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Abstract: Emerging pollutants are an increasing problem in wastewater globally. Bisphenol A (BPA)
is one compound belonging to this group. This work proposes the study of the employment of
several metal-supported (2 wt. %) carbon nanospheres (CNS) for BPA degradation by catalytic
wet-air oxidation. Several techniques were used for the catalyst characterization: thermogravimetry,
X-ray diffractometry (XRD), Fourier transformed infrared spectrometry (FTIR), determination of
isoelectric point, elemental analysis, X-ray fluorescence (XRF), scanning electron microscopy (SEM),
and N2 adsorption–desorption isotherms. Different loads of Ru in the catalyst were also tested
for BPA degradation (1, 2, 5, 7, and 10%), being the first minimum value to achieve a conversion
above 97% in 90 min 2 wt. % of Ru in the CNS-Ru catalyst. In the stability test with CNS-Ru and
CNS-Pt, CNS-Pt demonstrated less activity and stability. Two potential models were proposed
to adjust experimental data with CNS-Ru(2%) at different conditions of BPA initial concentration,
catalyst mass, temperature, and pressure of the reaction. Both models showed a high determination
coefficient (R2 > 0.98). Finally, the efficiency of CNS-Ru and CNS-Pt was tested in a real hospital
wastewater matrix obtaining better results the CNS-Pt(2%) catalyst.
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1. Introduction

Emerging pollutants have been defined for the first time in Directive 2013/39/EU.
They can be defined as those that are not currently included in the systematic monitoring
programs of the European Union but that pose a significant risk, which requires their
regulation, depending on their possible ecotoxicological and toxicological effects and
their levels in the aquatic environment [1]. Their presence in the environment is not new,
but concern about their possible consequences is, which has been increasing, and that is
why it has become one of the priority lines of research for the World Organization of the
Health (WHO), the European Environment Agency, and the United States Environmental
Protection Agency (EPA) [2,3]. The group of additives and industrial products to which
bisphenol A (BPA) belongs has been classified as a group of emerging pollutants. BPA is an
organic compound formed by two phenolic rings, and it is widely used in the manufacture
of polycarbonate plastics and epoxy resins used in almost all industries (Figure 1). Indeed,
polycarbonate in particular is a rigid, high-performance, transparent plastic used to make
food containers, such as bottles, plates, and cups, while epoxy resins are used to make
protective coatings on food and beverage containers.
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endometriosis [6], among others. It is considered a disruptor endocrine. For this reason, 
different countries have proposed some restrictions and laws about BPA, such as Den-
mark, France, Sweden, Belgium, Austria, and Norway, being wholly forbidden in France 
and listed on the priority substance list in Norway [7]. Emerging pollutants are also called 
micropollutants, because they are found in concentrations between μg L−1 and ng L−1 [8,9]. 
The main problem of the emerging contaminants resides in the fact that they cannot be 
eliminated by conventional wastewater treatment plants (WWTP) [8]. Different concen-
trations of bisphenol A have been found in various effluents of WWTP, sludge, sediments, 
and rivers. For example, in WWTP effluents, in Slovenia and Croatia, the found concen-
tration has been estimated in the range 44.3 to 2620 ng L−1 [10]; in Mexico, it has been 
detected in concentrations in the range of 20–410 ng L−1 [11]; and in Seville, the concentra-
tion was 4000 ng L−1 [12,13].  

 
Figure 1. Molecular structure of bisphenol A (4,4’-(propane-2,2-diyl)diphenol). 

It is necessary to apply other more severe condition processes than conventional 
WWTP offers to degrade recalcitrant pollutants similarly to emerging ones. In this context, 
over the past few decades, advanced oxidation processes (AOP) have been gaining im-
portance, being implanted in some WWTP as a complementary treatment [14]. These in-
clude ozonation, peroxidation, ultraviolet light aided ozonation (O3/UV), ultraviolet light 
aided peroxidation (UV/H2O2), Fenton and Fenton-like oxidation, gamma radiolysis, so-
nolysis, and catalytic wet air oxidation (CWAO) [15]. Liu et al. (2021) were able to obtain 
an optimized system of visible light irradiation involving CoCN (Co sites embedded in 
carbon nitride catalyst) and peroxymonosulfate (CoCN/Vis/PMS system) (λ ≥ 420 nm, 
[PMS] = 0.2 g L−1, pH = 7.0), where 100% of bisphenol A (20 mg L−1) was removed after 2 
min [16]. Chu et al. (2021) studied the reaction activity of H2O2, CF (copper film) in com-
bination with ultrasound (US) irradiation to degrade (BPA) [17]. Li et al. (2021) developed 
a composite material of CoFe2O4−biochar (CoFe2O4@BC) with high performance of perox-
ydisulfate activation and catalytic ozonation for BPA degradation with 100 mg L−1, achiev-
ing a conversion of 95.8% within 8.0 min [18]. Rathnayake et al. (2020) worked with a bi-
functional catalyst (2.5% Pt/Ti0.8Ce0.2O2), combining catalytic wet air oxidation and photo-
catalysis to reduce the concentration and toxicity of BPA [19]. 

CWAO supposes an alternative to this AOP, which is also a process capable of de-
grading phenolic compounds. The selection of the catalytic material for the CWAO pro-
cess is of significant importance. In recent decades, different materials have been studied 
to act as support for the catalyst: zeolites [20], clays [21], resins [22], and carbon-based 
materials [23]. From this classification, carbon support has attracted attention, carbon nan-
ospheres being optimal support for this process. CNS support has been considered an 
ideal platform due to its good thermal stability under an inert atmosphere, intrinsic hy-
drophobic nature, presence of vast functional groups facilitating the metal dispersion, and 
spherical morphology, ensuring a fast mass transfer and minimal viscosity effects. More-
over, in its spherical arrangement, the graphene sheets are not closed shells but instead 
waving flakes that follow the sphere’s curvature at different depths, creating many open 
edges at the surface. These unclosed graphitic flakes provide reactive hanging bonds that 
are proposed to enhance surface reactions, establishing CNS as promising candidates for 
catalytic applications [24]. 

This work attempts to analyze BPA degradation by CWAO with catalysts based on 
carbon nanospheres (CNS) with different metals and loads. This study also addresses the 
possibility of reuse of Ru and Pt catalysts and the proposal of two kinetic models to deter-
mine the CWAO reaction rate for BPA degradation. Finally, a proof of concept will be 
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Figure 1. Molecular structure of bisphenol A (4,4′-(propane-2,2-diyl)diphenol).

Humans can be exposed to BPA consumption, because it can migrate in small quanti-
ties to food and beverages contained in these containers, especially when not using them
correctly. Bisphenol A can cause infertility [4], cancer, genitourinary malformations [5],
endometriosis [6], among others. It is considered a disruptor endocrine. For this reason,
different countries have proposed some restrictions and laws about BPA, such as Denmark,
France, Sweden, Belgium, Austria, and Norway, being wholly forbidden in France and
listed on the priority substance list in Norway [7]. Emerging pollutants are also called
micropollutants, because they are found in concentrations between µg L−1 and ng L−1 [8,9].
The main problem of the emerging contaminants resides in the fact that they cannot be
eliminated by conventional wastewater treatment plants (WWTP) [8]. Different concentra-
tions of bisphenol A have been found in various effluents of WWTP, sludge, sediments, and
rivers. For example, in WWTP effluents, in Slovenia and Croatia, the found concentration
has been estimated in the range 44.3 to 2620 ng L−1 [10]; in Mexico, it has been detected
in concentrations in the range of 20–410 ng L−1 [11]; and in Seville, the concentration was
4000 ng L−1 [12,13].

It is necessary to apply other more severe condition processes than conventional
WWTP offers to degrade recalcitrant pollutants similarly to emerging ones. In this con-
text, over the past few decades, advanced oxidation processes (AOP) have been gaining
importance, being implanted in some WWTP as a complementary treatment [14]. These
include ozonation, peroxidation, ultraviolet light aided ozonation (O3/UV), ultraviolet
light aided peroxidation (UV/H2O2), Fenton and Fenton-like oxidation, gamma radiolysis,
sonolysis, and catalytic wet air oxidation (CWAO) [15]. Liu et al. (2021) were able to obtain
an optimized system of visible light irradiation involving CoCN (Co sites embedded in
carbon nitride catalyst) and peroxymonosulfate (CoCN/Vis/PMS system) (λ ≥ 420 nm,
[PMS] = 0.2 g L−1, pH = 7.0), where 100% of bisphenol A (20 mg L−1) was removed after
2 min [16]. Chu et al. (2021) studied the reaction activity of H2O2, CF (copper film) in
combination with ultrasound (US) irradiation to degrade (BPA) [17]. Li et al. (2021) devel-
oped a composite material of CoFe2O4−biochar (CoFe2O4@BC) with high performance of
peroxydisulfate activation and catalytic ozonation for BPA degradation with 100 mg L−1,
achieving a conversion of 95.8% within 8.0 min [18]. Rathnayake et al. (2020) worked with
a bi-functional catalyst (2.5% Pt/Ti0.8Ce0.2O2), combining catalytic wet air oxidation and
photocatalysis to reduce the concentration and toxicity of BPA [19].

CWAO supposes an alternative to this AOP, which is also a process capable of degrad-
ing phenolic compounds. The selection of the catalytic material for the CWAO process is of
significant importance. In recent decades, different materials have been studied to act as
support for the catalyst: zeolites [20], clays [21], resins [22], and carbon-based materials [23].
From this classification, carbon support has attracted attention, carbon nanospheres being
optimal support for this process. CNS support has been considered an ideal platform due
to its good thermal stability under an inert atmosphere, intrinsic hydrophobic nature, pres-
ence of vast functional groups facilitating the metal dispersion, and spherical morphology,
ensuring a fast mass transfer and minimal viscosity effects. Moreover, in its spherical ar-
rangement, the graphene sheets are not closed shells but instead waving flakes that follow
the sphere’s curvature at different depths, creating many open edges at the surface. These
unclosed graphitic flakes provide reactive hanging bonds that are proposed to enhance
surface reactions, establishing CNS as promising candidates for catalytic applications [24].

This work attempts to analyze BPA degradation by CWAO with catalysts based on
carbon nanospheres (CNS) with different metals and loads. This study also addresses
the possibility of reuse of Ru and Pt catalysts and the proposal of two kinetic models to
determine the CWAO reaction rate for BPA degradation. Finally, a proof of concept will
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be employed to evaluate the decrease in the BPA degradation due to more compounds in
the matrix.

2. Results and Discussion
2.1. Catalyst Characterization

Thermogravimetric analysis of CNS-Ru(2%), CNS-Pt(2%), CNS-Fe(2%), and CNS-
Ni(2%) (Figure 2a) and CNS-Ru at 1, 2, 5, 7, and 10% (Figure 2b) were performed. The
analysis suggested that, at 1000 ◦C, the catalysts presented degradations between 35.41
for CNS-Ru(2%) catalyst and 37.88% for the CNS-Ni(2%) catalyst. Regarding the stability
of the Ru catalysts with different metallic percentages (Figure 2b) it was observed that,
except for the CNS-Ru(2%) catalyst, which was the most stable at 1000 ◦C, the rest showed
increasing stability as a function of its Ru content, being the degradation at 1000 ◦C of
CNS-Ru(1%) 42.54% and for CNS-Ru(10%) 39.14%, but the difference is minimal and it
can be included within the experimental error. All catalysts showed similar curve trends,
implying that, despite containing different metallic percentages of Ru or other metals, their
stability was not determined so much by the metal they contained as active phase but by
the support on which they were anchored.
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The CNS-Pt(2%) catalyst (Figure 2c) found that the best-matched element in the database 
was the Pt corresponding to the ICDD file: 04-016-6405, which has a cubic crystalline sys-
tem. According to the program’s database, the CNS-Fe(2%) catalyst showed coincidence 
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Figure 2. (a,b) Thermogravimetric analysis of CNS-Ru, CNS-Pt, CNS-Fe, CNS-Ni, and CNS-Ru
catalyst with different load of Ru; (c,d) XRD patterns of CNS-Ru, CNS-Pt, CNS-Fe, CNS-Ni, and
CNS-Ru catalyst with different loads of Ru; (e,f) ATR-FTIR spectra of CNS-Ru, CNS-Pt, CNS-Fe,
CNS-Ni, and CNS-Ru catalyst with a different load of Ru.

X-ray diffraction patterns analysis of CNS-Ru(2%), CNS-Pt(2%), CNS-Fe(2%), and
CNS-Ni(2%) (Figure 2c) and CNS-Ru at 1, 2, 5, 7, and 10% (Figure 2d) was carried out.
No carbon crystalline phase stood out with a high score according to the database of the
ICDD-PDF-4 + 2019 High Score Plus 4.7 program, which may be mainly attributable to
the pyrolysis treatment temperature at 430 ◦C. From the CNS-Ru(2%) catalyst sample,
coincidences were found with the Ru ICDD: 04-003-0364, and it was found that it is Ru
with a hexagonal crystal system (Figure 2c). This crystal had its peaks located with higher
intensities in decreasing order at the 2θ angle values of 43.98, 38.35, and 42.14◦, whose
planes with Miller indices were (101), (100), and (002), respectively. It should be noted
that these coincidences were confirmed with more intense peaks when the percentage in
Ru was higher, as the analysis was carried out on the catalysts with different Ru loads
(Figure 2d). The CNS-Pt(2%) catalyst (Figure 2c) found that the best-matched element in
the database was the Pt corresponding to the ICDD file: 04-016-6405, which has a cubic
crystalline system. According to the program’s database, the CNS-Fe(2%) catalyst showed
coincidence with the Fe of ICDD: 00-046-1436, with an orthorhombic crystalline form. The
CNS-Ni(2%) catalyst could also be compared to one from the database. This was the ICDD:
01-089-3080 with a rhombohedral crystal system.

ATR-FTIR spectra exposed that the absorption bands were identical for the catalysts
with different metals (Figure 2e), and the catalyst of Ru with other mass content (Figure 2f).
The band corresponding to –OH groups with wavenumbers between 3200 and 3600 cm−1

is the most intense. Then, it can be appreciated that the surface groups do not depend on
the metallic anchorage, only the treatment given to the support.

The isoelectric point was determined from the representation of the zeta potential
in mV against pH values on the abscissa axis for catalysts with different metal as active
phase, being 2.9 for CNS-Ru(2%), 2.7 for CNS-Pt(2%), 3.4 for CNS-Fe(2%), and 3.6 for CNS-
Ni(2%). Therefore, all of them presented an acid character.

The elemental analysis of the catalysts with different metals at 2% by mass is shown in
Table 1, displaying very similar values in the C content and practically identical ones in the
H and N contents. Hence, it is verified that the carbon content does not exclusively depend
on the catalyst’s metal, but on other factors such as the pyrolyzed carbon nanospheres
treatment.
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Table 1. Elemental microanalysis of catalysts with metals at 2% in weight.

Catalyst %C %H %N

CNS-Ru(2%) 69.50 2.96 3.51
CNS-Pt(2%) 68.13 3.10 3.34
CNS-Fe(2%) 63.03 3.10 3.43
CNS-Ni(2%) 65.98 3.39 3.16

X-ray fluorescence spectroscopy (XRF) made it possible to determine the content of
the active phase in the catalysts. The results are shown in Table 2. It can be seen that the
results obtained after the synthesis are quite similar to the theoretical percentages initially
proposed for the synthesis. Therefore, we could say that the synthesis of the catalysts was
successful.

Table 2. X-ray fluorescence spectroscopy of the synthesized catalysts.

Catalyst Metal—Active Phase Weight Content (%)

CNS-Ru(2%) Ru 1.95
CNS-Pt(2%) Pt 2.05
CNS-Fe(2%) Fe 2.07
CNS-Ni(2%) Ni 2.03
CNS-Ru(1%) Ru 0.97
CNS-Ru(5%) Ru 4.86
CNS-Ru(7%) Ru 6.93

CNS-Ru(10%) Ru 10.2

Figure 3 shows the adsorption–desorption isotherms of the synthesized catalysts. The
adsorption isotherms of the CNS catalysts are of type Ib, with the shape of type II for
relative pressure values greater than 0.9. This implies that the material is mainly micro-
and macroporous, since the strip corresponding to the mesopores is practically horizontal,
according to the classification proposed by Brunauer, Deming, Deming and Teller (BDDT),
and the IUPAC Technical Report (2015) [25–27]. It is appreciated that desorption isotherms
at low pressures do not close, suggesting that hysteresis occurred at low pressure, and the
type of hysteresis could be classified within the type H4 [26]. The isotherm shape of the
MWCNT-Ru(2%) catalyst has type III and type IVb isotherm characteristics.

Textural properties: the specific surface area calculated using the BET equation (ABET),
the total specific pore volume (VP), specific volume of micropores (Vm), specific area of
micropores (Am), and specific external area (Aext) are presented in Table 3.

Table 3. Elemental microanalysis of catalysts with different metal at 2% in weight.

Catalyst Metal wt. (%) ABET (m2 g−1) VP (cm3 g−1) Vm (cm3 g−1) Am (m2 g−1) Aext (m2 g−1)

CNS

Ru 2 340 ± 6 0.326 0.102 335 119
Pt 2 330 ± 6 0.331 0.150 248 82
Fe 2 586 ± 9 0.361 0.199 433 153
Ni 2 406 ± 6 0.260 0.134 290 116

MWCNT Ru 2 160 ± 0.3 0.916 0.009 21 138

CNS

Ru 1 372 ± 5 0.238 0.119 258 114
Ru 5 367 ± 5 0.280 0.113 245 118
Ru 7 358 ± 5 0.277 0.109 238 120
Ru 10 340 ± 5 0.245 0.104 227 113

The results of the synthetized catalysts by physisorption of N2 are shown in Table 3.
It can be seen that the catalyst that presented a higher specific BET surface was the CNS-
Fe(2%) catalyst with a value of 586 m2 g−1, also being the one with the highest specific
volume of micropores, specific area of micropores, and specific external area, while the
catalyst that obtained the lowest BET specific surface value was the MWCNT-Ru(2%) with
160 m2 g−1. It can be highlighted that this last material had the highest value of the total
specific volume of pores, with a notable difference compared to the other catalysts, but
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at the same time, it was the one that obtained the lowest value of the specific volume of
micropores. This implies that this material is not microporous, as validated in Figure 3
by the shape of its adsorption isotherm. From the analysis of the samples with different
metallic percentages of Ru, it was observed that the value of the specific surface calculated
by BET decreased as the content of Ru in the catalyst increased (Figure 3a,c,d). This fact
could be produced by a possible plugging of the pores of the surface of carbon nanospheres
by anchoring increasing amounts of Ru in them. This trend was also observed in the
specific volume of micropores and specific area of micropores.

A spherical morphology was observed in all studied catalyst samples in the nanometer
range, confirmed by scanning electronic microscopy (Figure 3e).
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Figure 3. (a,b) N2 adsorption–desorption isotherms of CNS-Ru, CNS-Pt, CNS-Fe, CNS-Ni; (c,d) CNS-Ru catalyst with a
different load of Ru; (e) catalyst SEM images.

2.2. Influence of the Ruthenium Load in the CNS-Ru Catalyst

Optimal conditions for the BPA degradation by CWAO were established in T = 130 ◦C,
P = 20 bar, [BPA]0 = 20 mg L−1, [CNS-Ru(2%)] = 2.0 g L−1 y pH0 = natural for this type
of catalyst, achieving a conversion above 97% in a previous work of Serra-Pérez et al.
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(2019) [28]. The following set of experiments was performed to determine how the metallic
percentage of Ru affected the degradation of bisphenol A in ultrapure water. In Figure 4a,
it was observed that an increase in the metallic percentage of Ru decreased the degradation
time of BPA from 180 min for CNS-Ru(1%) to 30 min for CNS-Ru (10%) for the same
conversion (97%). However, since Ru is a high-cost precious metal, a 150 min decrease in
reaction time is not sufficient for selecting the catalyst with a higher percentage of metal,
as it would seriously increase operating costs. In the same way, for kinetic studies, it was
interesting that the kinetics were not so fast to be able to determine the parameters without
problems by very similar conversions at various times. Therefore, a mass percentage of 2%
in Ru was selected as optimal to continue working with the catalyst for more experiments.
It was the first minimum value to achieve a conversion above 97% in 90 min of reaction
time. The leaching of ruthenium was also determined, and the highest value was for the
CNS-Ru(10%), while the lowest was for the CNS-Ru(1%) catalyst (Figure 4b).
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Figure 4. (a) Influence of the load of Ru in the BPA degradation (T = 130 ◦C, P = 20 bar, [BPA]0 = 20 mg·L−1,
[CNS-Ru] = 2.0 g·L−1, pH0 = 7.0); (b) Percentage of leached ruthenium in the final reaction effluent measured at opti-
mal conditions (T = 130 ◦C, P = 20 bar, [BPA]0 = 20 mg·L−1, [catalyst] = 2.0 g·L−1, pH0 = 7.0).

2.3. Influence of the Metal in the Catalyst for the BPA Degradation

Different metals were tested to determine if the BPA conversion was enhanced when
employing a transition metal different from noble type ones. These experiments were
carried out at the optimal conditions previously established and with 2 wt.% of the metal
with BPA solutions in ultrapure water. Figure 5a depicted that the slowest degradation
occurred when the Fe catalyst was used (93% degradation in 3 h of reaction time), followed
by the degradation with the CNS-Ni (93.5%) and Pt catalyst (98%); the fastest degradation
occurred with the CNS-Ru catalyst (100%).

Then, the tested catalyst was formed from the support of commercial multi-walled car-
bon nanotubes with ruthenium to compare with its corresponding carbon nanospheres. The
BPA degradation for the MWCNT-Ru was complete in 30 min of reaction time. However,
the experiments showed that this support is not a recommended option for synthesizing
catalysts by the proposed synthesis method due to the high adsorption capacity they
presented: 97% adsorption for bisphenol A in 45 min. It is for this reason that the rest of the
metals were not tested with this support. The produced leaching of the metal concerning
the initial metal content is also very variable (Figure 5b). The catalyst that had the lowest
leaching was CNS-Ru(2%), and that with the highest leaching was the corresponding Ni
catalyst. Toxicity tests of the final effluent revealed that leaching was linked to toxicity,
as the effluent corresponding to the CNS-Ru catalyst reaction was 1.38 TU, and that cor-
responding to the CNS-Pt reaction was 2.66 TU. This toxicity was recorded at 5 min of
exposure to compare with the value of the solution of bisphenol A in ultrapure water
previously quantified (3.37 TU [28]).
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Figure 5. (a) Influence of the metal type (2 wt. %) in the catalyst for the BPA degradation and
support MWCNT at optimal conditions; (b) percentage of leached metal in the final reaction effluent
measured at optimal conditions (T = 130 ◦C, P = 20 bar, [BPA]0 = 20 mg·L−1, [catalyst] = 2.0 g·L−1,
pH0 = 7.0).

2.4. Reusability and Stability Tests with CNS-Ru and CNS-Pt

Reuse experiments of the CNS-Pt(2%) catalyst in the degradation of bisphenol A in
ultrapure water were carried out to compare them with those obtained with the CNS-
Ru(2%) catalyst. The experiments were performed at the established optimal conditions
(T = 130 ◦C, P = 20 bar, [BPA]0 = 20 mg·L−1, [CNS-Ru] = 2.0 g·L−1, pH0 = 7.0) [28]. It is
observed in Figure 6 that the degradation of bisphenol A with CNS-Pt was slower than the
degradation obtained with CNS-Ru, since, for a reaction time of 90 min with the CNS-Ru
catalyst, this obtained a conversion higher than 97%. In contrast, with the CNS-Pt catalyst,
the degradation was 82%. In 180 min of reaction time, the achieved conversion with
CNS-Pt was 98%, while for the third run, it was 91% in the same time and 69% in 90 min of
reaction time. It can be said that the activity of CNS-Pt in the reuse reactions decreased.
This reduction could be due to the plugging of the catalyst pores and the formation of
oxides, as has been reported in previous work for the CNS-Ru catalyst [28]. Therefore,
the degradation of bisphenol A in ultrapure water is higher than 98% with the CNS-Ru
catalyst. Degradations of 98% can only be achieved in 180 min with the CNS-Pt catalyst.
Final effluent toxicity increased due to the increase in the metal leaching, from 1.38 (1st run)
to 1.53 TU (3rd run) in the CNS-Ru experiments and from 2.66 to 3.78 TU from the first to
third runs in the CNS-Pt experiments.
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Figure 6. (a) Reusability of CNS-Ru and CNS-Pt for the BPA degradation at optimal conditions; (b)
percentage of leached metal in the final reaction effluent measured at optimal conditions (T = 130 ◦C,
P = 20 bar, [BPA]0 = 20 mg·L−1, [catalyst] = 2.0 g·L−1, pH0 = 7.0).
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2.5. Kinetics Models Determination

Some assumptions were considered to apply the kinetics models: the volume and the
catalyst mass is constant, and the reaction system is heterogeneous (Equation (1)).

r =
RBPA

νBPA
=

dnBPA

νBPAWdt
=

V
W

(
−dCBPA

dt

)
, (1)

where r (mmol gRu
−1 min−1) is the reaction rate, RBPA is the BPA consumption rate, νBPA is

the BPA stoichiometric coefficient, CBPA (mmol L−1) is the BPA concentration at any time, V
is the reaction volume, and W (gRu) is the mass of the contained metal in the used catalyst.

2.5.1. Simple Potential Model

A one-factor potential model was proposed to adjust the results of the reactions
with different reaction temperatures and initial BPA concentration (experiments 1–4 and
11–13 from Table 6) [29]. These data were adjusted to a nonlinear potential model for BPA
concentration (Equation (2)):

r = k(T)C a
BPA, (2)

where k (mmol1−a La gRu
—1 min−1) is the kinetic constant, which is described as a function

of the temperature following the Arrhenius equation, Equation (3), and a is the order for
the BPA concentration and the total order of the reaction.

k = k0 e(
−Ea
R T ) (3)

In Equation (3), k0 (same units of k) is the pre-exponential factor, Ea (kJ mol−1) is the
activation energy, R the gas constant (8.314·10−3 kJ mol−1 K−1), and T (K) the temperature.

The result of analytically integrating Equations (1) and (2) was a non-linear equation
(Equation (4)):

CBPA =

(
C 1−a

BPA 0 −
W
V

k t(1− a)
) 1

1−a
, (4)

where CBPA 0 (mmol L−1) are the BPA concentrations at initial time, respectively, and t
(min) is the reaction time.

The fitting of the experiments was analyzed through Origin 2017, employing the
Levenberg–Marquardt iteration algorithm [30]. Reaction time, initial concentration of
BPA, and temperature were considered independent variables. The model showed a
high determination coefficient (R2 > 0.98). The activation energy of the reaction was
31.03 kJ·mol−1 (see Table 4). Ovejero et al. [31] found similar values for the degradation of
the non-azo dye Basic Yellow 11 from aqueous solution by CWAO process.

Table 4. Results of the fitting to Equation (4).

Parameter Value

k0 (mmol1−a·La·gRu
−1·min−1) 8606

Ea (kJ·mol−1) 31.03 ± 2.55
a 0.97 ± 0.05

R2 0.988

After applying the model to the experimental data, Equation (2) can be written as
Equation (5), and the calculation of the simulated concentration was possible by substi-
tution of the values from Table 4 in Equation (4). Then, it was possible to compare the
experimental data to the simulated concentration (Figure 7).

r = 8606 e(
−31.03 ± 2.55

R T ) C 0.97±0.05
BPA (5)
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Figure 7. Simulation of Equation (5) for (a) different initial BPA concentrations in the CWAO process
(130 ◦C, 20 bar, 2.0 g L−1 CNS-Ru); (b) different reaction temperatures (20 bar, 2.0 g L−1 CNS-Ru,
[BPA]0 = 20 mg·L−1).

In Figure 7, it was observed that 20 mg L−1 of BPA initial concentration experiments
were fitted better by the model because the different temperatures experiments were per-
formed using an initial concentration of BPA of 20 mg L−1; hence, this concentration value
had more weight in the model. Equation (5) validity was restricted to the range of the oper-
ating conditions used for the adjustment of the experimental data: CBPA 0 = 5–30 mg·L−1,
T = 383.15–433.15 K, [CNS-Ru] = 2.0 g·L−1, and 20 bar.

2.5.2. Complex Potential Model

Another potential model found in the literature was employed [32]. In this case, ex-
periments with different reaction temperatures, initial concentration of BPA, and pressures
and concentrations of catalyst (all experiments from Table 5) were considered for the model,
Equation (6):

r = k(T) C a
BPA P b C c

Ru, (6)

where some variables have been previously explained, k (mmol1−a·La+c·gRu
−1−c·min−1·

bar−b) has different units with respect to the previous model, P (bar) is the total pressure in
the system, and CRu (gRu·L−1) is the ruthenium concentration in the used CNS-Ru catalyst.

Table 5. Results of the fitting to Equation (7).

Parameter Value

k0 (mmol1−a·La+c·gRu
−1−c·min−1·bar−b) 1014

Ea (kJ·mol−1) 31.60 ± 2.85
a 0.99 ± 0.05
b 0.55 ± 0.06
c 0.78 ± 0.03

R2 0.988

The integration of Equations (1), (3), and (6) was analytically carried out, and the final
expression for the adjustment of the CWAO reaction data is the following (Equation (7)):

CBPA =
(

C 1−a
BPA0 − k P b C c

Ru t (1− a)
)

1
1−a (7)

Origin 2017 software was also used with the Levenberg–Marquardt algorithm. Reac-
tion time, initial concentration of BPA, temperature, oxygen pressure, and concentration
of Ru were considered independent variables. This model showed a high determination
coefficient (R2 > 0.98). The activation energy of the reaction was 31.60 kJ·mol−1 (see Table 5).
Similar values were found by those obtained by Gomes et al. [32].
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By combining these parameters, the reaction rate (in mmol·gRu
−1·min−1) can be

expressed according to Equation (8):

r = 1014 e(
−31.60 ± 2.85

R T ) C 0.99±0.05
BPA P 0.55±0.06

O2
C 0.78±0.03

Ru (8)

As in the previous case, the applicability of this equation was restricted to this instal-
lation and the range of operating conditions employed for the fitting of the experimental
data: CBPA 0 = 5–30 mg·L−1, T = 383.15–433.15 K, P = 20–50 bar, [CNS-Ru] = 0.50–1.50 g·L−1,
and 20 bar.

In Figure 8, it was observed that the model better fitted the experiment developed
with 20 mg L−1 of BPA initial concentration, because the experiments at different temper-
atures were performed using an initial concentration of BPA of 20 mg L−1; hence, this
concentration value had more weight in the model.
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Figure 8. Simulation of Equation (7) for (a) different initial BPA concentrations (130 ◦C, 20 bar, 2.0 g
L−1 CNS-Ru); (b) different temperatures (20 bar, 2.0 g L−1 CNS-Ru, [BPA]0 = 20 mg·L−1); (c) different
pressures (130 ◦C, [BPA]0 = 20 mg·L−1, 2.0 g·L−1 CNS-Ru); and (d) different Ru concentration values
(130 ◦C, 20 bar, [BPA]0 = 20 mg L−1).

2.6. Proof of Concept: Treatment of a Real Hospital Wastewater Effluent with CNS-Ru and
CNS-Pt

The previous work until this section is the preliminary study that must be carried out
before application in a real matrix. In this work, a hospital wastewater effluent (HospWW)
was considered to accomplish the CWAO reactions with the same synthesized catalyst
(CNS-Ru(2%) and CNS-Pt(2%) and the established optimal conditions (130 ◦C, 20 bar,
[BPA]0 = 20 mg L−1 and 2.0 g·L−1 CNS-Ru). The matrix did not contain BPA. Thus,
the HospWW matrix was doped with this compound in 20 mg·L−1 for the reactions. In
Figure 9, it can be appreciated that the degradation in ultrapure water with both catalysts
(BPA.HospWW CNS-Ru and BPA.HospWW CNS-Pt) was higher than those values from
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the degradation in hospital wastewater. However, it can be observed that, while the
degradation was better in the case of CNS-Ru catalyst in BPA solved in ultrapure water, the
behavior is the opposite in hospital wastewater. BPA degradation is reached in 90 min for
CNS-Ru in ultrapure water and 180 min, while in hospital wastewater, the BPA degradation
was 78% for CNS-Ru and 85% for CNS-Pt in 180 min of reaction time. This could be due to
the presence of other compounds in this matrix that are also competing for the formed OH
groups during CWAO reactions [33]. It can be said that CNS-Pt catalyst has higher efficiency
for BPA degradation in the case of matrices from hospital wastewater. The employment of
this process could be considered to degrade BPA in hospital wastewater matrices.
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Figure 9. Degradation of BPA by WAO and CWAO solved in H2O and HospWW at optimal
conditions (130 ◦C, 20 bar, [BPA]0 = 20 mg L−1 and 2.0 g·L−1 CNS-Ru).

3. Materials and Methods
3.1. Materials

Bisphenol A (BPA) with CAS 80-05-7 was supplied by Sigma-Aldrich (St. Louis, MI,
USA) with high purity (>99.99%) and employed in the experiments. BPA was diluted in
both ultrapure water and the real hospital wastewater effluent.

Formaldehyde solution (37 wt% in water, stabilized with 15 wt% methanol), resorcinol
(99 wt%), Pluronic F127 powder, NaOH, RuCl3·H2O and H2PtCl6·6H2O, and H3PO4 were
purchased from Sigma-Aldrich. Iron (III) nitrate nonahydrate and nickel (II) nitrate hex-
ahydrate were obtained from Panreac. Absolute ethanol and acetonitrile were purchased
from Fischer Chemical, HNO3 solution (69.5 wt. %.) was supplied by Carlo Erba, and
HCl solution (37% wt.) by Honeywell Fluka. Sun Nanotech Co Ltd. (Jiangxi, China)
provided multi-walled carbon nanotubes (MWCNT-L-P) with a purity higher than 90%
and a diameter between 10 and 30 nm.

3.2. Synthesis of the Catalyst

The carbon nanospheres (CNS) synthesis was carried out by the mixture of resorcinol
and formaldehyde in a polycondensation reaction with Pluronic F127 as a template. The
synthesis of the CNS-Ru, CNS-Pt, CNS-Fe and CNS-Ni catalysts was executed by incipient
wetness impregnation method and a thermal activation with hydrogen and nitrogen
following the practices described by Serra-Pérez et al. [28]. All the catalysts were prepared
with a metal content of 2% in weight, except for the Ru load catlayst experiments (1, 2, 5, 7
and 10 wt. %). Multi-walled carbon nanotubes were only employed with ruthenium as
active phase (MWNT-Ru). The steps to obtain the catalyst with this nanotube support were
functionalization, impregnation and activation, following the same synthesis method used
with carbon nanospheres. Ru was also impregnated in 2% in weight in this support as a
comparative study.
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3.3. Catalyst Characterization

Thermogravimetric analysis was performed in a Perkin Elmer STAR 6000 thermal
analyzer from 30 ◦C to 1000 ◦C, with a 10 ◦C min−1 heating ramp and a volumetric flow rate
of 50 mL min−1 N2. XRD patterns were obtainedin a Siemens D501 diffractometer. XRD
classic analyses were carried out from 5 to 100◦ (2θ), with a 0.105◦ step of measurement
and 1.0 s·step−1. With a continuous scan mode, a fixed anti-scattering slit of 5.70 mm in
the diffracted beam and a fixed divergent slit of 0.25◦ in the incident beam was possible
to carry out the analysis. The anode was Cu, and different wavelengths were emitted:
K alpha1 (1.540598 Å), K alpha 2 (1.544426 Å), and K beta (1.392250 Å). A Nicolet iS50
with ATR SpectraTech Performer in the range of 400–4000 cm−1 allowed us to obtain
Fourier-transformed infrared (FTIR) spectra. The maximum resolution was 0.09 cm−1,
and the measurement surface was 2 mm in diameter. ATR-FTIR method was preferred
because it could remove the interferences caused by humidity that the KBr pill can have.
The equipment used for the isoelectric point measurements was Malvern’s Zetasizer Nano
ZS. The sample was sieved between 10 and 20 µm, and 50 mg was weighed and added
to 20 mL of water. The solutions used to adjust the pH were NaOH and HCl from 0.1 M
to 0.001 M.

The samples’ elemental analyses were performed in LECO CHNS-932 equipment
with a detection limit of 0.53, 2.75, 0.45, and 0.57% for C, H, N, and S, respectively. The
required sample mass was less than 5 mg. X-ray fluorescence spectroscopy (XRF) made it
possible to determine the percentage of Ru contained in the catalyst samples, for which
equipment calibration was performed with different solutions of the Ru precursor being
used. The catalysts of Pt, Fe, and Ni, with their previous calibrations, were also analyzed.
The equipment used was an Aχios PANalytical spectrometer with excitation wavelength
dispersion of up to 4 kW. The equipment is a wavelength dispersion measurement system.
The gas used was He.

The materials’ morphology was analyzed using scanning electron microscopy (SEM)
(JEOL JSM 6335F with 1–15 kV, 1.5–5.0 nm of resolution). The textural properties of
catalysts were analyzed in a Micromeritics ASAP 2020 apparatus, obtaining N2 adsorption–
desorption isotherms of the solids. For the sample analysis, approximately 150 mg of the
dry sample was weighed, which was subjected to a degassing process for 4 h at 350 ◦C to
clean the surface and the pores of the impurities that they contained. Next, the sample was
cooled by the liquid nitrogen temperature to 77 K and subjected to a controlled pressure
ramp. ◦

3.4. Characterization of the Wastewater Matrix

The hospital wastewater effluent (HospWW) was taken directly from the output
current of a hospital in Madrid (Spain). A sampling campaign was performed between 20
and 26 April 2015. The employed samples in this work are those corresponding to 26 April
2015. Before collecting samples, each bottle was thoroughly washed out with ultrapure
water at the laboratory and swilled out with the sample. Wastewater samples were stored
in new polypropylene bottles simultaneously (10–11 a.m.). The samples were refrigerated
(±4 ◦C) during the transport to the laboratory. Once in the lab, they were filtered through
filter paper to remove sand and large solids and stored at −20 ◦C until being used.

The real-water aqueous matrix was characterized with the determination of the total
carbon (TC) and the total nitrogen (TN) concentrations with a TOC analyzer (Shimadzu
TOC), and the conductivity, aromaticity, nitrate (NO3−) and ammonia (NH4+) ions, chemi-
cal oxygen demand (COD-photometer Macherey-Nagel PF-11), suspended solids concen-
tration, and phenolic compounds were analyzed according to the standard methods [34].
The macroscopic parameters of the hospital wastewater are exposed in Table S1 of the
Supplementary Material. This hospital wastewater was doped with a BPA concentration of
20 mg·L−1 (BPA.HospWW) for the CWAO experiments.
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3.5. WAO and CWAO Experiments

The experiments were performed in a 100 mL batch reactor made of Hastelloy high-
pressure equipped with a stirrer at 700 rpm to avoid any external mass transfer resistance
in the liquid body and an electrical jacket. The reactor also included a cooling system for
precise temperature control when the air was introduced. It was joined to the bottles of
nitrogen and air. The gas and cooling water input current, a pressure gauge, and a rupture
disk were positioned on top of the reactor. A thermocouple measured the temperature
inside the reactor and another one was placed inside the jacket. First, 100 mL of BPA
solution was introduced into the reactor in an experiment, without or with catalyst (WAO
or CWAO, respectively). After purging with nitrogen to remove any trace of air, the
reactor was heated to the desired temperature (110–150 ◦C), while the agitator was already
working. The air was introduced until the work pressure was achieved when the desired
temperature had been reached. The first withdrawn sample was taken when the pressure
was introduced, which was considered reaction zero time. Samples were collected at
regular time intervals and after were cooled in water. Once they were filtered through
0.45 µm PTFE filters and centrifuged for 10 min at 4500 rpm, they were immediately
analyzed in duplicate. After each sample was taken, the reactor pressure had to adjust to its
set up value to maintain the pressure constant throughout the experiment. After 180 min of
reaction, the reactor was cooled down, and the catalyst was collected, filtered, and analyzed.
All the reaction tests were repeated three times, obtaining a 3% of experimental error.

The ruthenium load effect reactions were carried out at the optimal conditions deter-
mined in previous work for the BPA degradation in 90 min of reaction time (T = 130 ◦C,
P = 20 bar, [BPA]0 = 20 mg L−1, [CNS-Ru(2%)] = 2,0 g L−1 y pH0 = natural) [28]. The
type-metal effect reactions were also performed at the same optimal conditions. For the
reuse reactions, the catalyst was washed with ultrapure water at the end of each reaction
and dried overnight in an oven at 100 ◦C.

Different reaction variables were modified in the oxidation experiments with the
CNS-Ru(2%) catalyst for the kinetics determination. The sequence of experiments is shown
in Table 6, which is the same sequence of experiments employed for the determination
of the reaction optimal conditions with CNS-Ru(2%). Finally, at the optimum conditions,
the hospital wastewater was doped with a BPA concentration of 20 mg L−1 to test the
degradation of this compound in this real aqueous matrix using CNS-Ru and CNS-Pt.

Table 6. Sequence of experiments for kinetics determination.

Experiment T (◦C) P (bar) [CNS-Ru(2%)] (gRu L−1) CBPA 0 (mg L−1)

1 110 20 0.04 20
2 130 20 0.04 20
3 140 20 0.04 20
4 150 20 0.04 20
5 130 30 0.04 20
6 130 40 0.04 20
7 130 50 0.04 20
8 130 20 0.01 20
9 130 20 0.02 20
10 130 20 0.06 20
11 130 20 0.04 5
12 130 20 0.04 10
13 130 20 0.04 30

3.6. Sample Analysis

BPA concentration was determined using a stationary mobile phase by high-
performance liquid chromatography (HPLC) using a Varian ProStar chromatograph with
a Perkin Elmer C18 column (220 mm × 4.6 mm; 5 µm). It is a chromatographic column
filled with silica particles. The calibration method was carried out employing solutions
from 40 to 0.2 mg L−1 of BPA. The obtained signal and the concentration were adjusted to
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a linear equation, bringing a regression coefficient (R2) value 0.997. The used mobile phase
consisted of a mixture of acetonitrile-water (0.1% H3PO4) (45:55, v:v) with a volumetric
flow rate of 0.40 mL min−1, and the wavelength for compound detection was established
at 275 nm, utilizing an injection volume of 20 µL. Inductively coupled plasma mass spec-
trometry (ICP-MS) allowed to determine the metal leaching from the catalysts in some final
liquid solutions. A Bruker Aurora Elite coupled with a mass spectrometer was employed
to detect concentrations up to ng g−1.

Reaction final liquid samples were submitted to toxicity tests that were carried out
employing an internationally standardized aquatic ecotoxicity test in a Microtox M500 ana-
lyzer. Tests were developed following the standard measurement procedure of inhibiting
bioluminescence in the marine bacterium Vibrio fischeri with Biotox testing kit according
to the norm ISO 11348-3, 2009. The sensitivity, cost-effectiveness, and reproducibility of
this test were the characteristics on which we based our choice [35]. The toxicity of each
sample was determined as the percentage of the inhibition of the luminescence relative
to a non-contaminated blank (ultrapure water). All samples were determined at 15 ◦C,
adjusting the pH between 6 and 8 and the osmotic pressure to 2% NaCl. In accordance
to the standards, bioluminescence was measured after 5 and 15 min, and the results were
given in toxicity units (TU) after 5 min of exposure to the bacteria [36,37].

4. Conclusions

Some important sentences can be concluded from this work.

• The first minimum value to achieve a conversion above 97% in 90 min of reaction time
was a 2 wt. % of Ru in the CNS-Ru catalyst. Leaching increased when metal content
in the catalyst increased.

• The better metal of those tested was Ru against Fe and Ni, which suffered more
leaching. MWCNT as support adsorbed a significant amount of BPA.

• Reusability of CNS-Ru was possible, while the activity of the CNS-Pt in the reuse
reactions decreased.

• Experimental data were adjusted to a potential model to reproduce the kinetics be-
havior of the reactions. Another more complex potential model was employed for
CWAO reactions, considering the variety of different parameters, such as temperature,
pollutant concentration, total pressure, and catalyst concentration. This model was
successfully proposed to imitate the experimental data of CWAO process.

• Achieved BPA degradation in the hospital wastewater was higher with CNS-Pt (85%),
followed by CNS-Ru (78%) in 180 min of reaction time.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11111293/s1, Table S1: Representative macroscopic parameters of the hospital wastewater.
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