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Abstract: Recently, an in vitro enzymatic cascade was constructed to transform glycerol into the
high-value platform chemical pyruvate. However, the low activity of dihydroxy acid dehydratase
from Sulfolobus solfataricus (SsDHAD) limited the efficiency. In this study, the enzymatic reduction
of pyruvate catalyzed by D-lactate dehydrogenase from Pseudomonas aeruginosa PAO1 was used to
assay the activities of dihydroxy acid dehydratases. Dihydroxy acid dehydratase from Paralcaligenes
ureilyticus (PuDHT) was identified as the most efficient candidate for glycerate dehydration. After
the optimization of the catalytic temperature for the enzymatic cascade, comprising alditol oxidase
from Streptomyces coelicolor A3, PuDHT, and catalase from Aspergillus niger, 20.50 ± 0.27 mM of
glycerol was consumed in 4 h to produce 18.95 ± 0.97 mM of pyruvate with a productivity 12.15-fold
higher than the previous report using SsDHAD. The enzymatic cascade was further coupled with the
pyruvate decarboxylase from Zymomonas mobile for the production of another platform compound,
acetoin. Acetoin at a concentration of 8.52 ± 0.12 mM was produced from 21.62 ± 0.19 mM of glycerol
with a productivity of 1.42 ± 0.02 mM h−1.

Keywords: glycerol; pyruvate; acetoin; in vitro enzymatic cascade; dihydroxy acid dehydratase

1. Introduction

World production of glycerol, the main by-product of biodiesel and bioethanol gener-
ation, is now higher than the existing market demand for its industrial applications [1–3].
Glycerol can be transformed into different high value products by using chemical or biologi-
cal routes [4–7]. Biological conversion is generally considered to be the preferred method of
glycerol utilization due to its advantages of high selectivity, modest reaction condition, and
low pollution risk [8,9]. Various valuable compounds such as 1,3-dihydroxyacetone [10,11],
1,3-propanediol [12], and succinate [13] have been produced by microbial fermentation
using glycerol as a carbon source.

Pyruvate is an important platform compound which can be easily converted into a va-
riety of valuable chemicals, such as acetoin [14], ethanol [15], and lactate [16]. Biosynthesis
of pyruvate from glycerol by Yarrowia lipolytica through fermentation has also been exten-
sively studied [17]. However, Y. lipolytica often synthesizes pyruvate and α-ketoglutarate
in approximately equal amounts, which leads to a decrease in theoretical yield and an
increase in the difficulty of product separation [18–21]. In vitro enzymatic cascade, which
leaves out the use of microbial cells and excludes undesired metabolism pathways, can
also be used as a promising technique for the production of high-value products from glyc-
erol. For example, alditol oxidase from Streptomyces coelicolor A3 (ScALDO, QKN69540.1,
V125M/A244T/V133M/G399R), dihydroxy acid dehydratase from Sulfolobus solfataricus
(SsDHAD, WP_063492879.1), and catalase from Aspergillus niger (CAT) were combined
to construct an enzymatic cascade for converting glycerol into pyruvate [22]. The low
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efficiency of the dehydration of glycerate to pyruvate catalyzed by SsDHAD restricted
the application of this enzymatic cascade. Pyruvate at a concentration of 9.3 mM was
generated from 10 mM of glycerol after 24 h with a productivity of 0.39 mM h−1.

In the present study, we designed a convenient method for the determination of
dihydroxy acid dehydratase activity toward glycerate. Dihydroxy acid dehydratase from
Paralcaligenes ureilyticus (PuDHT, WP_132585145.1) was selected from three candidate
dehydratases as the optimal one for glycerate conversion. After optimization of the reaction
temperature, 18.95 ± 0.97 mM of pyruvate was generated from 20.50 ± 0.27 mM of glycerol
with a productivity of 4.74 ± 0.24 mM h−1 by ScALDO, PuDHT, and CAT. Then, acetoin, an
important platform chemical, was also produced from glycerol by coupling with another
enzyme, pyruvate decarboxylase, from Zymomonas mobile (ZmPDC, WP_014849477.1).

2. Results
2.1. Design and Application of the Dehydratase Determination System

The low activity of SsDHAD is the key factor limiting the efficiency of the entire in vitro
enzymatic cascade based on glycerol. The activity of dihydroxy acid dehydratase might
be detected by assaying the produced pyruvate from glycerate through high-performance
liquid chromatography (HPLC) [23], amperometric biosensors [24,25], chemical derivatiza-
tion [26] and enzymatic methods [27]. In this work, we selected the enzymatic reduction of
pyruvate to D-lactate catalyzed by D-lactate dehydrogenase from Pseudomonas aeruginosa
PAO1 (PaLdhA, NP_249618.1) to assay the activities of dihydroxy acid dehydratases [28,29].
Briefly, reduced nicotinamide adenine dinucleotide (NADH) is stoichiometrically oxidized
to nicotinamide adenine dinucleotide (NAD+) during pyruvate reduction. The decrease
in NADH, which is proportional to pyruvate produced from glycerate, can be measured
spectrophotometrically by using a spectrophotometer or a microplate spectrophotometer
with 96-well plates (Figure 1a).
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Figure 1. Selection of optimal dehydratase for glycerate conversion. (a) Scheme of the method for the
determination of the activity of dehydratase toward glycerate. (b) Changes in absorbance at 340 nm
caused by the coupled reaction catalyzed by D-lactate dehydrogenase from Pseudomonas aeruginosa PAO1
(PaLdhA) and three dehydratases including dihydroxy acid dehydratase from Sulfolobus solfataricus (SsD-
HAD), D-xylonate dehydratase from Caulobacter crescentus (CcXylD), and dihydroxy acid dehydratase from
Paralcaligenes ureilyticus (PuDHT). (c) Specific activities of SsDHAD, CcXylD, and PuDHT toward glycerate.
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Values are the average ± SD (n = 3 independent experiments). (d) High-performance liquid chro-
matography (HPLC) analysis of the glycerate dehydration catalyzed by SsDHAD, CcXylD, or PuDHT.
The mixed reaction systems were incubated at 37 ◦C and 150 rpm for 3 h and then analyzed by HPLC.
Black line, the reaction mixture with no dehydratase; red line, the reaction mixture with CcXylD;
green line, the reaction mixture with SsDHAD; blue line, the reaction mixture with PuDHT.

Next, we applied the activity determination system to select the optimal dehydratase
from three candidates including D-xylonate dehydratase from Caulobacter crescentus (CcXylD,
Q9A9Z2.1) [30], SsDHAD, and PuDHT [31], a newly identified dehydratase with a high
activity toward glycerate. As shown in Figure 1b,c, PuDHT showed the most satisfactory
catalytic ability toward glycerate dehydration as expected (about 10 times that of CcXylD
and 123 times that of SsDHAD). In addition, we further verified the dehydration activity
of these three dehydratases by catalysis with glycerate as the substrate. As shown in
Figure 1d, PuDHT catalyzed more glycerate into pyruvate than others in 3 h, while only a
little glycerate was catalyzed by SsDHAD to form an almost undetectable pyruvate. Thus,
PuDHT was selected as the optimal dehydratase for successive experiments.

2.2. Selection of the Suitable Reaction Temperature

The optimum temperature and thermo-stability of enzymes in the in vitro enzymatic
cascade are generally different from each other. Choosing a suitable catalytic temperature is
required for the optimal performance of the multi-enzyme cascade catalytic system. Thus,
the effects of temperature on the activities and stabilities of ScALDO and PuDHT were
assessed at different temperatures as shown in Figure 2. The results indicate that ScALDO
and PuDHT are affected differently by heat. ScALDO showed the highest activity at 42 ◦C
while PuDHT showed the highest activity at 55 ◦C (Figure 2a,b). ScALDO exhibited good
thermo-stability at temperatures below 50 ◦C (Figure 2c) while PuDHT exhibited good
thermo-stability at temperatures below 45 ◦C (Figure 2d). Thus, we chose 42 ◦C as the
reaction temperature of the in vitro enzymatic cascade.
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Figure 2. Effects of temperature on the activities and stabilities of alditol oxidase from Streptomyces
coelicolor A3 (ScALDO) and PuDHT. (a) The effect of temperature on the activity of ScALDO toward
glycerate. (b) The effect of temperature on the activity of PuDHT toward glycerate. (c) The stability
of ScALDO at different temperatures. (d) The stability of PuDHT at different temperatures. Results
are the average ± SD (n = 3 independent experiments).
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2.3. Production of Pyruvate from Glycerol by In Vitro Enzymatic Cascade with PuDHT

Then, pyruvate production from glycerol was carried out at 42 ◦C by an in vitro
enzymatic cascade comprising ScALDO, PuDHT, and CAT. The detailed reaction process
of pyruvate production from glycerol is described as shown in Figure 3a. Firstly, glycerol
was oxidized to glycerate via a ScALDO-catalyzed two-step reaction accompanied by the
consumption of oxygen and the generation of hydrogen peroxide. Then, glycerate was
dehydrated to produce pyruvate by PuDHT. In addition, the glycerol oxidization step
was coupled with CAT to decompose the undesirable byproduct hydrogen peroxide into
oxygen and water [32,33]. Finally, one glycerol molecule can be converted into one pyruvate
molecule with a high theoretical yield by the in vitro enzymatic cascade. Importantly, the
reaction system did not require the addition of expensive cofactors such as NAD+ which
may enhance the economic feasibility of the in vitro enzymatic cascade.
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Figure 3. Production of pyruvate from glycerol by the multi-enzyme cascade catalysis. (a) Scheme of
the production of pyruvate from glycerol catalyzed by ScALDO, PuDHT, and catalase from Aspergillus
niger (CAT). (b) Time courses of the production of pyruvate from glycerol. The reaction mixture
containing 20 mM of glycerol, 1000 U mL−1 of CAT, 5 mM of MgCl2, 1 mg mL−1 of ScALDO, 10 mg
mL−1 of PuDHT, and 250 mM of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-NaOH
(pH 8.0) was incubated at 42 ◦C and 150 rpm for 4 h. Results are the average ± SD (n = 3 independent
experiments).

As shown in Figure 3b, 20.50 ± 0.27 mM of glycerol was consumed in 4 h and
18.95 ± 0.97 mM of pyruvate was generated by using the in vitro enzymatic cascade. The
yield of pyruvate reached 92.54 ± 0.06% of the theoretical value. The productivity of
pyruvate (4.74 ± 0.24 mM h−1) was 12.15-fold higher than that of the enzymatic cascade
using SsDHAD without the optimized reaction temperature (0.39 mM h−1).

2.4. Production of Acetoin from Glycerol by In Vitro Enzymatic Cascade Coupled with ZmPDC

Acetoin is an important bio-based platform chemical with wide applications in the
food, cosmetics, agriculture, and chemical industries [34,35]. The well-characterized ace-
toin biosynthesis pathway involves two key enzymes. α-Acetolactate synthase (ALS)
catalyzes the condensation of two molecules of pyruvate to generate α-acetolactate. Then,
α-acetolactate is converted by α-acetolactate decarboxylase (ALDC) into acetoin (Figure 4a).
In a previous study, ALS and ALDC from Bacillus licheniformis 10-1-A were coupled with
ScALDO, SsDHAD, and CAT to catalyze glycerol into acetoin with pyruvate as the in-
termediate [22]. Acetoin at a concentration of 4.4 mM was generated from 10.4 mM of
glycerol with a productivity of 0.18 mM h−1. ZmPDC has been reported to catalyze the
decarboxylation of pyruvate to form acetaldehyde and further condense acetaldehyde to
produce acetoin (Figure 4b) [36]. Only one enzyme of ZmPDC was required to complete
the conversion of pyruvate into acetoin.
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and 250 mM of HEPES-NaOH (pH 8.0) was incubated at 42 ◦C and 150 rpm for 6 h. Results are the average ± SD (n = 3
independent experiments).

Thus, an in vitro enzymatic cascade pathway with ScALDO, PuDHT, CAT, and Zm-
PDC was constructed for the production of acetoin from glycerol. As shown in Figure 4c,
21.62 ± 0.19 mM of glycerol was completely consumed in 6 h and 8.52 ± 0.12 mM of acetoin
was produced without the accumulation of any intermediate (Figure 4c). The productivity
of acetoin was 1.42 ± 0.02 mM h−1, which was 7.89-fold higher than that of the enzymatic
cascade using SsDHAD, ScALDO, ALS, and ALDC.

Pyruvate has both reactive carboxyl and ketonic groups and thus can be used as an
important starting material in the chemical industry [37]. The large surplus of glycerol
from the biofuel industry has caused a demand for the development of new processes
to convert glycerol into valuable products. In this work, we used an enzymatic reaction
cascade with glycerate as the key intermediate to produce pyruvate from glycerol.

Sutiono et al. recently screened PuDHT as an efficient biocatalyst to biotransform
glycerate into pyruvate [31]. In this work, PuDHT was coupled with ScALDO and CAT
to produce pyruvate from glycerol. A higher productivity of pyruvate was acquired than
with our previously reported biocatalytic system with SsDHAD. However, this biocatalytic
system is still far from an industrial application. Zhang et al. obtained an evolved ScALDO
through three rounds of directed evolution and combined it with growth-coupled high-
throughput selection [38]. The evolved ScALDO exhibited a higher affinity and catalytic
efficiency toward glycerol. Introducing this evolved ScALDO into the in vitro multi-
enzyme cascade may enhance the production of pyruvate from glycerol. Systematic
optimization of the catalytic conditions such as the reaction pH and the concentrations of
different enzymes through Box–Behnken design (BBD) may also improve the performance
of the system.

3. Materials and Methods
3.1. Materials

Glycerol, glyceraldehyde, glycerate, pyruvate, isopropyl-β-D-thiogalactoside (IPTG),
thiamine pyrophosphate (TPP), NADH, phenylmethanesulfonyl fluoride (PMSF), and CAT
were purchased from Sigma-Aldrich (Saint Louis, MO, USA). Acetoin was obtained from
Energy Chemical (Shanghai, China). MgCl2 was purchased from Sangon Biotech Co.,
Ltd. (Shanghai, China). Tryptone and yeast extract powder were purchased from Oxoid
Limited (London, UK). FastPfu DNA polymerase was purchased from TransGen Biotech
Co., Ltd. (Beijing, China). T4 DNA ligase and restriction endonuclease were purchased
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from Thermo Scientific (Waltham, MA, USA). All other chemicals were of analytical grade
and commercially available.

3.2. Strains and Plasmids

The strains expressing ScALDO, SsDHAD, and ZmPDC used in this study were con-
structed in our previous work [22,36]. The gene encoding PuDHT was synthesized by
General Biology (Anhui, China) after codon optimization and then ligated to pET28a(+)
via NdeI/XhoI restriction sites. The recombinant plasmid pET28a–PuDHT was then trans-
ferred into Escherichia coli BL21(DE3) for PuDHT expression. The gene encoding PaLdhA
was amplified from the genome of P. aeruginosa PAO1 with the primers PaLdhA-F/PaLdhA-
R (Supplementary Table S1) and ligated to pETDuet-1 via BamHI/HindIII restriction sites
to construct plasmid pETDuet–PaLdhA. pETDuet–PaLdhA was then transferred into E.
coli BL21(DE3) to obtain the expression strain of PaLdhA. The pET28a–CcXylD constructed
in our previous work was transferred into E. coli BL21(DE3) to construct the expression
strain of CcXylD [39].

3.3. Expression and Purification of Enzymes

ScALDO, SsDHAD, and ZmPDC were purified as described previously [22,36]. The ex-
pression strain of PuDHT, CcXylD, or PaLdhA was cultured in Luria–Bertani (LB) medium
with appropriate antibiotics at 37 ◦C, 180 rpm until the OD600 reached 0.4 to 0.6. After
being induced overnight with 1 mM of IPTG at 16 ◦C and 160 rpm, cells were harvested
by centrifugation at 6000× g for 10 min, washed twice with phosphate buffer saline, and
then resuspended in a binding buffer (20 mM of sodium phosphate, 20 mM of imidazole,
and 20 mM of sodium chloride, pH 7.4) containing 0.1 mM of PMSF. The resuspended cells
were lysed by a high-pressure homogenizer (ATS NANO TECHNOLOGY, Suzhou, China),
and then the cell lysate was centrifuged at 12,000× g for 30 min at 4 ◦C. The supernatant
was filtered using a 0.22 µm poly (ether sulfone) filter before being loaded into a 5 mL
HisTrap HP column (GE Healthcare, Uppsala, Sweden). A gradient elution with elution
buffer (20 mM of sodium phosphate, 20 mM of imidazole, and 500 mM of sodium chloride,
pH 7.4) was performed to obtain the target protein. The purified protein was desalted
into 250 mM of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-NaOH buffer
(pH 8.0) using a 5 mL HiTrap Desalting column (GE Healthcare, Uppsala, Sweden). Sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) was used to analyze the
size and purity of the target proteins.

3.4. Dihydroxy Acid Dehydratase Activity Analysis

The activity assays of dehydratases were performed using a microplate reader Spectra-
Max Plus 384 (Molecular Devices, San Jose, CA, USA) at 37 ◦C. The 200 µL reaction solution
contained 10 mM of glycerate, 0.2 mM of NADH, 1 mM of MgCl2, 5.5 µg mL−1 of PaLdhA,
an appropriate amount of dehydratase (PuDHT 1 mg mL−1, SsDHAD 3 mg mL−1, or
CcXylD 1 mg mL−1), and 100 mM of HEPES-NaOH buffer (pH 7.0). The dehydratase
was removed from the reaction mixture as a control. NADH consumption was measured
at 340 nm to reflect the production of pyruvate. One unit of dehydratase activity was
defined as the amount of protein needed to catalyze the consumption of 1 µmol of NADH
per minute.

3.5. Identification of the Effects of Temperature on Activities and Stabilities of ScALDO
and PuDHT

The activities of ScALDO at different temperatures were assayed in a reaction mixture
containing 50 mM of glycerol, 1000 U mL−1 of CAT, 1 mg mL−1 of ScALDO, and 250 mM
of HEPES–NaOH buffer (pH 8.0). After incubation at 150 rpm for 1 h at the corresponding
temperature, the concentration of glycerate was assayed by HPLC. The highest activity
of ScALDO at different temperatures was set at 100%. The effects of temperature on the
stability of ScALDO were studied by placing purified ScALDO at different temperatures
for 1 h, and then the residual enzyme activity was assayed at 37 ◦C and 900 rpm in a
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reaction mixture containing 20 mM of glycerol, 0.27 mg mL−1 of ScALDO, and 100 mM of
HEPES–NaOH buffer (pH 7.0) using an Oxytherm Clark-type oxygen electrode (Hansatech,
Pentney, UK). The activity of the untreated ScALDO was determined at the same condition
and set at 100%. The effects of temperature on activity and stability of PuDHT were assayed
through a similar method.

3.6. Production Pyruvate and Acetoin from Glycerol

The production of pyruvate from glycerol was performed in a reaction mixture con-
taining 20 mM of glycerol, 1000 U mL−1 of CAT, 5 mM of MgCl2, 1 mg mL−1 of ScALDO,
10 mg mL−1 of PuDHT, and 250 mM of HEPES–NaOH buffer (pH 8.0) at 42 ◦C and 150 rpm.
The production of acetoin from glycerol was conducted under the same conditions by the
extra addition of 2 mg mL−1 of ZmPDC and 0.2 mM of TPP. Samples were withdrawn
every 1 h and the substrate consumption and product formation were assayed by HPLC.

3.7. Analytical Methods

The concentrations of glycerol, glyceraldehyde, glycerate, pyruvate, acetaldehyde,
and acetoin were quantified by using an Agilent 1100 series HPLC (Hewlett-Packard, Palo
Alto, Santa Clara, CA, USA) equipped with an Aminex HPX-87H column (300 × 7.8 mm;
Bio-Rad, Hercules, CA, USA) and a refractive index detector [22]. The mobile phase was
5 mM of H2SO4 at a flow rate of 0.4 mL min−1 and 55 ◦C. The injection volume was 5 µL.
The quantification of the compounds was conducted by converting the peak areas detected
by HPLC to concentrations of target products using external calibration curves. The limit
of quantification (LOQ) was established as the lowest point of the calibration curve.

4. Conclusions

In conclusion, PuDHT was selected as the optimal dehydratase for converting glycer-
ate into pyruvate. An in vitro enzymatic cascade comprising ScALDO, PuDHT, and CAT
was constructed for the production of pyruvate from glycerol. Pyruvate at a concentra-
tion of 18.95 ± 0.97 mM was produced from 20.50 ± 0.27 mM of glycerol with a yield of
0.92 mol mol−1 and a productivity of 4.73 mM h−1. In addition, 8.52 ± 0.12 mM of acetoin
was produced from 21.62 ± 0.19 mM of glycerol with a yield of 0.79 ± 0.02 mol mol−1

and a productivity of 1.42 ± 0.02 mM h−1 by combining the in vitro enzymatic cascade
with ZmPDC. The application of the in vitro enzymatic cascade may be extended to other
value-added chemicals by coupling it with various enzymes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11111282/s1, Figure S1: SDS–PAGE results of the purification of ScALDO, SsDHAD,
CcXylD, PuDHT, and ZmPDC. (a) ScALDO. (b) SsDHAD. (c) CcXylD. (d) PuDHT. (e) ZmPDC. Lane
M, molecular mass marker; lane 1, crude extract of E. coli BL21(DE3); lane 2, crude extracts of E.
coli BL21(DE3) harboring expression vectors of different proteins; lane 3, purified target proteins.
Figure S2: SDS–PAGE result of the purification of PaLdhA. Lane M, molecular mass marker; lane 1,
purified PaLdhA. Figure S3: Calibration curves for the concentrations assayed by HPLC. (a) Glycerol.
(b) Glyceraldehyde. (c) Glycerate. (d) Pyruvate. (e) Acetoin. Table S1: Strains, plasmids, and primers
used in this study.
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