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Abstract: CO2 methanation was studied over monometallic catalyst, i.e., Ni, Fe and Co; on CeO2-
Cr2O3 support. The catalysts were prepared using one-pot hydrolysis of mixed metal nitrates and
ammonium carbonate. Physicochemical properties of the pre- and post-exposure catalysts were
characterized by X-Ray Powder Diffraction (XRD), Hydrogen Temperature Programmed Reduction
(H2-TPR), and Field Emission Scanning Electron Microscope (FE-SEM). The screening of three
dopants over CeO2-Cr2O3 for CO2 methanation was conducted in a milli-packed bed reactor. Ni-
based catalyst was proven to be the most effective catalyst among all. Thus, a group of NiO/CeO2-
Cr2O3 catalysts with Ni loading was investigated further. 40 % NiO/CeO2-Cr2O3 exhibited the
highest CO2 conversion of 97.67% and CH4 selectivity of 100% at 290 ◦C. The catalytic stability of
NiO/CeO2-Cr2O3 was tested towards the CO2 methanation reaction over 50 h of time-on-stream
experiment, showing a good stability in term of catalytic activity.
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1. Introduction

Global warming has caused several serious impacts on the environment in recent
years. Increasing CO2 emission is anthropogenic in origin and is the main cause of global
warming. Nowadays, many studies focused on two strategies to reduce atmospheric CO2
concentration; through carbon capture and CO2 conversion to biofuels [1,2]. The captured
CO2 can be utilized and converted into fuels and chemicals via chemical processes such
as dry reforming of methane for synthesis gas production, or CO2 hydrogenation to CH4,
methanol or higher alcohols [3]. CO2 methanation is one of the promising processes which
involves carbon recycle from abundant CO2. Methane, as a product of CO2 hydrogenation,
is considered versatile and flexible as it can be injected directly into existing natural gas
pipelines, or utilized as a raw material for chemical production [4]. This CO2 hydrogenation
can be looked at as Power-to-Gas process (PtG) by its means to store (and transport) energy
in the form of natural gas [5]. The process refers to a conversion of renewable electricity
to a gaseous energy carrier via two pathways: (1) H2 production by water electrolysis,
where wind or solar energy technologies could be integrated; and (2) H2 conversion to
CH4, by methanation reaction with external CO2 capture [6]. CO2 methanation was firstly
discovered and proposed as the Sabatier reaction: CO2 + 4H2
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CH4 + 2H2O, ∆Hr

298 =
−164.8 kJ·mol−1 [7]. Although the reaction is highly exothermic and thermodynamically
favored at high pressures/low temperatures (<400 ◦C) [4,8], there are significant kinetic
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limitations due to the high stability of CO2. Furthermore, heat accumulation from the
reaction generally causes severe hotspots in the reactor, due to the heat transfer limitation
within the process, leading to the catalyst deactivation and shortened catalyst lifespan [9].
Moreover, low operating temperature is favorable for CO disproportionation reaction (2CO
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CO2 + C, ∆Hr

298 =−172.4 kJ·mol−1), resulting in unwanted coke deposition. In order to
obtain the highest possible methane yield, it is necessary to invent a catalyst which enhances
the reaction’s activity, withstands sintering and counters the coking phenomenon. Various
active metals (such as Ni, Fe, Co, Ru, Rh, and Pd) have been used as an active site while
metal oxides (such as CeO2, La2O3, MgO, γ-Al2O3, SiO2, TiO2, and ZrO2) have been useful
as a support in a catalyst system for the CO2 methanation reaction [3,10–13]. Amongst
these materials, CeO2 is so far found to be the most interesting support due to its high
oxygen storage capacity (OSC) and its ability to disperse the active site [14]. In addition,
CeO2 could promote the interaction between support and metal active component, such
that the growth and dispersion of the metal active particles can be well distributed and
controlled throughout the surface of the support, leading to the higher CO2 conversion [15].
The number oxygen vacancy can be tailor-made by substituting smaller transition metal
ions (e.g., chromium ions) into CeO2. The higher number of lattice oxygen can combust
coke deposits and reduce the chance of sintering [13,16–18]. According to previous research,
Ni-, Fe-, Co doped on CeO2 have shown relatively high activities for CO2 methanation and
possessed high stability when tested for 15 to 50 h reaction times [19–23].

In this work, Ni-, Fe- and Co- based CeO2/Cr2O3 were prepared using the one-
pot hydrolysis method. The level of metal loading, operating temperature, reduction
temperature and other relevant variables were observed as all of these parameters are well-
known to influence the catalytic performance of the catalysts [24,25]. The physicochemical
properties of the synthesized catalysts were examined, comparing pre- and post-exposure
by X-Ray Diffractometer (XRD), Hydrogen Temperature-Programmed Reduction (H2-
TPR), and Field Emission Scanning Electron Microscopes (FE-SEM). The catalyzation
of CO2 methanation was conducted in a milli-packed bed reactor under atmospheric
pressure where the operating temperature was varied from 200 to 350 ◦C. The reduction
temperatures of 500 and 700 ◦C were chosen (via H2-TPR) for comparison purposes. WSHV
was fixed at 27,624 mL·h−1·gcat

−1, and the stoichiometric reactants ratio was kept at 4 for
all the experiments.

2. Methodology
2.1. Catalyst Powder-Formed Preparation

Forty percent (by weight) x/CeO2-Cr2O3 (where x = Ni, Fe, and Co) catalysts were syn-
thesized by a single step preparation using (NH4)2CO3 (PANREAC, 30% NH3) as a hydrolysis
agent, the details of which are outlined in [3]. The relevant nitrate precursors Ni(NO3)2·6H2O
(CARLO ERBA, Cornaredo, Italy, ≥99.0%), Fe(NO3)3·9H2O (UNIVAR, Donners Grove, IL,
UAS, ≥99.0%), Co(NO3)2·6H2O (CARLO ERBA, ≥99.0%), Ce(NO3)3·6H2O (ALDRICH, St.
Louis, MO, USA, ≥99.0%), and Cr(NO3)2·6H2O (ACROS, Merelbeke, Belgium, ≥99.0%) were
dissolved in 50 mL distilled water where the ratio of active metal (Ni, Fe, and Co) to support
(1 to 1 of CeO2/Cr2O3) was fixed at 40 to 60 by weight. Two molar (NH4)2CO3 solution was
gradually dropped into the nitrate solutions until the pH reached 8.8–9.0. The mixture was
continuously stirred while heated to 80 ◦C for 3 h. The solution’s temperature was then raised
again to 120 ◦C to evaporate water and a dark blue gel was slowly obtained. The resulting
material was then calcined in moving air at 500 ◦C with 10 ◦C/min of heating for 24 h before
the black powder of the catalyst was achieved. The catalyst powder was then pressed, crushed,
and sieved to gain its uniform particle size ranging from 75 to 180 µm in order to avoid
pressure drop that could occur across the catalyst bed.

2.2. Characterizations

XRD analysis (Malvern PANalytical diffractometer)was performed using CuKα ra-
diation (with λ = 1.5418 Å, 40 kV, 15 mA). The diffractogram patterns were recorded
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over 2-theta ranging from 10 to 80◦ with a scanning speed of 0.02◦ per second. The cat-
alyst’s phase structures were identified using JCPDS cards (Joint Committee on Powder
Diffraction Standards).

The optimal reduction temperature of the catalyst was screened using an in situ
H2-TPR technique which was carried out in our lab-scale conventional packed-bed reac-
tor, connected to a Quadrupole Mass Spectrometer (PFEIFFER, MS, Omnistar GSD 320,
HAKUTO) operated in a SEM-MID mode. A total of 0.5 g of the catalyst sample was
packed in a quartz tube reactor (i.d. = 10 mm) and pre-treated in 10% O2/Ar at 500 ◦C
for 1 h, followed by Ar purging to clean the catalyst’s surface from any possible absorbed
impurities. After the system reached ambient temperature, 5 % H2/Ar was introduced
through the catalyst’s bed with a total flowrate of 100 mL·min−1 while the temperature
was elevated to 950 ◦C at 5 ◦C/min.

Surface morphology and micro-structure of the catalysts, both pre- and post-exposure,
were investigated using a Field Emission Scanning Electron Microscopes (FE-SEM, SU-8230
Hitachi, Japan) with an accelerating voltage of 15 kV.

2.3. CO2 Methanation Activity in a Packed-Bed Reactor

CO2 methanation was performed in a tubular packed-bed reactor under atmospheric
pressure. A total of 0.2 g of catalyst was placed between two layers of quartz wool in the
middle of the reactor (i.d. = 4 mm). The catalyst was reduced in 100 mL·min−1 of pure H2
for 2 h at the achieved reduction temperature (from H2-TPR where NiO reduced to metallic
Ni at 500 ◦C while Co2O3 and Fe3O4 reduced to metallic Co and Fe at 850 ◦C) from the
prior reaction. Next, the process was cooled down to the desired operating temperature,
varying at 200, 210, 230, 250, 270, 290, 310, and 350 ◦C. Ar was purged in between to
remove any excess H2. The mixture of gaseous reactant, CO2:H2:Ar at a ratio of 1:4:5 by
volume, was injected through the catalyst’s bed. Total flow rate was set at 90 mL·min−1,
giving WSHV at 27,624 mL·h−1·gcat

−1. Moisture was condensed as a by-product using
a cooler oil bath at the bottom of the reactor. After the process approached equilibrium,
the dried gas products were automatically analyzed using gas chromatography coupled
with a TCD detector (Shimadzu GC-2014ATF) every 7 min for 1 h. CO2 conversion (XCO2),
CH4 selectivity (SCH4), and CH4 yield (YCH4) were calculated using the following formulas:

CO2 conversion, XCO2 [%] =

(
Fin

CO2
− Fout

CO2

Fin
CO2

)
× 100% (1)

CH4 selectivity, SCH4 [%] =

(
FCH4

FCH4 + FCO

)
× 100% (2)

CH4 yield, YCH4 [%] =
XCO2 × SCH4

100
(3)

Fin
CO2

and Fout
CO2

represent volumetric flow rate of CO2 in the feed stream and outlet
stream, respectively, whereas FCH4 and FCO denote the volumetric flow rate of the product
gas stream, CH4 and CO, respectively.

3. Results and Discussion
3.1. Characterizations
3.1.1. XRD

XRD patterns of all the fresh catalysts (calcined in moving air at 500 ◦C) were achieved
as shown in Figure 1. CeO2-Cr2O3 (�), as major crystals, were found in all samples and
appeared to possess fluorite cubic structure [26], having two-theta position peaks at 28.57,
33.12, 47.49, 56.38, 58.94, 69.42, 76.74, 79.33, 88.44, and 95.34◦. All the dopants, NiO (•),
Fe2O3 (�), and Co3O4 (N) appeared as minor crystalline phases as shown in Figure 1a–c,
respectively. NiO peaks were found at 37.31, 43.35, 63.00, and 75.49◦ (JCPDS No. 01-073-
1519); whereas Fe2O3 peaks appeared at 24.19, 33.28, 35.68, 40.99, 49.57, 54.32, 62.64, and
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64.15 (JCPDS No. 01-076-4579); and Co3O4 peaks were detected at 33.06, 36.67, 44.59, 59.08,
and 64.92 (JCPDS No. 01-078-5631). Pure phase Cr2O3 was found in Co3O4-CeO2-Cr2O3 at
36.34, 44.60, 58.357, and 63.204◦ (JCPDS No. 00-001-1294), indicating that Cr2O3 cannot
fully incorporate into the CeO2 lattice. This inhomogeneous solid solution depends on the
size of ionic radii of the solutes. The ionic radius of Ce3+ appeared the largest (1.101 Å),
followed by Cr3+ (0.80 Å) and Co4+ (0.61 Å) [27,28]. Thus, the Co4+ ion was able to compete
with Cr3+ in becoming embedded into the CeO2 lattice, creating CeCoO3 perovskite [27,29],
as it can be seen in Figure 1c. This phenomenon could cause a decay in the catalyst’s
catalytic performance due to the loss of active sites, in this case, Co3O4. In addition, the
average crystallite size of the NiO, Fe2O3, and Co3O4 on CeO2-Cr2O3 were calculated
using the Scherrer’s equation at 14.56, 25.03, and 25.60 nm, respectively. The smaller
active site could perhaps accommodate reactants better, rendering the chance of higher
catalytic performance.

Catalysts 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 

3. Results and Discussion 
3.1. Characterizations 
3.1.1. XRD 

XRD patterns of all the fresh catalysts (calcined in moving air at 500 °C) were 
achieved as shown in Figure 1. CeO2-Cr2O3 (■), as major crystals, were found in all sam-
ples and appeared to possess fluorite cubic structure [26], having two-theta position peaks 
at 28.57, 33.12, 47.49, 56.38, 58.94, 69.42, 76.74, 79.33, 88.44, and 95.34°. All the dopants, 
NiO (●), Fe2O3 (♦), and Co3O4 (▲) appeared as minor crystalline phases as shown in Fig-
ure 1a–c, respectively. NiO peaks were found at 37.31, 43.35, 63.00, and 75.49° (JCPDS No. 
01-073-1519); whereas Fe2O3 peaks appeared at 24.19, 33.28, 35.68, 40.99, 49.57, 54.32, 62.64, 
and 64.15 (JCPDS No. 01-076-4579); and Co3O4 peaks were detected at 33.06, 36.67, 44.59, 
59.08, and 64.92 (JCPDS No. 01-078-5631). Pure phase Cr2O3 was found in Co3O4-CeO2-
Cr2O3 at 36.34, 44.60, 58.357, and 63.204° (JCPDS No. 00-001-1294), indicating that Cr2O3 

cannot fully incorporate into the CeO2 lattice. This inhomogeneous solid solution depends 
on the size of ionic radii of the solutes. The ionic radius of Ce3+ appeared the largest (1.101 
Å), followed by Cr3+ (0.80 Å) and Co4+ (0.61 Å) [27,28]. Thus, the Co4+ ion was able to com-
pete with Cr3+ in becoming embedded into the CeO2 lattice, creating CeCoO3 perovskite 
[27,29], as it can be seen in Figure 1c. This phenomenon could cause a decay in the cata-
lyst’s catalytic performance due to the loss of active sites, in this case, Co3O4. In addition, 
the average crystallite size of the NiO, Fe2O3, and Co3O4 on CeO2-Cr2O3 were calculated 
using the Scherrer’s equation at 14.56, 25.03, and 25.60 nm, respectively. The smaller active 
site could perhaps accommodate reactants better, rendering the chance of higher catalytic 
performance. 

. 

Figure 1. XRD patterns of (a) 40% NiO/CeO2-Cr2O3, (b) 40% Fe2O3/CeO2-Cr2O3, and (c) 40% 
Co3O4/CeO2-Cr2O3 after calcined at 500 °C, where NiO (●), Fe2O3 (♦), Co3O4 (▲), Cr2O3 (▼), and 
CeO2-Cr2O3 (■) phases. 

 

Figure 1. XRD patterns of (a) 40% NiO/CeO2-Cr2O3, (b) 40% Fe2O3/CeO2-Cr2O3, and (c) 40%
Co3O4/CeO2-Cr2O3 after calcined at 500 ◦C, where NiO (•), Fe2O3 (�), Co3O4 (N), Cr2O3 (H), and
CeO2-Cr2O3 (�) phases.

3.1.2. H2-TPR

Figure 2 shows the reduction profiles of pure CeO2 (a), CeO2-Cr2O3 (b), NiO/CeO2-
Cr2O3 (c), Fe2O3/CeO2-Cr2O3 (d), and Co3O4/CeO2-Cr2O3 (e) catalysts. Pure CeO2 (a)
had 2 small reduction peaks at 570 and >950 ◦C, corresponding to the surface reduction
and bulk reduction of CeO2, respectively [30]. The first reduction peak of CeO2-Cr2O3 (b)
appeared at 480 ◦C, where Cr6+ ions were reduced to Cr3+ ions. The reduction peak at 565
◦C and >950 ◦C corresponded to the reduction of CeO2-Cr2O3 at surface and bulk oxygen,
respectively [30–33]. Substitution of Cr2O3 into CeO2 was reported to enhance oxygen
vacancy of the catalyst system [16,18,34], in which its H2 consumption was proven to be
significantly higher than the pure CeO2.



Catalysts 2021, 11, 1159 5 of 12

Catalysts 2021, 11, x FOR PEER REVIEW 5 of 12 
 

 

3.1.2. H2-TPR 
Figure 2 shows the reduction profiles of pure CeO2 (a), CeO2-Cr2O3 (b), NiO/CeO2-

Cr2O3 (c), Fe2O3/CeO2-Cr2O3 (d), and Co3O4/CeO2-Cr2O3 (e) catalysts. Pure CeO2 (a) had 2 
small reduction peaks at 570 and >950 °C, corresponding to the surface reduction and bulk 
reduction of CeO2, respectively [30]. The first reduction peak of CeO2-Cr2O3 (b) appeared 
at 480 °C, where Cr6+ ions were reduced to Cr3+ ions. The reduction peak at 565 °C and 
>950 °C corresponded to the reduction of CeO2-Cr2O3 at surface and bulk oxygen, respec-
tively [30–33]. Substitution of Cr2O3 into CeO2 was reported to enhance oxygen vacancy 
of the catalyst system [16,18,34], in which its H2 consumption was proven to be signifi-
cantly higher than the pure CeO2. 

Three distinct peaks at 325, 675, and 940 °C were found for NiO/CeO2-Cr2O3 catalyst 
(c). The first two peaks were identical to the reduction of Ni3+ to Ni2+ and to the reduction 
of Ni2+ to metallic nickel, respectively [34–36]. Some reduction of Cr6+ ions to Cr3+ ions 
could be combined in the first peak, whereas the second and the third peaks represented 
the reduction of the Cr2O3 incorporated within the CeO2 structure at the surface and bulk 
level, respectively. For Fe2O3/CeO2-Cr2O3 (d), the first peak appeared at 395 °C, represent-
ing the reduction of Cr6+ ions to Cr3+ ions, whereas its second and third peaks at 505 and 
940 °C were attributed to the reduction of CeO2-Cr2O3 at the surface and bulk levels, re-
spectively. The two reduction peaks observed at 505 °C and between 700 to 950 °C also 
represented the reduction of Fe2O3 to Fe3O4 and reduction of Fe3O4→FeO→metallic Fe, 
respectively [37,38]. Co2O3/CeO2-Cr2O3 (e) was detected at 445, 700, and >950 °C, and as-
sociated with 1) the reduction of Cr6+ ions to Cr3+ ions, 2) the reduction of Co3+ ions to Co2+ 
ions and the reduction of CeO2-Cr2O3 (and/or CeCoO3 perovskite) with surface oxygen, 
and 3) the reduction of Co2+ ions to metallic Co, and the reduction of CeO2-Cr2O3 (and/or 
CeCoO3 perovskite) with bulk oxygen [39]. The catalyst’s oxygen deficiency and number 
of active sites were interpreted from the hydrogen consumption, which was compared 
amongst all the catalysts and ordered as: NiO/CeO2-Cr2O3 > Fe2O3/CeO2-Cr2O3 > 
Co2O3/CeO2-Cr2O3. 

 
Figure 2. H2-TPR profiles of (a) pure CeO2, (b) CeO2-Cr2O3, (c) 40%wt. NiO/CeO2-Cr2O3, (d) 40%wt.
Fe2O3/CeO2-Cr2O3, and (e) 40%wt. Co2O3/CeO2-Cr2O3 catalyst calcined at 500 ◦C.

Three distinct peaks at 325, 675, and 940 ◦C were found for NiO/CeO2-Cr2O3 catalyst
(c). The first two peaks were identical to the reduction of Ni3+ to Ni2+ and to the reduction
of Ni2+ to metallic nickel, respectively [34–36]. Some reduction of Cr6+ ions to Cr3+ ions
could be combined in the first peak, whereas the second and the third peaks represented
the reduction of the Cr2O3 incorporated within the CeO2 structure at the surface and
bulk level, respectively. For Fe2O3/CeO2-Cr2O3 (d), the first peak appeared at 395 ◦C,
representing the reduction of Cr6+ ions to Cr3+ ions, whereas its second and third peaks
at 505 and 940 ◦C were attributed to the reduction of CeO2-Cr2O3 at the surface and bulk
levels, respectively. The two reduction peaks observed at 505 ◦C and between 700 to 950 ◦C
also represented the reduction of Fe2O3 to Fe3O4 and reduction of Fe3O4→FeO→metallic
Fe, respectively [37,38]. Co2O3/CeO2-Cr2O3 (e) was detected at 445, 700, and >950 ◦C, and
associated with (1) the reduction of Cr6+ ions to Cr3+ ions, (2) the reduction of Co3+ ions
to Co2+ ions and the reduction of CeO2-Cr2O3 (and/or CeCoO3 perovskite) with surface
oxygen, and (3) the reduction of Co2+ ions to metallic Co, and the reduction of CeO2-Cr2O3
(and/or CeCoO3 perovskite) with bulk oxygen [39]. The catalyst’s oxygen deficiency
and number of active sites were interpreted from the hydrogen consumption, which was
compared amongst all the catalysts and ordered as: NiO/CeO2-Cr2O3 > Fe2O3/CeO2-
Cr2O3 > Co2O3/CeO2-Cr2O3.

3.2. Catalytic Performance Test
3.2.1. Choice of the Monometallic

Catalytic performance, in terms of CO2 conversion (Figure 3 (left)) and CH4 selectivity
(Figure 3 (right)), of all the prepared catalysts was determined at various operating tem-
peratures, ranging from 200 to 350 ◦C. CO2 conversion tended to increase with increasing
temperature for all catalysts. Amongst all the selected metals, Ni was proven as the best
monometallic active site for CeO2-Cr2O3, considering CO2 conversion, which was much
higher than other metals (Fe and Co) starting at 260 ◦C. The highest CO2 conversion over
Ni/CeO2-Cr2O3 was achieved at 290 ◦C, giving CO2 conversion of 90.19%. However, CO2
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conversion decreased when the temperature was higher than 330 ◦C, due to its thermody-
namic limitation [3,40,41]. In terms of CH4 selectivity, Ni also showed the best performance
by giving complete selectivity at 100% during all temperatures (from 200 to 360 ◦C), fol-
lowed by Fe which offered 94% of CH4 selectivity at its equilibrium at 290 ◦C. On the other
hand, catalytic performance of Co as the monometallic dopant was incomparable to that
of the other two, as it gave no reaction at low temperature (below 260 ◦C) and reached
its maximum at 24% of CH4 selectivity at 270 ◦C. The CH4 selectivity was decreased at
temperatures higher than 270 ◦C. This was due to the formation of CO as an unwanted
product from the reverse water-gas shift reaction [19,42].
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3.2.2. Effect of Metal Content on Catalytic Performance

The influence of metal content, doped on CeO2-Cr2O3, towards CO2 methanation
was investigated over Ni-/CeO2-Cr2O3, where the Ni level was varied at 10, 20, 30, 40
and 50% by weight. Figure 4 showed that the percentage of all the selected Ni contents
exhibited the same trend, where CO2 conversion was increased with increasing temperature
and increasing amount of Ni content. The nickel content represented the amount of the
active site for CO2 methanation reaction, thus, the higher level of Ni was unsurprisingly
improved the efficiency of the reaction [41,43–45]. However, excess Ni loading could cause
other problems, i.e., pore blockage, coagulation and obstruction of nano-channels [46–48].
For this reason, there was only a small difference in CO2 conversion, between using 40%
and 50% Ni loading.

3.2.3. Effect of Reduction Temperature on Catalytic Performance

Two different reduction temperatures, at 500 and 700 ◦C, were selected for this study.
Figure 5 presents relationship between CO2 conversion and reduction temperature of the
catalyst at different operating temperatures. The results showed that the catalyst which
reduced at 500 ◦C gave the highest CO2 conversion for all of the temperature ranges,
compared to the one reduced at 700 ◦C. In addition, the decrease in CO2 conversion at the
higher reduction temperature (700 ◦C) could also be the effect of the catalyst’s sintering,
resulting in a lower number of active sites [49].
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3.3. Catalytic Stability

The catalytic stability of the NiO/CeO2-Cr2O3 was measured in term of CO2 conver-
sion and CH4 selectivity, illustrated in Figure 6. Approximately 97% of CO2 conversion
and 100% of CH4 selectivity were achieved and maintained during 50 h of reaction time.
XRD and SEM techniques were utilized for pre- and post-exposure characterization. XRD
patterns of fresh NiO/CeO2-Cr2O3 catalyst was compared with the post-exposure one



Catalysts 2021, 11, 1159 8 of 12

after the stability test, shown in Figure 7. Although both look quite similar, a decrease
in full-width half-maximum (FWHM) was clearly noticed, indicating catalyst sintering.
Compared to pre-exposure, post-exposure crystallite size was found to have increased from
11 to 13 nm, whereas particle size was doubled from 313 to 612 nm. However, the sign of
sintering or deactivation was not clearly observed in TOS experiment. This could be due to
the fact that the rate of reaction is rapid, to the point that the catalyst surface area becomes
relatively less significant. No NiO peak was found on the diffraction pattern in either the
pre- or post-exposure, indicating that the catalyst was fully reduced as peaks appeared
at 44.508, 51.847, and 76.372 (JCPDS No. 00-004-0850). However, surface morphology
of the pre- and post-exposure catalyst were found to be different, as shown in Figure 8.
It can be seen that the particle size of the catalyst became larger after reaction due to its
agglomeration, in an attempt to reduce its surface free energy.
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The catalyst performance was compared between this work and other works that researched
other catalysts (i.e., 10Ni/CeO2 [42], 10Ni/CeO2-ZrO2 (CZ) [19], 15Ni/CZ, 15Ni-3Fe/CZ, 15Ni-
3Co/CZ [42], 40Ni/CZ [3], 15Ni-2Ce/Al2O3 [50], 5Ni/CZ [51], 20Ni/Al2O3 [52], and 40Ni-
5Ce/Al2O3 [47]); as shown in Figure 9. Ni/CeO2-Cr2O3 catalyst can be deemed as a superior
catalyst due to its high catalytic activity (YCH4 > 95% zone) at low operating temperatures.
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Figure 9. The summaries of the catalytic performances toward CO2 methanation over various
catalysts at H2/CO2 = 4:1.

4. Conclusions

The screening of monometallic catalysts (i.e., Ni, Fe and Co) doped on CeO2-Cr2O3
support was studied in a milli-packed bed reactor. All the catalysts were prepared using
one-pot hydrolysis. Ni was proven to be the most effective dopant. The amount of Ni
loading was found optimal at 40% by weight, giving CO2 conversion of 98.7% and CH4
selectivity of 100% at a relatively low temperature of 290 ◦C. At temperatures of 200 to
350 ◦C, the reaction was kinetically driven by the higher operating temperature. However,
thermodynamic limitation took place at temperatures higher than 350 ◦C where a drop
in catalytic performance was observed. The catalyst was also stable during 50 h time on
stream experiment. Ni-CeO2/Cr2O3 was proven to be one of the highest potential catalysts
for the CO2 hydrogenation process of CH4 production.
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