Krebs cycle is given. Autocatalytic pro-

cesses were theoretically suggested and experimentally verified as a kinetic control mech-

anism in asymmetric amplification in alkylation reactions by Klussmann et al. [13]. 

This work, in fact, was motivated by a model analysis published recently by Horváth 

[14]. He analyzed several typical autocatalytic reaction schemes from the kinetic view-

point, focusing particularly on the time evolution of the concentration of a product with 

the autocatalytic action. Among the schemes was a three-step reaction sequence called the 

Landolt-type autocatalytic system [14]. Horváth stressed the importance of parametriza-

tion in autocatalytic routes. This means that, in mass action kinetic models, the ratio of 

rate constants (coefficients) of the autocatalytic and non-autocatalytic steps is the govern-

ing parameter, not the (formal) kinetic order at the autocatalytic specie in the model. Be-

sides kinetics, thermodynamic analysis of reaction systems is also important. The thermo-

dynamic viewpoint was not presented in ref. [14]. Recently, the method of applying a 

methodology of non-equilibrium thermodynamics to the analysis of autocatalytic pro-

cesses and their kinetics was shown [15]. This methodology enables the derivation of ther-

modynamically consistent rate equations which are generalizations of the traditional mass 

action kinetic law and provides an immediate analysis of thermodynamic consistency of 

kinetic models. It is based on the permanence of atoms (the atomic structure of the reacting 

components) and thus belongs to conservative approaches in the terminology used by 

Érdi and Tóth [16]. It thus does not employ formal chemical species but really stoichio-

metric equations, though they can be of general form. As noted in ref. [15] this apparently 

limits the application of that methodology in autocatalysis. How to avoid that limit was 

illustrated through a formal reaction scheme. In contrast, Horváth discussed schemes rep-

resenting real reactions.  

This work extends both Horváth’s and the previous [15] works by thermodynamic 

analysis of the Landolt-type system studied kinetically in ref. [14]. First, the consistency 

with non-equilibrium thermodynamics is demonstrated, then the description using inde-

pendent reactions is discussed; a brief comment on thermodynamic driving force follows. 

Then, modeling of rate profiles is presented and at the end the relationship of the thermo-

dynamics-based approach to empirical rate equations in autocatalysis is commented on, 

and a note on diffusion in the Landolt-type system is added. 

2. Results and Discussion 

2.1. Thermodynamic Consistency 

The Landolt-type autocatalytic scheme was written in ref. [14] purely formally as a 

set of three steps converting two principal reactants, A, B, to one principal product, C:  

A + B →  C, (1.R1)

B + C → D, (1.R2)

A + D → 2C, (1.R3)
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To apply the thermodynamic, conservative [16] method, an atom-conserving repre-

sentation should be found first which can still be general. Perhaps the simplest scheme is 

as follows: 

A + B =  AB, (2.R1)

B + AB = AB�, (2.R2)

A + AB� = 2AB, (2.R3)

Clearly, C ≡  AB, D ≡ AB�. The thermodynamic approach used is a mathematical theory, 

which views stoichiometric equations as equations, therefore, the “=” symbol is used in-

stead of the (double) arrow common in chemistry (the chemical view on kinetics). The 

autocatalytic step is the third step in both schemes and the autocatalytic specie is C (AB). 

The rates written traditionally and restricted to the forward direction only are [14] 

(cf. scheme (1.R)): 

�� = ������; �� = ������; �� = ������. (1) 

However, the thermodynamic methodology used here begins with finding the rank of the 

compositional matrix (for details see [17], pp. 150–151; [18,19]). The “atoms” in scheme 

(2.R) are numbered as 1 = A, 2 = B and components as 1 = A, 2 = B, 3 = AB, 4 = AB� 

(the number of components � = 4). The compositional matrix thus has the dimension 

2 × 4 (atoms × components) and is 

‖S‖ = �
1 0 1 1
0 1 1 2

�. (2) 

The rank of this matrix is ℎ = 2. This means that there are � − ℎ = 2 independent reac-

tions in this mixture of four components. The stoichiometric matrix (‖P‖) corresponding 

to independent reactions should fulfill the condition ‖P‖‖S‖� = ‖0‖ (for details see [18]). 

It can be easily verified that the following matrix satisfies this condition: 

‖P‖ = �
0 −1 −1 1

−1 0 2 −1
�. (3) 

The two independent reactions corresponding to the matrix (3) are 

B + AB = AB�, (3.R1)

A + AB� = 2AB, (3.R2)

that is, the last two reactions in scheme (2.R). 

The next step is to find rate equations for independent reactions. Non-equilibrium 

thermodynamics of linear fluids derives the general form of the rate equation as the func-

tion � = �(�, �) [17] (p. 248); � is the vector whose components are the rates of independ-

ent reactions, � is the temperature and � is the vector of concentrations. In fact, the well-

known kinetic mass action law is thus proved thermodynamically. This general function 

is approximated by a polynomial of a suitable degree in concentrations with temperature-

dependent coefficients. The polynomial is simplified by its application on equilibrium 

where reaction rate vanishes by definition and where expressions for equilibrium con-

stants can be used. The resulting polynomial, the final form of the rate equation, is called 

the thermodynamic polynomial [17,19]. In many cases a first or second-degree approxi-

mating polynomial is sufficient [17] (p. 249). 

The second-degree polynomial leads in the case of two reactions (R3) to the final form 

of the thermodynamic polynomial (rate equation) 
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� = �����(���� − ��
����

�����) + ����������� − ��
������

� + ������������
− ��

�����
� �. (4) 

For details see the Supplementary Materials. Here, � = (��, ��) is the vector of the reaction 

rates of the two independent reactions, vectors ��  contain their rate coefficients (con-

stants), for example, ����� = (�����
� , �����

� ), �� refers to their equilibrium constants (� is 

the index of independent reactions): 

�� =
����,��

��,�����,��
, �� =

���,��
�

��,������,��
. (5) 

Note that from the traditional kinetics viewpoint, the first term in (4) corresponds to 

the (direct route) step (2.R1) although it is not among the selected independent reactions 

(3.R). The component rates are related to the (independent) reaction rates as follows: 

�� = −��,     �� = −��,     ��� = �� + 2��,     ���� = �� − ��. (6) 

The component rates in the traditional framework given by (1) and used by Horváth are  

�� = −�� − ��, �� = −�� − ��, ��� = �� − �� + 2��, ���� = �� − �� (7) 

and the consistency of the traditional rate equations with thermodynamic polynomials 

requires �����
� = �����

� = 0 and 

�� = �����
� = �����

� , �� = �����
� , �� = �����

� . (8) 

Horváth does not consider reversed reaction directions, which means that ��
�� → 0 and 

��
�� → 0. 

These results are still not a full assessment of the thermodynamic consistency of the 

Landolt-type system. An additional condition, emanating from the entropic inequality 

[15], calls for transforming reaction rates to functions of affinities. Reacting mixture corre-

sponding to the Landolt-type scheme has two chemical affinities: �� = −�� − ��� − ����
, 

�� = −�� + 2��� − ����
 and two constitutional affinities (for details see [20]): �� =

(4 3⁄ )�� − �� + (1 3⁄ )��� − (2 3⁄ )����
, �� = −�� + �� + ����

 ( ��  are chemical poten-

tials). The first step of that transformation is writing reaction rates as functions of chemical 

potentials – details can be found in the Supplementary Materials, here only the final form 

in affinities is reported: 

�� = �����
� exp

−��
�−��

�

��
exp

�� + ��

��
exp

−�� − (2 3⁄ )��

��
�1 − exp

�� + ��

��
� 

+ �����
� exp

−��
�−���

�

��
exp

�� + (4 3⁄ )��

��
exp

−(2 3⁄ )��

��
�1 − exp

��

��
�, 

(9.1) 

�� = �����
� exp

−��
�−��

�

��
exp

�� + ��

��
exp

−�� − (2 3⁄ )��

��
�1 − exp

�� + ��

��
� 

+�����
� exp

−��
�−����

�

��
exp

2�� + 2��

��
exp

−(1 3⁄ )��

��
�1 − exp

��

��
� , 

(9.2) 

Note that in equilibrium, where �� = 0, the rates are zero as expected. The con-

sistency condition states that that the quadratic form with the symmetric matrix 

− � 

���

���
(

���

���
+

���

���
)/2

���

���

�

��

  (10) 
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is positive semidefinite. This condition finally leads to �����
� ≥ 0, �����

� ≥ 0 and if we ac-

cept that the numbering of independent reactions does not matter, also to �����
� ≥ 0. Re-

ferring to (8) it is seen that these results are consistent with the positivity of rate constants 

in traditional mass-action kinetics.  

Horváth states that the kinetic model based on (1) is free of any artificial impurities 

while able to interpret the autocatalytic feature [14]. Our analysis extends and generalizes 

his kinetic view by addressing and demonstrating the consistency with non-equilibrium 

thermodynamics (of linear fluid mixtures [17]). 

2.2. Independent and Dependent Reactions 

The thermodynamic methodology works only with independent reactions which are 

(mathematically) sufficient to describe mass or molar changes in a reacting mixture. The 

number of independent reactions in a Landolt-type system, as shown in the preceding 

section, is equal to two, but the kinetic tradition used also by Horváth operates with rates 

of three reaction steps (��). The relationship between them and the rates of independent 

reactions �� is found from the component rates. Comparing (7) and (6), we see that  

�� = �� + ��,   �� = �� + ��,   (11) 

that is, the couple of independent rates cannot be taken from the triple (��, ��, ��) simply 

by selecting two of its members. In that triple, the two sums given in (11) represent the 

two independent rates. 

From the practical (experimental) point of view, two independent reactions therefore 

mean that it is sufficient to measure two rates. Inspecting (6), the simplest way is to meas-

ure the component rates of A and B, which are directly related to the two independent 

rates, �� and ��. 

The (in)dependency of reactions is reflected in the transformation of reaction rates 

into component rates. This transformation is unequivocal in the case of the two independ-

ent rates:  

⎣
⎢
⎢
⎢
⎡

��

��

���

����⎦
⎥
⎥
⎥
⎤

= ‖P‖� �
��

��
�,   (12) 

whereas in the case of the three (dependent) rates 

⎣
⎢
⎢
⎢
⎡

��

��

���

����⎦
⎥
⎥
⎥
⎤

= ‖Q‖ �

��

��

��

� ≡  ‖Q‖ �

��� + ���

(1 − �)�� − ���

−��� + (1 − �)��

�  (13) 

with 

‖Q‖ = �

−1 0 −1
−1 −1 0

1 −1 2
0 1 −1

�   (14) 

and arbitrary � and �. Combining with (11) we obtain, for example, 

�� = (� �⁄ )�� + (� �⁄ )��, � = 1 − � − �.  (15) 

Equation (15) expresses the dependency among ��’s but its coefficients are arbitrary 

and may be functions of time, because Bowen’s approach (see the Methods section) starts 

with a local balance of mass in which the component rates are such functions. 

2.3. On Equilibrium and Thermodynamic Driving Forces 
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Horváth also compares the course of direct transformation of A and B to C (or AB) 

represented by (1.R1) or (2.R1) with that of autocatalytic pathway represented by (1.R2) 

and (1.R3) or (2.R2) and (2.R3). A thermodynamic analysis of the direct route was pub-

lished recently [21]. In this work, the direct route is represented by the term with �����
�  

in, for example, (9.1) or (9.2). When the direct route is combined with the autocatalytic 

route this term contains the product ��
����

��, see (4). This product formally equals the 

equilibrium constant of (2.R1) and the direct route term in (4) is then formally equal to the 

rate derived in ref. [21]. However, the equilibrium of the step (2.R1) in scheme (2.R) is 

controlled by the other two steps.  

When reaction rates are expressed as functions of chemical potentials, the term cor-

responding to the direct route (2.R1) depends on the chemical potentials of A, B, and AB 

and is identical to the case when only the single transformation A + B = AB occurs [21]. 

However, in terms of affinities the two cases are different. In the mixture of A, B, AB, and 

AB� the term corresponding to (2.R1) contains the two affinities of the two independent 

reactions (3.R). Thus, the thermodynamic sources (“driving forces”) of the kinetics of (ap-

parently) the same reaction are different when this reaction occurs in different reacting 

mixtures. In other words, in the autocatalytic scheme, the kinetics of the direct route (2.R1) 

is controlled by the affinities of the autocatalysis-forming steps.  

2.4. Modeling of Rate Time Profiles 

The previous work [14] also discussed (calculated) time profiles of product C con-

centrations in a batch system for several selected values of rate parameters ��. Because 

autocatalysis is a kinetic phenomenon, it is very instructive to also inspect rate profiles. 

Two selected examples are shown in Figures 1 and 2 (and they relate to the black and cyan 

curves in Figure 1 of [14], respectively). Both figures demonstrate the invalidity of the 

supposition that reaction (1.R3) is much faster than reactions (1.R1) and (1.R2), which was 

applied to select the values of ��’s in ref. [14]). This is the consequence of the fact that the 

reaction rate is affected not only by the value of its rate constant but also of the concentra-

tions.  

In Figure 1, the rate of (1.R1) is very low, except in the very beginning, and rates of 

(1.R2) and (1.R3) are almost identical (the difference not seen in the figure). The autocata-

lytic effect is seen in the rapid increase of the rate of (1.R3), which evidently also controls 

the rate of (1.R2) and maintains it at high values. The effect is delayed in some induction 

period, the length of which can be estimated from the whole course as 5 s, or, at least, 

about 1 s when the rate of (1.R1) starts to be smaller than the other two rates. Once the 

supply of reactants is exhausted, all rates drop down to zero forming maxima on �� and 

�� profiles. 
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Figure 1. Modeled rate time profiles. Reaction scheme (R1), rates (1), batch system. Rate constants 

correspond to the black curve in Figure 1 in ref. [14]: k1 = 10–8, k2 = 10–3, k3 = 104 (all m3 mol−1 s−1). Insets 

show details in early times (upper) and r1 profile (lower). 

In Figure 2, the rate of (1.R1) is the highest for a rather long time. Rates of (1.R2) and 

(1.R3) are, again, almost identical during the whole course. Here, no induction period is 

observed and the profiles of the (1.R2), (1.R3) rates seem to always be concave. The auto-

catalytic effect can be seen here in increasing rates of (1.R2), (1.R3), while the rate of (1.R1) 

decreases progressively. 
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Figure 2. Modeled rate time profiles. Reaction scheme (R1), rates (1), batch system. Rate constants 

correspond to the cyan curve in Figure 1 in [14]: k1 = k2 = 3.1623×10−8, k3 = 104 (all m3 mol−1 s−1). 

Both figures report on profiles in a batch reactor. In a continuous stirred tank reactor, 

the situation is rather different and discussed in more detail in the Supplementary Mate-

rials. Discussions of autocatalytic kinetics should therefore keep in mind the type of sys-

tem and consider continuous inflow forcing in flow-through systems. 

2.5. Empirical Rate Equation 

As noted in ref. [14], the rate equation for an autocatalytic reaction is sometimes ex-

pressed in an empirical form with an additional term containing the product concentra-

tion with positive order. For reaction (1.R1) this means the rate Equation ������ +

��������
�
, � > 0. The thermodynamic approach used in this work enables a formulation 

of a very similar equation. Considering only the reaction mixture of A, B, and AB with 

equilibrium constant � , the third degree approximating polynomial leads to the rate 

equation  

� = ����(���� − ������) + ����(���
� − ��������). (16) 

For a sufficiently high equilibrium constant this equation can be modified to � =

�������� − ������������, which with ���� < 0 gives the empirical form with � = 1. 

Alternatively, eq. (16) can be rewritten in the form 

� = (���� − ��������)(���� − ������) ≡ �’(���� − ������), (17) 

which formulates the rate of A + B =  AB in terms of AB rate traditional mass action ex-

pression but with a concentration (and temperature) dependent rate constant �´ (and no 

presumptions on the magnitude of the equilibrium constant). The autocatalytic effect is 

hidden in the concentration dependency of �´. 
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2.6. Note on Diffusion 

When chemical reactions are coupled with diffusion, concentration changes are not 

caused only by chemical transformations. This problem is outside the scope of this paper, 

and we add only a brief comparative note. Diffusion can be “self-balanced” which means 

a special restriction on diffusion fluxes, and it enables using the extent of reaction to de-

scribe concentration changes caused by reactions even in coupled reaction-diffusion sys-

tems [22].  

If the transformation of A, B to AB occurs as a single reaction A + B =  AB, diffusion 

is self-balancing when �� = �� = −��� [23]. The symbol �� is explained in detail in ref. 

[23] but here it is sufficient to state that it represents the divergence of the diffusion flux 

of the component α.  

If the transformation proceeds including intermediate AB�, i. e. according to (R2), 

diffusion is self-balancing only when the following condition is fulfilled: �� = 2�� + ���. 

Interestingly, there is no direct effect of the diffusion flux of the intermediate AB� on the 

self-balancing diffusion condition. On the other hand, the condition was affected by its 

presence in the AB reacting mixture compared to the case when it is absent. Coupling 

chemical reactions with diffusion could be common in biological systems. This brief note 

shows that in a simple chemical transformation, diffusion fluxes can be affected differ-

ently due to the presence or absence of an intermediate involved in the autocatalytic 

scheme.  

3. Methods 

The methodology originated in the previous paper [24] and its general background 

in non-equilibrium thermodynamics can be found in the book [17]. The core is the general 

form of the reaction rate as a function of temperature and concentrations, � = �(�, �), de-

rived by non-equilibrium thermodynamics for linear fluids which comprise many real 

systems of interest in (solution and gas) chemistry; � is the vector of the rates of inde-

pendent reactions and � is the vector of concentrations. In other words, the traditional 

mass-action kinetic law was proved and generalized thermodynamically. The general 

function is approximated by a polynomial of suitable degree:  

� = � �n�
� ��

n��

�

���

�

���

,   � n��

�

���

≤ �. (18) 

Here, �� is the molar concentration of component α, and � is the total number of com-

ponents. The vectors �n�
 contain polynomial coefficients dependent on temperature 

only, the vectors n� = (n��, n��, … , n��) contain polynomial powers and are also used as 

subscripts to index various vectors of polynomial coefficients. For the total number of 

terms � see [19,20]. The choice of the polynomial degree is guided by the correspondence 

between the powers of the polynomial terms and the reaction orders – third-degree, at 

most, should be appropriate, in many cases first or second-degree is sufficient [17] (p. 249). 

The methodology starts with determining the components of a reaction mixture and 

their atomic composition, which is the basis for finding the number of independent reac-

tions, selecting them and finding the corresponding stoichiometric matrix using the linear 

algebra approach devised and justified by Bowen [22]. Further steps, briefly, are as fol-

lows: 

— selection of the degree of the thermodynamic polynomial and writing down the full 

polynomial, 

— some concentrations are expressed from the equilibrium constants of the selected in-

dependent reactions and substituted in the equilibrium form of the thermodynamic 

polynomial, 

— restrictions on the polynomial (rate) coefficients follow from the requirement of the 

general validity of equilibrium [17], 
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— these restrictions are introduced into the thermodynamic polynomial, this giving its 

final, simplified form – the rate equation. 

Mathematical modeling was performed with the Chemical Reaction Engineering 

Module of the COMSOL Multiphysics package, version 5.6. 

4. Conclusions 

A Landolt-type system describing the transformation of two reactants (A, B) to a sin-

gle product (AB) was recently presented as an example of a kinetic model which is free of 

any artificial impurities while able to interpret the autocatalytic feature [14]. The analysis 

of this work extends and generalizes that statement by demonstrating the consistency of 

the kinetic description of the Landolt-type system with non-equilibrium thermodynamics.  

If the transformation of A, B to AB includes an autocatalytic step, its kinetic and dif-

fusional behavior is different from the case when this transformation occurs as a single, 

direct step. These two routes also differ in their “thermodynamic driving forces” (chemi-

cal affinities). 

When modeling (autocatalytic) kinetics, it is instructive to follow also the rates of 

individual reaction steps in the reaction scheme which more immediately reveal the au-

tocatalytic features and the contribution of these steps to the overall transformation reac-

tants to products. Rate time profiles of the same reacting system are different in batch and 

flow-through reactors due to the forcing of the permanent inflow to the latter system. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/catal11111300/s1, file containing details on the derivations described in the main text. 
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