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Abstract: In this study, zeolitic imidazolate framework (ZIF-67) derived nano-porous carbon struc-
tures that were further hybridized with MnO2 were tested for oxygen reduction reaction (ORR) as
cathode material for fuel cells. The prepared electrocatalyst was characterized by X-ray powder
diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX).
Cyclic voltammetry was performed on these materials at different scan rates under dissolved oxygen
in basic media (0.1 M KOH), inert and oxygen rich conditions to obtain their I–V curves. Electro-
chemical impedance spectroscopy (EIS) and Chronoamperometry was also performed to observe the
materials’ impedance and stability. We report improved performance of hybridized catalyst for ORR
based on cyclic voltammetry and EIS results, which show that it can be a potential candidate for fuel
cell applications.

Keywords: fuel cell; oxygen reduction reaction (ORR); metal organic frameworks (MOFs)

1. Introduction

Consumption and production of energy is the sign of industrial growth and progress
of any country, as energy develops everything, and around 85% of our energy commitments
depend upon fossil fuels [1,2]. However, energy resources such as fossil fuels reduce speed-
ily due to escalating life standards and growing populations. In addition, the economic
growth of developed countries, industrial civilization and modern lifestyles rely on the
energy withdrawal from gas and oil supplies [3,4]. For intermittent energy generation
technologies to strengthen their foothold, energy storage solutions need to become better
performing and economically viable [5].

Recently, fuel cells have been considered to be a promising energy resource in contrast
to other substitutes that convert chemical energy into electrical energy during a catalytic
reaction [6,7]. Various types of fuel cells are available among these; the polymer electrolyte
membrane fuel cell (PEMFC) and alkaline fuel cell (AFC) have the advantage of having
smaller size, light weight and astonishing power density [8]. Consequently, they can be
utilized for stationary and portable applications. They can perform work constantly at low
temperature and give high current densities [9]. Cost and stability, however, are the two
main factors that delay the commercialization of fuel cells at a large scale.

Since the key cost is because of extreme and ineffective utilization of platinum based
electro catalysts, Pt electrodes present the ideal catalytic activity for ORR (oxygen reduction
reaction), thus serving as a standard electrode for all the catalysts prepared up until
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now [10]. Time is needed to prepare various new non-noble metal catalysts which have
generated a lot of attraction because of their vastly effectual catalytic properties [11,12].

Multiple techniques have been tested to address the catalysis, including the use of
microspheres, nanoparticles, perovskites, etc., of which metal organic frameworks are also
part [13–17]. Recently, metal organic frameworks (made up of organic ligands and Inorganic
metal ions) have been the subject of significant attention in the field of electrochemistry
because they have a variety of structures with large surface area, large pore volume, high
porosity and tunable pore size, and are being tested as an economically viable substitutes
for noble metal nano-composites [18,19]. Wang et. al. designed a carbon matrix with
nitrogen phosphorous doping using Cu-MOF, showing an extraordinary performance as
an electro-catalyst for hydrogen evolution reaction (HER) and ORR [20].

In addition, the nano sized pores present in the metal organic frameworks, when
turned into porous carbons, make the access to guest molecules much easier, thus increasing
the likelihood of an active site being available [21]. Moreover, nano carbons formed from
metal organic frameworks are formed as sheets, nanotubes and multiple other forms which
can act as high-performance nonmetal catalysts. Besides, for improving their mechanical
strength and conductivity, they are transformed conventionally into NPC (nitrogen doped
nanoporous carbon), which has shown outstanding performance in the electrochemical
field. Gai et al. modify an electrode by NPC prepared from ZIF-8 for the detection of
uric acid, ascorbic acid and dopamine. Rizvi et.al. reported Cu-MOF Derived Cu@AC
electrocatalyst for ORR in PEMFC. The composite Cu@AC (1:1) shows the peak current
density of 2.11 mA cm−2 in 0.1 M KOH at a potential of 0.9 V with a scan rate of 50 mV s−1,
which shows superior activity compared to commercial grade Pt/C, having a peak current
density of 1.37 mA cm−2 at a potential of 0.86 V [10]. Moreover, bimetallic MOFs have been
utilized to boost the catalyst electrocatalytic performance [22,23]. Yoon el al. reported new
bimetallic 2D MOFs (CoxNiy-CATs) for electrochemical reduction of oxygen; the two metal
ions, i.e., Co2+ and Ni2+, are rationally controlled in CoxNiy-CATs (a bimetallic catalyst) for
efficient performance in the oxygen reduction reaction (ORR) [24].

Electro catalysts derived from metal organic frameworks, i.e., ZIFs (Zeolitic imida-
zole frameworks), which are rich in transition metals, i.e., Zn+2, CO+2 and nitrogen and
carbon and preparation of Zeolitic frameworks, which are single-site solid catalysts with
effective and uniform catalytic activity, can be accomplished via the use of metal organic
frameworks [25,26]. The metal organic framework is a nitrogen and carbon precursor
with a transition metal and is heat treated at 800–1000 ◦C to form nitrogen doped electro
catalyst [27]. ZIFs have been utilized in the production of ORR catalysts where a metal–
nitrogen–carbon structure is formed when ZIF-67 is pyrolyzed in the presence of iron carrier,
which showed effective electrochemical activity owing partially to the increased surface
area provided to the active metals [28,29]. ZIF-67 can also provide the basis for creating
tunable structures owing to the ordered arrangement of atoms in the framework. The for-
mation of nanocrystals of carbon decorated with cobalt catalyst has been reported with the
ability to catalyze ORR and to perform this function in symmetry. Cobalt containing ZIF-67
based catalysts can also perform catalysis under special preparatory conditions [30,31].
This ability to create uniform crystals can also be utilized in conjunction with the flexibility
of carbon materials for ORR [32,33].

Besides cobalt and nickel, manganese has also been shown to perform catalytic activity
pertaining to oxygen reduction, which has sparked interest in utilizing this capability in
ZIF-67 based carbon electrodes [34,35]. Work with ZIF-67 involving the use of magnesium
oxides has yielded remarkable enhancement in the catalytic capability of carbon-based
electrodes. In work utilizing Mn3O4 and Co3O4, aimed at catalyzing water splitting reac-
tions and oxygen reduction, the reversible overpotentials were reported to be better than
those shown by electrodes containing noble metals like platinum and ruthenium [36,37].

In this paper, we have followed a novel approach to recommend a new material for
ORR reaction in fuel cells. ZIF-67 derived nanoporous carbon was modified with MnO2
particles using a simple hydrothermal process to enhance its ORR performance. Both
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ZIF-67 derived nanoporous carbon and the modified sample were tested through cyclic
voltammetry to analyze the difference in their individual performance.

2. Results and Discussion
2.1. Characterization of Prepared Catalyst

The morphology of synthesized catalysts such as ZIF-67, ZIF derived carbon nanotubes
(ZCNT) and Manganese oxide doped ZCNT (ZCNT-M) was analyzed by scanning electron
microscopy as illustrated in Figure 1a–c. The rhombic dodecahedron shaped nano crystal
of the ZIF-67 is well preserved, as shown in Figure 1a.
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Figure 1. SEM images of (a) ZIF-67, (b) ZCNT and (c) ZCNT-M.

From Figure 1b,c, it was observed that after pyrolysis of ZIF-67, carbon nanotubes
(CNTs) are visible in SEM images of ZCNT and ZCNT-M. Moreover, at high magnifi-
cation, the SEM image shows that the obtained ZIF-67 surface was smooth, and their
dodecahedron-shaped crystals were closely affixed to the CNTs. In addition, the surface
pop and shacks of ZIF-67 nanoparticles more evidently approve that nanoparticles of
ZIF-67 were in situ grown on CNTs’ surfaces.

The EDS analysis of prepared catalysts such as ZCNT and ZCNT-M shows the presence
of manganese, cobalt, oxygen and carbon without any impurity. Table 1 shows the weight
percentages of the following element. ZCNT has the maximum carbon percentage while
other samples such as ZCNT-M have comparatively lower percentages of carbon, as the
unstable organic groups have evaporated after heating, which also reduces the carbon
percentage. Moreover, after Mn loading, the relative wt. % of carbon decreases in ZCNT-
M, correspondingly.



Catalysts 2021, 11, 92 4 of 14

Table 1. EDS outcome of ZCNT, ZCNT-M.

Sample Element ZCNT ZCNT-M

C wt % 50.02 15.98
O wt % 19.07 47.91
Co wt% 30.91 9.99
Mn wt% - 24.80

Moreover, EDS elemental mapping images, i.e., Figure 2a,b, illustrate that the uniform
loading of Mn in the sample and the elemental composition match well with the expected
ratio of elemental weight and atomic %.
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Figure 3a illustrates the XRD pattern of ZIF-67. The presence of characteristic peaks
indicates the successful synthesis of material, i.e., 7.2◦ (011), 10.4◦ (002), 12.7◦ (112), 14.7◦

(022), 16.4◦ (013), 18◦ (222), 22.1◦ (114), 26.5◦ (134), 29.6◦ (044), 31.3◦ (244), 32.5◦ (235), and
43.1◦ (100) [38].

Figure 3b illustrates the XRD pattern of prepared ZCNT. The peak at 26.3 (002) con-
firms the presence of graphitized CNTs and other peaks at 44.36◦, 51.67◦ and 75.98◦

correspond to Co (111), Co (200) and Co (220) [39].
Figure 3c illustrates the XRD pattern of prepared ZCNT-M sample. The presence

of characteristic peaks corresponds to cobalt carbide (JCPDS card number 43-1144) [40],
cobalt oxide (JCPDS card number 43-1003) [41], manganese oxide (JCPDS card number
44-0141) [42] and cobalt manganese oxide (JCPDS card number 32-0297) [43].
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2.2. Electrochemical Analyses

Eco Chemie Autolab PGSTAT 302 potentiostat/galvanostat (Utrech, The Netherlands)
was used to perform cyclic voltammetry measurements and GPES software 4.9 was used
to run the experiments on the equipment. A three-electrode system was used in which
Ag/AgCl was used as the reference electrode, platinum wire as the counter electrode, while
glassy carbon (7.065 mm2) was used as the working electrode.

Moreover, for the modification of working electrode (GCE) ink is deposited on its
surface and ink is prepared by adding ZCNT and ZCNT-M catalyst in 100 µL ethanol
with 20 µL Nafion (5 wt %) as the binding and conducting agent to form the catalyst
ink, which was later deposited (20 µL) on the glassy carbon electrode and allowed to dry.
All the prepared composites were tested for different techniques, i.e., cyclic voltammetry,
chronoamperometry and electrochemical impedance spectroscopy (EIS) in 0.1 M KOH (an
electrolyte) by using the same method of preparing ink. In addition, ZCNT and ZCNT-
M samples were tested under inert, dissolved oxygen and oxygen rich conditions. A
frequency range of 10 to 40 kHz with a scan rate amplitude of 50 mVs−1 was used for
electrochemical impedance spectroscopy under potentiostatic mode. Chronoamperometry
was also performed for 3600 s.

2.3. Electrochemical Evaluation of Prepared Catalsyts

At first, ZIF-67 derived CNTs (ZCNT) and ZIF-67 derived CNTs/MnO2 (ZCNT-M)
were compared. To ensure that dissolved oxygen is the only analyte present within the KOH
solution and there are no other analyte species to react with the electrode, the solution was
purged with argon gas for 2–3 min and then the response was recorded and compared with
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oxygen dissolved solution. Figure 4 shows that in the presence of oxygen, the prepared
catalysts’ reduction current was noticeably increased, which may be attributed to the
presence of continuously regenerated reaction centers that might lead to current value
amplification during the reduction process [44].
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With an optimal flow rate of oxygen gas and at a scan rate of 50 mV/s, cyclic voltam-
metry of prepared catalysts was performed; in this study, the electrochemical activity of
ZCNT was compared with ZCNT-M to obtain the values of peak current density, onset
potential and peak potentials for oxygen reduction reactions, as illustrated in Figure 5.
From the figure, it can be observed that ORR performance of ZCNT-M is much better than
ZCNT due to the addition of MnO2, and it has markedly increased the current densities
up to 6.56 mA/cm2 for ORR with an ORR onset potential (V vs. RHE) of 1.02 V, which
is comparable with that of Pt/C (1.01 V), illustrating that there is a current density of
5.02 mA/cm2 [45]. In comparison to ZCNT-M, commercial MnO2 shows remarkably low
current density with 0.25 mA/cm2 and with onset potential (V vs. RHE) of 0.96 V, as
reported by Huang et al. and Chhetri et al. [46,47]. The increased current densities of
ZCNT-M can be attributed to good catalytic ORR activity of MnO2; as with the ZIF-67
derived CNTs (ZCNT), it enhances the surface area and conductivity of prepared catalysts
to a significant level. Thus, as-prepared ZCNT-M composite was used as an efficient non-
precious cathodic electrocatalyst with preferable ORR stability, enhanced electron-transport
performance, and elevated antitoxic property in alkaline media for ORR.

Figure 6 illustrates the effect of scan rate on the current density of the prepared
sample. All the tests were executed with a diverse range of scan rate values such as
5 mV/s, 15 mV/s, 25 mV/s and 50 mV/s in an alkaline media (0.1 M KOH). Prepared ink
composition (i.e., 3 mg per catalyst) remained the same in all the experiments. The current
density of ZCNT-M in 0.1M KOH for ORR increased gradually because of electroactive
species’ easy access to the surface of the electrode in the lesson time period [5]; also, at high
scan rates, non-electrolytic species were not able to be reduced or oxidized into products.
Consequently, only electroactive products were liable for high current density values, this
remarkable response of catalyst is linked to the improved extent of reaction. Moreover, a
slight shift in peaks was observed, which indicated a slight irreversibility during reaction.
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Figure 6. Cyclic voltammograms at different scan rates for ZCNT-M.

Furthermore, linear sweep voltammetry was performed with oxygen purging to study
the effect of increasing analyte concentration on current density, as shown in Figure 7. Pure
oxygen was purged through the electrolyte for one, two and three minutes, respectively,
before performing the linear cyclic voltammetry experiment. A continuous supply of
oxygen was maintained during the experimental run. Oxygen purging showed a marked
increase in the current density relative to the dissolved oxygen case for ORR. The graph
below shows that peak current densities increased as the amount of oxygen present in the
electrolyte was increased; however, the current density decreased beyond two minutes of
oxygen purging. A possible explanation for this decrease is the saturation of the electrolyte
with analyte along with a decrease in oxygen diffusion to the electrode surface.
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Furthermore, the kinetics of ORR reactions were found to be diffusion controlled. A
plot between the square root of scan rate and peak current density was made for ZCNT-M,
as shown in Figure 8.
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The figure illustrates that the square roots of scan rates and current densities have
a linear relationship, while this linear plot is relative to D1/2 to obtain the slope value.
Moreover, diffusion coefficients were calculated using the Randles-Sevcik Equation (1) [48].

Ip = 0.4463nFAC

√
nFvD

RT
(1)

where D is the diffusion coefficient, A is the active surface area (cm2), C is the molar bulk
concentration of 0.1 M KOH, v is the scan rate (V s−1), and n is the number of electrons
transferred.

The diffusion coefficients for ORR of ZCNT-M are calculated as DORR = 6.6 × 10−4 cm2/s.
These results support that a diffusion-controlled mechanism is followed by electrocatalytic
oxygen evaluation reaction and oxidation reduction reaction.

Finally, to analyze the trend of overpotential with the current density, Tafel plots
(Figure 9) were made which were then used to calculate the exchange current densities
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value of 1.49 × 10−3 A/cm2. Firstly, overpotential is calculated by using the formula such
as E—Eo [19]. In order to comprehend the reaction kinetic performance, Tafel slopes were
calculated by using the subsequent Equation (2).

dη/d ln |j| = −RT/αnF (2)

where α was calculated by using Equation (3) [42]:

Ep − Ep/2 = 1.857 RT/αF (3)
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For the oxygen reduction reaction, n was deemed to be 4. The Tafel slope value for
ZCNT-M is calculated and obtained in the range of 165–200 mV/dec, and the value of slope
is determined such that if >118 mV/dec, then the rate determining steps are ascribed via (i)
ongoing chemical oxidation, (ii) the resulting chemical combination and (iii) the transfer
of electrons occurring via an oxide layer. In order to elude the confusion, the outcomes
collected from the Tafel slopes will be referred as “cathodic quantities” and the mechanisms
for ORR can be established precisely by these approaches [17]. The outcomes are in accord
with the literature, where the first C–H bond breaking in ORR occurs because of the low
potential region along with the rate determining step through the first electron transfer,
while in the high potential region, the increase in slope values is because of poisonous
intermediate species having less exposure [10].

To understand the activity of the modified electrode in a better way, electrochemical
impedance spectroscopy was performed using the same three electrode systems in 0.1 M
KOH solution under the potentiostatic mode. The Nyquist plot below in Figure 10 repre-
sents two regions, presenting an idea regarding solution resistance (Rs) and charge transfer
resistance (Rct); the small semicircle clearly shows that the charge transfer resistance for
ZCNT-M is lower in comparison to ZCNT. Moreover, corresponding low Rct and Rs values
are liable for higher catalyst activity as well [5,49]. The decreased value of resistance in
ZCNT-M can be attributed in good catalytic ORR activity of MnO2, as it improves the
surface area and conductivity of prepared catalysts to a significant level. Similarly, the high
electronic and ionic conductivity of ZCNT-M may possibly be responsible for the straight
line. This significant reduction in charge transfer resistance in ZCNT-M clearly favors ORR
reactions in ZCNT-M as compared to ZCNT.
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Figure 10. Electrochemical impedance spectroscopy (EIS) plot for ZCNT-M and ZCNT.

The prepared catalysts’ stability was determined via the chronoamperometry tech-
nique, a key parameter to accomplish the practical application of synthesized samples. The
stability test of ZCNT-M was carried out in 0.1 M KOH solution at a potential of 0.1 V
for 3600 s in the similar three electrode setup and subsequent electrolyte. At the start,
the current dropped substantially very quickly, which can be justified with the following
reasons: (a) adsorption of reaction intermediate to the electrode surface; (b) blockage of
active site due to evolved oxygen accumulation on the surface of the electrode [10] and (c)
flake off material caused by extreme bubbling, but later it adopted a fairly stable trend for
the remainder of the hour, as shown in the Figure 11 below. Moreover, Figure 12 shows the
plot between the current and square root of current and describes a linear trend over time.
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Figure 13 shows the mechanism of ORR in basic media (KOH); it describes the complex
reaction pathway by which reductive splitting of the oxygen O–O bond occurs on the
catalyst adsorbed surface. Here, k1 epitomizes the direct reduction of O2 to OH− ion
without any intermediate formation.
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In addition, the k2 is a comprehensive rate constant for the adsorbed peroxide forma-
tion, and might implicate other rate constants that are associated to both the dispropor-
tionation reaction and intermediate formation of the adsorbed super oxide; besides, k3 is
the rate constant for peroxide reduction, k4 refers to the catalytic decaying of adsorbed
peroxide on the electrode surface, and k5 represents rate constants for peroxide desorption
and adsorption processes [50].

3. Experimental
3.1. Characterization

To study the surface morphologies of prepared catalysts, SEM analysis was conducted
with VEGA3 TESCON at the voltage of 20 kV. For elemental analysis of prepared catalysts,
EDS analysis was conducted. Moreover, the crystal structure and phase purity of the
prepared catalyst was established by XRD analysis (D8 Advanced Diffractometer) by using
Jade 6.0 with diffraction angle (2θ), at a range of 10–70◦, with the step size of 4◦/s.
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3.2. Synthesis of ZIF-67

A quantity of 1.97 g of 2-methylimidazole was dissolved in a 40 mL of 50/50 (v/v %) of
ethanol and methanol. Furthermore, 1.746 g of Co(NO3)2·6H2O were mixed with ethanol
and methanol mixture, keeping the ratios as before. The two solutions were then stirred
together for 20 min and kept at room temperature for 20 h. After centrifugation, washing
and drying, a purple precipitate was obtained [33].

3.3. Synthesis of Mesoporous Carbon

ZIF-67 was heated to 350 ◦C and was maintained at that temperature for 1.5 h using a
tube furnace under reducing atmosphere (H2/Ar). The temperature was then increased to
750 ◦C with a ramp rate of 2 ◦C/min and was sustained at that temperature for 3.5 h. The
furnace was naturally allowed to cool down. The sample was then treated with H2SO4,
centrifuged, washed, and dried [51].

3.4. Synthesis of MnO2-Doped Mesoporous Carbon

Next, 1 M solution of KMnO4 was prepared in deionized water. Nano-porous carbon
particles derived from ZIF-67 were dispersed in the 100 mL of solution using a bath
sonicator for 15 min. The mixture was then stirred for 30 min and HCl (30%) was added
dropwise to the mixture. The mixture was then transferred into a Teflon lined autoclave
and heated in a box furnace at 80 ◦C for 3 h. The heated suspension was then filtered and
washed using ethanol/water mixture and eventually dried in a vacuum oven at 80 ◦C
overnight. The dried sample is the desired product (ZIF-67 derived nano-porous carbon
and MnO2 hybrid). Figure 14 illustrates the synthesis route of ZCNT and ZCNT-M.
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4. Conclusions

ZIF-67 derived nano-porous carbon that is further doped with MnO2 particles offers a
potential material to be used as ORR catalyst in fuel cells, and the material shows good ORR
performance. Onset potentials, peak potential and peak current densities were calculated
using current vs. voltage plots obtained through cyclic voltammetry. The modified material
ZCNT-M showed better performance as compared to ZCNT, as observed through cyclic
voltammetry and EIS. The material showed a performance enhancement up to a certain
level of oxygen purging, as compared to its performance with dissolved oxygen in the
electrolyte. In addition, electrochemical stability was tested by using chronoamperometry,
showing a sudden decrease in current and stable performance up to 3600s. Ultimately, it
can be concluded from this work that the good catalytic ORR activity of ZIF-67 derived
CNTs/MnO2 (ZCNT-M) is due to the incorporation of MnO2 not only enhancing the
surface area, but also the conductivity of prepared catalysts to a significant level.
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