

Supplementary Information

1D Zn(II) Coordination Polymers as Effective Heterogeneous Catalysts in Microwave-Assisted Single-Pot Deacetalization-Knoevenagel Tandem Reactions in Solvent-Free Conditions

Anup Paul *, Anirban Karmakar, M. Fátima C. Guedes da Silva and Armando J. L. Pombeiro *

Contents:

Scheme S1: Synthetic scheme of H₂L¹ and H₂L². Figure S1. ¹H-NMR spectrum of H₂L¹ recorded in DMSO-*d*₆. Figure S2. ¹H-NMR spectrum of H₂L² recorded in DMSO-*d*₆. Figure S3. ¹³C-NMR spectrum of H₂L¹ recorded in DMSO-*d*₆. Figure S4. ¹³C-NMR spectrum of H₂L² recorded in DMSO-*d*₆. Figure S5. IR spectra of H₂L¹, H₂L² and CPs 1 and 2. Figure S6: Simulated and experimental PXRD of 1. Figure S7: Simulated and experimental PXRD of 2. Figure S8. Example of integration in the ¹H-NMR spectrum for the determination of the product yield in the one-pot tandem deacetalization–Knoevenagel condensation reactions catalysed by 1. Table S1. Crystal data and structure refinement details for CPs 1 and 2. Table S2. Hydrogen bond geometry (Å, °) in CPs 1 and 2. Table S3. Selected bond distances (Å) and angles (°) for CPs 1 and 2.

Scheme S1: Synthetic scheme of H_2L^1 and H_2L^2 .

Figure S1. ¹H-NMR spectrum of H₂L¹ recorded in DMSO-*d*₆.

Figure S2. ¹H-NMR spectrum of H₂L² recorded in DMSO-d₆.

Figure S3. ¹³C-NMR spectrum of H₂L¹ recorded in DMSO-d₆.

Figure S4. ¹³C-NMR spectrum of H₂L² recorded in DMSO-d₆.

Figure S5. IR spectra of H₂L¹, H₂L² and CPs 1 and 2.

Figure S6: Simulated and experimental PXRD of 1.

Figure S7. Simulated and experimental PXRD of 2.

Figure S8. Example of integration in the ¹H-NMR spectrum for the determination of the product yield in the one-pot tandem deacetalization–Knoevenagel condensation reactions catalysed by **1** [Table 1, entry 1].

Identification name	1	2	
Formulae	$C_{14}H_{20}N_2O_{11}Zn$	$C_{15}H_{16}N_2O_8Zn$	
Mol. wt.	457.69	417.67	
Crystal system	Triclinic	Triclinic	
Space group	P-1	P-1	
Temperature /K	296	296	
Wavelength /Å	0.71073	0.71073	
a /Å	7.0313(19)	8.2951(18)	
b /Å	7.473(2)	11.330(3)	
c /Å	18.174(5)	12.174(2)	
$lpha/^{\circ}$	78.392(5)	110.907(8)	
β/°	82.322(7)	97.686(7)	
γ/°	65.624(6)	108.744(8)	
V/ Å ³	850.6(4)	971.4(4)	
Z	2	2	
Density/Mgm ⁻³	1.787	1.428	
Abs. Coeff. /mm ⁻¹	1.512	1.306	
F(000)	472	428	
Refl. collected	23257	3606	
Refl. unique	3117	3606	
Max. 2θ/°	25.242	25.392	
	-8 <= h <= 8	−10 <= h <= 10	
Ranges (h, k, l)	-8 <= k < =8	-13 <= k <= 13	
	-21 <= l <= 21	-13 <= l <= 14	
Complete to 2θ (%)	99.9	99.4	
Refl. with $I > 2\sigma(I)$	2518	2455	
Data/Restraints/Parameters	3117/74/213	3606/0/236	
Goof (F ²)	1.161	1.004	
R1 [I > 2s(I)]	0.0952	0.0959	
wR2 [I > 2s(I)]	0.2903	0.2296	
R1 [all data]	0.1157	0.1332	
wR2 [all data]	0.3069	0.2568	

Table S1. Crystal data and structure refinement details for CPs 1 and 2.

Compound	D-H···A	D····H (Å))H…A (Å)	D…A (Å)	<d-h···a(°)< th=""></d-h···a(°)<>
- - - - - - - -	O7A-H7A1…O4	0.95	2.11	2.827(17)	131
	O7A-H7A2…O20A	0.95	1.75	2.58(3)	143
	O8A-H8A2…O20A	0.95	2.44	3.36(4)	160
	O9-H9A…O6	0.95	2.08	2.840(14)	136
	O9-H9B…O6	0.95	2.03	2.907(13)	152
	O10-H10A…O6	0.95	1.93	2.864(14)	166
	O10-H10B…O5	0.95	2.00	2.633(13)	123
	O20A-H20A…O8A	1.0(3)	1.9(3)	2.88(3)	165
	C6-H6…O20A	0.95	2.41	3.36(2)	173
	C7-H7A…O2	0.99	2.53	3.144(16)	120
	C11-H11…O2	0.95	2.35	3.154(15)	142
2	O(7)-H(6O)…O(2)	0.89	1.89	2.779(9)	179
	O(7)-H(7O)…O(3)	0.89	1.72	2.615(9)	178
	O(8)-H(8O)…O(4)	0.90	1.88	2.782(8)	179
	O(8)-H(9O)…O(6)	0.90	1.72	2.620(10)	179
	C(6)-H(6)-O(7)	0.93	2.59	3.351(10)	140
	C(9)-H(9B)O(3)	0.97	2.35	3.160(12)	140
	C(15)-H(15) ···O(8)	0.93	2.56	3.348(11)	143

Table S2. Hydrogen bond geometry (Å, °) in 1 and 2.

Table S3. Selected bond distances (Å) and angles (°) for 1 and 2.

	Zn1-O1 2.022(9), Zn1-O7A 2.074(13), Zn1-O7B 2.146(18), Zn1-O8A 2.143(14), Zn1-O8B 2.163(17), Zn2-O3
	2.073(8), Zn2-O10 2.063(8), Zn2-O9 2.153(8).
	<01-Zn1-O1 180.0(5), <01-Zn1-O7A 81.5(5), <01-Zn1-O7A 98.5(5) , <07A-Zn1-O7A 180.0, <01-Zn1-
1	O8A 88.5(5), <o1-zn1-o8a 83.7(5),="" 91.5(5),="" 96.3(5),="" <o7a-zn1-o8a="" <o8a-zn1-o8a<="" td=""></o1-zn1-o8a>
1	180.0, <o1-zn1-o7b 180.0,="" 85.5(6),="" 91.1(5),="" 94.5(6),="" <o1-<="" <o1-zn1-o7b="" <o1-zn1-o8b="" <o7b-zn1-o7b="" td=""></o1-zn1-o7b>
	Zn1-O8B 88.9(5), <o7b-zn1-o8b 180.0(8),="" 89.3(7),="" 90.7(7),="" <o10-zn2-o10<="" <o7b-zn1-o8b="" <o8b-zn1-o8b="" td=""></o7b-zn1-o8b>
	180.0, <o10-zn2-o3 100-zn2-o3="" 180.0,="" 180.0<="" 89.9(4),="" 90.1(4),="" <o10-zn2-o3="" <o3-zn2-o3="" td=""></o10-zn2-o3>
	O9 89.7(3), <o10-zn2-o9 180.0.<="" 89.2(3),="" 90.3(3),="" 90.8(3),="" <o3-zn2-o9="" <o9-zn2-o9="" td=""></o10-zn2-o9>
	Zn1-O1 1.961(5), Zn1-O5 1.960(6), Zn1-O8 2.014(6), Zn1-O7 2.020(6).
2	<01-Zn1-O5 138.1(3), <01-Zn1-O8 99.8(2), <05-Zn1-O8 107.5(2), <01-Zn1-O7 105.9(2), <05-Zn1-O7
	100.0(2), <o8-zn1-o7 100.1(2).<="" td=""></o8-zn1-o7>