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Abstract: The new 1D CPs [Zn(L1)(H2O)4]n.nH2O (1) and [Zn(L2)(H2O)2]n (2) [L1 = 1,1′-(ethane-
1,2-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic acid); L2 = 1,1′-(propane-1,3-diyl)bis(6-oxo-1,6-
dihydropyridine-3-carboxylic acid)] were prepared from flexible dicarboxylate pro-ligands (H2L1 and
H2L2). Both CPs 1 and 2 were characterized by elemental, FTIR, and powder X-ray diffraction analysis.
Their geometry and the structural features were unveiled by single-crystal X-ray diffraction analysis.
The underlying topology of the CPs was illustrated by the topological analysis of the H-bonded
structure of CP 1, which revealed a 3,4,6-connected trinodal net. On the other hand, topological
analysis on the hydrogen-bonded network of CP 2 showed a 2,3,3,4,6,7-connected hexanodal net.
The thermal stability of the CPs was investigated by thermogravimetric analysis. CPs 1 and 2 act
as heterogeneous catalysts in one-pot tandem deacetalization–Knoevenagel condensation reactions
under environmentally mild conditions. CPs 1 exhibits a yield of ca. 91% in a microwave-assisted
solvent-free medium, whereas a slightly lower yield was obtained for CP 2 (87%) under the same
experimental protocol. The recyclability of catalyst 1 was also assessed. To our knowledge, these are
the first Zn(II)-based CPs to be applied as heterogeneous catalysts for the above tandem reactions
under environmentally friendly conditions.

Keywords: coordination polymers; heterogeneous catalyst; tandem reactions; microwave;
solvent-free

1. Introduction

Coordination polymers (CPs) have attracted an enormous interest over the years not
only because of their intriguing architectures and topologies, but also for their diversified
applications in various areas such as gas adsorption and separation, molecular magnetism,
luminescence, sensing, etc. [1–7]. Apart from these, CPs, as heterogeneous catalysts have
also marked their foothold due to their recyclability and easy workup [8–13]. Numerous
factors such as the choice of organic ligands, metal ions, solvent, metal to ligand ratio,
pH, temperature, etc. play a crucial role in the self-assembly processes of CPs [14,15].
In the design of CPs, the rigid ligands have mostly been accounted for as a well-known
way to generate multidimensional structures [16–20]. On the other hand, it is hard to
develop CPs with flexible ligands due to their flexible nature, which can adopt different
orientations during the self-assembly process [21–24]. Nevertheless, the conformational op-
portunity of the flexibly adaptable ligands offers a greater possibility for the development
of multidimensional structures with uncommon topological and microporous CPs [25–28].
Among the different organic linkers, flexible multicarboxylate (in particular dicarboxy-
late) ligands have been regularly employed as multifunctional linkers in light of their
plentiful coordination modes to a metal ion for the generation of polymeric frameworks.
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For example, dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, etc. are the
sorts of carboxylic acids that have been chosen to construct multidimensional structures
because of the presence of a flexible C–C bond [29,30]. Dicarboxylate ligands with a flexible
C–C bond can be viewed as a convenient linker for the construction of multidimensional
CPs. Keeping these concepts in mind, two new pro-ligands (Figure 1) have been designed
having both a dicarboxylate linker and a flexible C–C arm for the construction of CPs.
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Concerning catalysis, an array of CPs have been developed as heterogeneous catalysts
for various organic transformations [9–13]. In contrast with homogeneous catalysts, the
heterogeneous ones have favorable recompences due to their easy separation and recy-
clability. Amongst the various metal-based CPs in catalysis, Zn(II) CPs as heterogeneous
catalysts have gained a noteworthy consideration over the years [13,31–34]. For instance,
we have reported a few amide functionalized Zn(II) MOFs that can be applied in different
catalytic responses, for example, Knoevenagel condensation, cyanosilylation, and Henry
reactions [35–38]. Moreover, in the domain of catalysis, tandem reactions, in which two or
more individual reactions are accomplished in a single pot, are of high demand due to their
reduced energy consumption and reaction time, aside from avoiding the excess utilization
of solvents and chemicals [39,40]. The deacetalization–Knoevenagel condensation is one
of the exciting examples of one-pot cascade reactions, wherein benzylidene malononitrile
is obtained straightforwardly by utilizing benzaldehyde dimethyl acetal and malononi-
trile [41,42]. MOF catalysts with both Lewis acidic and basic sites have been documented
for such types of reaction [41–46]. Nevertheless, in almost all cases, an organic medium
was used for carrying out the reaction, and there has been hardly been any reports on
efficient heterogeneous MOFs/CPs as catalysts for such reactions carried out under envi-
ronmentally friendly solvent-free conditions. Furthermore, a main barrier associated with
the design of such a type of catalyst for those reactions concerns the possible neutralization
of the effects of the acidic and basic moieties.

Hence, intending to discover new heterogeneous catalysts, herein we present two new
Zn(II) 1D CPs bearing acidic and basic sites, [Zn(L1)(H2O)4]n.nH2O (1) and [Zn(L2)(H2O)2]n
(2), with flexible multicaboxylate ligands and their application as environmentally friendly
heterogeneous catalysts for solvent-free microwave-assisted one-pot deacetalization–
Knoevenagel condensation tandem reactions.

2. Results and Discussion
2.1. Syntheses and Characterization

The pro-ligands 1,1′-(ethane-1,2-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic acid)
(H2L1) and 1,1′-(propane-1,3-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic acid) (H2L2)
were synthesized by treating methyl 6-hydroxyisonicotinate with 1,2-dibromoethane (for
H2L1) and 1,3-dibromopropane (for H2L2) in the presence of K2CO3 in acetone under
stirring at room temperature followed by hydrolysis, as presented in Scheme S1, ESI.
The coordination polymers 1 and 2 were prepared by the hydrothermal reaction of H2L1

and H2L2 with Zn(NO3)2.6H2O, respectively, in a solvent mixture of DMF:H2O at 80 ◦C
for 48 h as depicted in Scheme 1.
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The pro-ligands H2L1 and H2L2 were characterized by elemental analyses, infrared,
1H, and 13C NMR techniques. On the other hand, the derived CPs 1 (from H2L1) and 2
(from H2L2) were characterized by elemental analysis, infrared, and thermogravimetric
analyses. Furthermore, geometrical and structural aspects of the CPs 1 and 2 were revealed
by single-crystal diffraction analysis (outlined below). Both pro-ligands H2L1 and H2L2

exhibited trademark resonances due to –COO(H) at δ 12.81 in their 1H-NMR spectra
(Figures S1 and S2). The resonance due to –CH2 protons was observed at δ 4.31 for H2L1

and at δ 4.01 and 2.04 for H2L2. The aromatic proton resonances were shown in the range
of δ 8.49–6.35. The 13C NMR spectrum of H2L1 (Figure S3) and H2L2 (Figure S4) exhibited
a resonance at δ 165.79 and 164.89, respectively, due to –COOH. The signals due to two
–CH2– carbons in the case of H2L1 were noticed at δ 47.22 and 29.26, whereas, for H2L2,
three different signals were spotted at δ 52.18, 47.26, and 28.63, respectively, for the three
–CH2– carbons.

The ν(COO) characteristic vibration bands in the IR spectra of the pro-ligands H2L1

and H2L2 were observed at 1697 and 1708 cm−1, respectively (Figure S5). On the other hand,
in the IR spectra of the CPs, the intensive vibration observed at ca. 1562 cm−1 (for 1) and
1552 cm−1 (for 2), along with a medium intensity band at ca. 1416 cm−1 for both CPs, were
assigned to the νCOasym and νCOsym vibrations, respectively (Figure S5). The alteration of
the characteristic vibrations concerning the free carboxylate of the pro-ligands indicates the
coordination to zinc(II) centers, as further demonstrated by single-crystal X-ray diffraction
analysis as discussed below. Furthermore, powder-XRD was additionally performed.
The experimental and simulated PXRD patterns showed that the materials were of an
identical sort (Figures S6 and S7).

2.2. Crystal Structure Analysis of 1 and 2

According to the single X-ray diffraction analysis, both CPs [Zn(L)(H2O)4]n.nH2O
(1) and [Zn(L)(H2O)2]n (2) had one-dimensional structures. The CP 1 had a 1D network
with an asymmetric unit made of two Zn2+ ions (each of them with an 0.5 occupancy),
one (L1)2− ligand, four water ligands (two per metal cation), and one non-coordinated
water molecule (Figure 2A). Symmetry expansion revealed that both the Zn(II) centers had
octahedral coordination geometry. The Zn1 center was coordinated by two carboxylate-O
from two (L1)2− ligands [Zn1-O1 1.961(5) Å] and four water molecules [Zn1-O7A 2.074(13)
and Zn1-O8A 2.143(14)], whereas the coordination environment of the Zn2 center was
fulfilled by two keto-O atoms from two neighboring (L1)2− ligands [Zn2-O3 2.073(8) Å] and
four water molecules [Zn2-O9 2.153(8) and Zn2-O10 2.063(8)] (Figure 2B). The Zn-Owater
bond distances were in the range of 2.063 Å to 2.163(17) Å. Since in 1, the Zn1 and Zn2
centers are attached to the same pyridine ring, they alternate their positions to create the 1D
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linear chain-like structure (Figure 2C). The carboxylate and keto groups from the remaining
pyridine ring are uncoordinated and only participate in H-bonding interactions. In CP 1,
the organic ligand adopts a stair type orientation with the pyridine rings residing in two
different and almost parallel planes (bit angle of 3.24◦) and the N1-C7-C8-N2 torsion angle
of 169.73◦. The plane of the carboxylate group is approximately in the pyridine plane (bite
angle of 7.93◦). The Zn···Zn distance is 10.158 Å.
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Figure 2. (A) The structure of CP 1 with partial atom labelling scheme. (B) One dimensional
linear structure of CP 1. (C) 1D hydrogen bonded double chain constructed by [Zn(H2O)4] and a
non-coordinated water molecule. (D) Three-dimensional hydrogen bonded network in CP 1 (the
hydrogen bonding interactions are indicated as purple lines).
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As shown in Figure 2D, the presence of widespread H-bond interactions was observed
in CP 1, and the most relevant ones are presented in Table S2. The important bond distances
and angles of CP 1 are depicted in Table S3. Furthermore, in CP 1, the uncoordinated
carboxylates (O5 and O6) and keto (O4) groups act as hydrogen acceptors and the coordi-
nated water molecules (O7A, O9 and O10) as hydrogen donors. The [Zn(H2O)4] unit is
hydrogen-bonded with the non-coordinated water molecule in such a way that it generates
a one-dimensional double chain, as shown in Figure 2D. Several O–H···O and C–H···O
interactions are present in the structure of 1, which help to expand the structure to a third
dimension H-bonded network.

The asymmetric unit of 2 contains one deprotonated ligand (L2)2−, one Zn(II) cation,
and two coordinated water molecules (Figure 3A). Symmetry expansion revealed the
Zn(II) metal center with a tetrahedral geometry (τ4 = 0.81)1 where the coordination sphere
occupied with two carboxylate oxygen atoms from two (L2)2− ligands and two oxygen
atoms from two water molecules. The combination of Zn(II) ions and (L2)2− ligands form
a zig-zag type 1D framework, which is shown in Figure 3B.
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Figure 3. (A) The structure of framework 2 with the partial atom labelling scheme. (B) One dimensional zig-zag structure of
framework 2.

The Zn-O bond lengths were in the range of 1.960(6)–2.020(6) Å and the O–Zn–O
bond angles were between 99.8(2)◦ and 107.5(3)◦. The Zn···Zn distance between the
two-symmetry related metal centers is 13.784(3) Å. Selected bond distances and angles
of 2 are listed in Table S3 (Supplementary Materials). In this framework, the organic
ligand has a “W” type orientation and the angle between the two pyridine rings is 89.02◦.
Both the carboxylate groups of (L2)2− are coordinated to Zn(II) ions in a monodentate
fashion and reside almost in the planes of the respective pyridine rings (bite angles of
11.01◦ and 13.47◦). The C2-C1-O1-Zn1 and C13-C14-O5-Zn1′ torsion angles were −178.77◦

and −179.52◦, respectively. The keto groups of (L2)2− were not coordinated to the Zn(II)
center, but they participate in hydrogen bonding interactions with coordinated water
molecules involving O7-H6O···O2 [dD–A 2.779(9) Å; < D–H····A 179◦], O7-H7O···O3 [dD–A
2.615(9) Å; < D–H····A 178◦], O8-H8O···O4 [dD–A 2.782(8) Å; < D–H····A 179◦], and O8-
H9O···O(6) [dD–A 2.620(10) Å; < D–H····A 179◦] interactions and form a two-dimensional
H-bonded network.



Catalysts 2021, 11, 90 6 of 16

Moreover, this 2D hydrogen-bonded network is further assembled via various C–
H···O interactions, generating a three-dimensional structure with ca. 8.1 Å × 8.9 Å rectan-
gular voids along the bc-plane (Figure 4).
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2.3. Topological Analysis of 1 and 2

We performed the topological analysis of the hydrogen-bonded networks of 1 and 2
by reducing its multidimensional structure to simple node-and-linker net1 using software
TOPOS 4.0.17 [47–49]. The topological analysis of the H-bonded structure of compound 1
revealed that it has a 3,4,6-connected trinodal net and point symbol {4.64.8}{42.68.85}{43}2,
whereas the hydrogen-bonded network of compound 2 exhibits a more complex 2,3,3,4,6,7-
connected hexanodal net with point symbol {3.42}2{3.43.52.67.73.85}2{32.42.52.64.74.9}
{42.6}2{64.8.10}{6}2 (Figure 5A,B).
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2.4. Thermogravimetric Analysis of 1 and 2

Thermogravimetric analyses (TGA) of the CPs 1 and 2 were examined to see their
thermal stabilities in the temperature range of 30–800 ◦C with a heating rate of 10 ◦C
min−1 under a dinitrogen atmosphere. As depicted in Figure 6, CP 1 exhibited a weight
loss of 3.85% in the temperature range of ca. 80–100 ◦C, resulting from the loss of one
lattice water molecule (calculated = 3.93%). A further step with a weight loss of ca. 15.2%
(calculated = 15.73%) was detected in the temperature range of ca. 100–140 ◦C, accountable
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for the loss of the four coordinated water molecules. At ca. 140–330 ◦C it was stable, but
over 330 ◦C, the polymeric framework deteriorated, prompting the generation of ZnO.
On the other hand, CP 2 displayed a sharp decay in its TGA curve (Figure 6) in the range
of ca. 65–105 ◦C in conjunction with the weight loss of ca. 8.1% (calcd. 7.93%), responsible
for the loss of two lattice water molecules. An immediate second step with a weight loss of
ca. 7.8% (calcd. 7.93%) was detected in the temperature range of 105–175 ◦C due to the loss
of the two coordinated water molecules. It was then found to be thermally stable up to
300 ◦C, beyond which it breaks down to produce ZnO.
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2.5. Catalytic Activity

Taking advantage of the thermal robustness of CPs 1 and 2 and their insolubility in
most of the common organic solvents, they were tested for the one pot deacetalization-
Knoevenagel reaction as heterogeneous catalysts (Scheme 2). As mentioned earlier, the
advantage of the one-pot tandem reactions lies where two subsequent reactions can be
completed in one step. In the first part, benzaldehyde (B) is produced from benzalde-
hyde dimethyl acetal (A), and the subsequent reaction concerns the conversion of B to
benzylidene malononitrile (C) in the presence of malononitrile through a Knoevenagel
condensation. The former reaction is usually triggered by the presence of a Lewis acid in
the framework, while the latter is promoted by a Lewis base. The developed CPs 1 and 2
satisfy the perquisite of displaying a Zn(II) metal ion, which can act as a Lewis acid, and
basic sites such as pyridyl-N and oxygen-O, which are favorable for engaging them as
catalysts in the tandem reaction.
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Thus, to explore such a possibility, microwave irradiation (MW) was applied as a well-
known technique that can accelerate the reaction and generate higher yield and selectivity.
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Our group, along with other established research groups, are actively involved in using
the MW technique for several catalytic transformations [36,50–52].

Under typical conditions, a combination of the initial reagent benzaldehyde dimethyl
acetal (A, 0.152 g, 1.0 mmoL), with the methylene activated one (i.e., malononitrile (0.132 g,
2.0 mmoL) and the zinc CP catalyst (15.2 mg or 27.0 mg for 1 or 2, respectively; 3.0 mol%))
was placed in a glass vessel covered with a Teflon cap and stirred at 80 ◦C under microwave
irradiation (30 W) for 4 h in solvent-free conditions. The desired product was identified by
1H NMR spectroscopy (Figures S1 and S8).

The catalysts were screened in the absence and presence of different solvents, upon
varying temperature (25–100 ◦C), catalyst loading (1–5 mol%), and reaction time (up to 4 h)
to optimize the reaction conditions under MW heating.

Among the tested solvents viz., DMF, CH3CN, DMSO, and THF, the maximum
obtained yield was in DMF (47% yield for 1), followed by DMSO (45% yield for 1), THF
(32% yield for 1), and CH3CN (21% yield for 1) at 80 ◦C after 4 h under MW irradiation
(Table 1, entries 8–10). However, the best yield was obtained when the reaction was carried
out in a solvent-free medium under the same optimized condition (91% yield for 1 and
87% yield for 2) (Table 1, entries 1 and 2). The study uncovered that both CPs 1 and 2
exhibited comparable catalytic activities, although the former were more active, which may
be due to the presence of the free carboxylate (COO−) group, which enhances the basic
nature of the framework. It is also worthy to mention that when the catalytic reaction was
carried out under conventional heating at 80 ◦C, it achieved a yield of only ca. 20% and
15%, respectively, for the CPs 1 and 2.

Table 1. Optimization of the parameters of the cascade deacetalization−Knoevenagel condensation reactions between
benzaldehyde dimethyl acetal and malononitrile with 1 and 2 as the catalysts a.

Entry Catalyst Time (h)
Amount of

Catalyst
(mol%)

T (◦C) Solvent

Relative
Amount of

Unreacted A
(%) b

Yield of B
(%) b

Yield of C
(%) b

1 1 4 3 80 Solvent free 7 2 91

2 2 4 3 80 Solvent free 10 3 87

3 1 0.5 3 80 Solvent free 76 15 9

4 1 1 3 80 Solvent free 62 11 27

5 1 2 3 80 Solvent free 40 11 49

6 1 3 3 80 Solvent free 12 9 79

7 1 4 3 80 DMF 21 32 47

8 1 4 3 80 THF 46 22 32

9 1 4 3 80 DMSO 25 30 45

10 1 4 3 80 CH3CN 38 41 21

11 1 4 1 80 Solvent free 46 20 34

12 1 4 2 80 Solvent free 31 13 56

13 1 4 5 80 Solvent free 16 6 78

14 1 4 3 25 Solvent free 66 24 10

15 1 4 3 50 Solvent free 42 12 46

16 1 4 3 100 Solvent free 8 3 89

17 Blank 4 - 80 Solvent free 78 22 0

18 Zn(NO3)2.6H2O 4 3 80 Solvent free 61 32 7

19 H2L1 4 3 80 Solvent free 95 5 0

20 H2L2 4 3 80 Solvent free 96 4 0
a Reaction conditions: Benzaldehyde dimethyl acetal (152 mg, 1.0 mmoL) and malononitrile (132 mg, 2.0 mmoL), 3 mol% of catalyst 1 or 2,
80 ◦C. b Calculated by 1H NMR analysis. A = benzaldehyde dimethyl acetal; B = benzaldehyde; C = benzylidene malononitrile.
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We carried out the cascade reaction at different temperatures to examine the effect of
temperature. We obtained only 10% of 2-benzylidene malononitrile at room temperature
(25 ◦C) [Table 1, entry 14]. However, increasing the reaction temperature to 50 ◦C and 80 ◦C
results in a 46% and 91% conversion of benzaldehyde dimethyl acetal into benzylidene
malononitrile, respectively (Table 1, entries 15 and 1, respectively). Further increase of
temperature to 100 ◦C had a negative effect on the yield (Table 1, entry 16).

To optimize the catalyst loading, we varied its amount in the range of 1–5 mol% under
the above-mentioned experimental conditions. For 1 mol% of catalyst 1 at 80 ◦C, the yield
of 34% of 2-benzylidenemalononitrile was obtained (Table 1, entry 12), whereas upon
increasing the catalyst amount to 2 mol% and 3 mol% the final product yield increased
to 56% and 91%, respectively (Table 1, entries 12 and 1, respectively). However, a further
increase in the catalyst amount to 5 mol% was not favorable (78%, entry 13, Table 1). Thus,
the use of 3 mol% of catalyst 1 was considered to provide the best fit for the reaction.

After optimizing the solvent conditions (absence of added solvent), temperature, and
catalyst amount, we performed the cascade deacetalization-Knoevenagel condensation
reactions at different time intervals. For CP 1, a time dependent reaction profile illustrat-
ing the formation of benzaldehyde (B) and 2-benzylidenemalononitrile with respect to
benzaldehyde dimethyl acetal (A) is depicted in Figure 7A. The yield of the final prod-
uct 2-benzylidenemalononitrile (C) increased up to 4 h, but upon extending the reaction
time to 5 h, it was not improved significantly. As shown in Figure 7A, since the onset of
the reaction, the amount of benzaldehyde dimethyl actetal (A) persistently diminished
with time, consistent with the increasing amount of the benzaldehyde intermediate (B),
which reached a maximum at ca. 0.5 h, yielding 2-benzylidenemalononitrile (C) as the
final product.
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Figure 7. (A) Plot of yield (or relative amount in case of A) vs. time (h) for the cascade deacetalization-Knoevenagel
reactions catalyzed by CP 1 [blue line: 2-benzylidenemalononitrile (C); red line: benzaldehyde (B); black line: unreacted
benzaldehyde dimethyl acetal (A)]. (B) Plot of yield of C vs. time (h) for the cascade deacetalization-Knoevenagel reactions
catalyzed by CP 1 [black line: yield of C); dotted green line: yield of this product upon removal of the catalyst after 1 h of
reaction].

Upon performing a blank test (without any catalyst) as well as using the pro-ligands
H2L1 and H2L2 instead of the CP metal catalyst, no 2-benzylidenemalononitrile (C) was
formed under the same experimental conditions (Table 1, entries 17, 19, and 20). Moreover,
a rather low yield of 2-benzylidenemalononitrile (7%) was observed using the metal salt
Zn(NO3)2.6H2O as a catalyst (Table 1, entry 18).
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To check the recycling behavior, our catalyst 1 was recovered after each run, washed
with solvent, and dried again before reuse. It could be reused successively at least three
times without having a considerable loss of its catalytic activity (Figure 8). Moreover, to
check the heterogeneity of our catalysts, after 1 h of the reaction, the catalyst was removed
by centrifugation, and the catalyst-free reaction mixture was left for another 3 h under
the optimized conditions. As shown in Figure 7B, an increase in the product yield was
not noticed after removing the catalyst (green dotted line), which is consistent with the
absence of catalyst leaching and the heterogeneous nature of the catalyst. In addition, we
also inspected and compared the structural properties of the catalysts by powder X-ray
diffraction analyses before and after the catalytic process (Figures S6 and S7 for CP 1 and 2,
respectively) and the identity of both powder XRD diffractograms supports the structural
integrity of the catalyst along with the catalytic reaction.
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A possible reaction mechanism for the one-pot deacetalization-Knoevenagel reaction
can be proposed (Figure 9) on the basis of previously published reports [53,54]. In the
first reaction, benzaldehyde dimethylacetal is converted to benzaldehyde, a process that is
assisted by the acidic catalytic sites. The Lewis acid site further interacts with the carbonyl
oxygen of benzaldehyde, making the carbon atom of the C=O bond more susceptible to
undergoing nucleophilic attack by deprotanated malononitrile. In fact, the presence of basic
sites in the framework leads to the deprotonation of the methylene group of malononitrile,
generating the carbanion ion, which attacks the C-atom of the benzaldehyde producing the
desired benzylidenemalononitrile, and thereby confirming the synergistic effect of Lewis
acid and basic character on the said reaction.

Catalyst 1 was compared with a few other reported Zn(II) based MOFs toward
this sort of cascade reaction (Table 2). Although a higher yield was obtained for MOFs
[Zn2(L′)(H2O)4]n·4n(H2O) (entry 3, Table 2) and [Zn4(TBCB)(H2O)6]n.5n(DMAc) (entry 4,
Table 2), the use of solvent was not avoided in contrast to our system [41,55]. Thus, our
catalyst can be claimed as an active one, comparable to those, but operating under better
environmentally friendly conditions. It is also noteworthy to mention that the present
study provides the first report on Zn(II) based CPs, which act as a heterogeneous catalyst
for the above tandem reactions in a solvent-free medium.
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Table 2. Comparison of the catalytic activities for one-pot deacetalization-Knoevenagel cascade reactions of a few reported
Zn(II) MOFs with our CPs.

Entry Catalyst Solvent/Temp/Time Yield (%) Ref

1 1 Solvent-free/80 ◦C/4 h 91 This work
2 2 Solvent-free/80 ◦C/4 h 87 This work
3 [Zn2(L′)(H2O)4]n·4n(H2O) DMF/75 ◦C/3 h 99 41
4 [Zn4(TBCB)(H2O)6]n.5n(DMAc) 1,4-dioxane/90 ◦C/4 h 99 55

L′: 5, 5′-{(pyridine-2,6-dicarbonyl)bis(azanediyl)}diisophthalate; TBCB: 2,2′,6,6′-tetrakis [3,5-bis-3,5-benzenedicarboxylate]benzidine;
DMAc: N,N-dimethylacetamide.

3. Materials and Methods

Methyl 6-hydroxynicotinate, 1,2-dibromoethane, 1,3-dibromopropane, K2CO3, and
Zn(NO)3.6H2O (98.0% purity) were obtained from Sigma Aldrich Chemical Co (Lisboa,
Portugal). A Bruker Vertex 70 (Bruker Corporation, Ettlingen, Germany) instrument was
used for recording the FTIR spectra in KBr pellets. Bruker Avance II + 300 (UltraShieldTM

Magnet, Rheinstetten, Germany) spectrometers were used for recording the 1H (300 MHz)
and 13C (75.45 MHz) NMR, respectively. Elemental analyses (C, H, and N) were performed
by the microanalytical service provided by the Instituto Superior Técnico (Lisboa, Portugal).
A Bruker APEX-II PHOTON 100 diffractometer was used for collecting the X-ray data
with graphite monochromated Mo-Kα (λ = 0.71069) radiation. A D8 Advance Bruker
AXS (Bragg Brentano geometry, Bruker, Madison, WI, USA) diffractometer was used for
collecting the PXRD data. TGA was carried out under nitrogen atmosphere at a heating
rate of 10 ◦C min−1 on a Perkin-Elmer Instrument system (STA6000, Perkin-Elmer, Boston,
MA, USA).
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3.1. Synthesis and Characterization
3.1.1. Synthesis of 1,1′-(ethane-1,2-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic
acid) (H2L1)

The pro-ligand H2L1 was synthesized in a couple of steps. First, solid K2CO3 (0.45 g,
3.27 mmoL) was added to the acetonic solution (40 mL) of methyl 6-hydroxyisonicotinate
(0.5 g, 3.26 mmoL) and was stirred for 1 h at RT. To this, 0.14 mL of 1,2-dibromoethane was
added dropwise and stirring was continued for another 3 h. The solvent was removed
using a rotary evaporator and the white product thus obtained was washed several times
with water and air-dried. Yield: 0.35 g (70%). Anal. Calcd. for C16H16N2O6: C, 57.83; H,
4.85; N, 8.43%. Found: C, 57.10; H, 4.80; N, 8.49%. 1H NMR (DMSO-d6, δ ppm) 8.27 (s, 2H,
Ar-H), 7.72 (d, 2H, Ar-H), 6.36 (d, 2H, Ar-H), 4.31 (s, 4H, -CH2-), 3.89 (s, 6H, -OCH3).

In the subsequent step, the ester form of the pro-ligand was hydrolyzed following
a reported protocol to acquire the pro-ligand H2L1. Yield: 0.28g (80%). Anal. Calcd for
C14H12N2O6: C, 55.27; H, 3.98; N, 9.21. Found: C, 55.61; H, 3.89; N, 9.26. FT-IR (KBr, cm−1):
1708 (s), 1636 (s), 1584 (s), 1383 (w), 1216 (br), 1143 (s), 851 (w), 778 (w), 609 (s). 1H-NMR
(300 MHz, DMSO-d6, δ ppm): δ 12.81 (s, 2H, COOH), 8.26 (s, 4H, Ar-H), 7.72 (d, 2H, Ar-H),
6.35 (d, 2H, Ar-H), 4.31 (s, 4H, -CH2-). 13C-NMR (77 MHz, DMSO-d6, δ ppm): 165.79,
162.12, 144.43, 139.24, 119.07, 109.58, 47.22, 29.26. ESI-MS: m/z [(M + H)]+, Calcd. 305.07,
found 305.18, [(M + Na)]+, Calcd. 327.07, found 327.89.

3.1.2. Synthesis of 1,1′-(propane-1,3-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic
acid) (H2L2)

A two-step approach was also utilized for the synthesis of the pro-ligand H2L2 as
that of H2L1. For the preparation of the ester form of the pro-ligand, 1,3-dibromopropane
(0.16 mL) was used as a substitute of 1,2-dibromoethane. Yield: 0.32 g (64%). Anal. Calcd
for C17H18N2O6: C, 58.96; H, 5.24; N, 8.09. Found: C, 58.83; H, 5.31; N, 8.14. 1H NMR
(DMSO-d6, δ ppm) 8.49 (s, 2H, Ar-H), 7.75 (d, 2H, Ar-H), 6.48 (d, 2H, Ar-H), 4.01 (s, 4H,
-CH2-), 2.02 (s, 2H, -CH2-), 3.89 (s, 6H, -OCH3). In the subsequent step a similar hydrolysis
approach was used to yield the pro-ligand H2L2

. Anal. Calcd for C15H14N2O6: C, 56.60; H,
4.43; N, 8.80. Found: C, 56.71; H, 4.51; N, 8.82. FT-IR (KBr, cm−1): 1687 (w), 1654 (s), 1531
(s), 1425 (w), 1280 (s), 1122 (s), 934 (w), 745 (s), 630 (s). 1H-NMR (300 MHz, DMSO-d6, δ
ppm): δ 12.81 (s, 2H, COOH), 8.49 (s, 4H, Ar-H), 7.75 (d, 2H, Ar-H), 6.47 (d, 2H, Ar-H), 4.01
(s, 4H, –CH2–), 2.04 (s, 2H, –CH2–). 13C-NMR (77 MHz, DMSO-d6, δ ppm): 164.89, 161.88,
144.76, 138.95, 119.37, 108.70, 52.18, 47.26, 28.63. ESI-MS: m/z [(M + H)]+, Calcd. 319.09,
found 319.63, [(M + Na)]+, Calcd. 341.09, found 341.85.

3.1.3. Synthesis of [Zn(L1)(H2O)4]n.nH2O (1)

To a sealed 8 mL glass vessel, an aqueous solution (1 mL) of Zn(NO3)2.6H2O (29 mg,
0.098 mmoL) was added to the previously dissolved H2L1 (15 mg, 0.049 mmoL) in 1 mL
DMF and was heated at 80 ◦C for 48 h. White crystals suitable for X-ray diffraction analysis
were deposited at the bottom of the glass vial, whereafter they were isolated by sieving
and thoroughly washed with deionized DMF and water and air-dried. Yield: 45%. Anal.
Calcd for C14H20N2O11Zn: C, 36.73; H, 4.40; N, 6.12. Found: C, 36.81; H, 4.43; N, 6.15.
IR (KBr/pellet, cm−1): 2882 (br), 1656 (s), 1562 (s), 1412 (s), 1376 (s), 1330 (w), 1132 (w),
778 (s), 473 (w).

3.1.4. Synthesis of [Zn(L2)(H2O)2]n (2)

A similar approach as that for 1 was utilized, but using H2L2 (15 mg, 0.047 mmoL)
and Zn(NO3)2.6H2O (28 mg, 0.094 mmoL) in DMF:H2O (1 mL:1 mL). The white crystals
appropriate for X-ray diffraction analysis thus formed were removed by filtration and
washed several times with water and DMF and air-dried. Yield: 40%. Anal. Calcd for
C15H20N2O10Zn: C, 39.70; H, 4.44; N, 6.17. Found: C, 40.03; H, 4.51; N, 6.25. IR (KBr/pellet,
cm−1): 3196 (br), 1637 (s), 1552 (s), 1364 (s), 937 (w), 778 (br), 641 (s), 437 (w).
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3.2. Crystal Structure Determination

Single crystal of CPs 1 and 2 suitable for single crystal X-ray diffraction analysis
were mounted on a loop and data were collected with a Bruker APEX-II PHOTON 100
diffractometer (graphite Mo-Kα, 0.71069 wavelength radiation) at 150 K for 1 and at room
temperature for 2. Phi and omega scans were utilized for acquiring the full sphere of
data at a scan of 0.5◦ per frame. Bruker SMART software was used for retrieving the cell
parameters and the refinement was done using Bruker SAINT [56]. SADABS [57] was
applied for the absorption corrections. Structures were solved by direct methods using
the SHELXS-2014 package and further refinements were done using SHELXL-2014/6 [58].
WinGX System-Version 2014.1 [59] was used to perform the calculations. The H-atoms
on C and N were included at geometrically calculated settings and refined using the
riding-model approximation. All atoms (except hydrogens) were refined anisotropically.
The disordered water molecules in 1 were modeled by means of the PART instruction.
Those in 2, however, could not be modeled reliably and PLATON/SQUEEZE [60] was
applied to correct the data. A volume of 184 Å3 with 63 electrons per unit cell was obtained,
fitting well for two water molecules in the asymmetric unit, which were included in the
empirical formula for the final refinement. The water content in the void was supported
by elemental and thermogravimetric analyses. Crystallographic data for CPs 1 and 2 are
presented in Table S1 (Supplementary Materials) and important bond distances and angles
are given in Table S2. CCDC 2051303-2051304 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

4. Conclusions

We synthesized and characterized two new 1D Zn(II) CPs, [Zn(L1)(H2O)4]n.n(H2O) (1)
and [Zn(L2)(H2O)2]n (2) with two new flexible dicaboxylate ligands. The structural aspects
of both CPs 1 and 2 were disclosed and authenticated by single-crystal X-ray diffraction
analysis. The underlying topology of the CPs was illustrated by the topological analysis
of H-bonded structure of CP 1, which revealed a 3,4,6-connected trinodal net and point
symbol. On the other hand, topological analysis of the hydrogen-bonded network of CP 2
disclosed a 2,3,3,4,6,7-connected hexanodal net.

These CPs act as heterogeneous catalysts for the one-pot tandem deacetalization–
Knoevenagel condensation reactions under environmentally friendly conditions. Both of
them exhibited a good product yield of ca. 91 and 87% in solvent-free medium un-
der microwave-assisted conditions. To our knowledge, these are the first Zn(II) based
CPs to be applied as heterogeneous catalysts for the microwave-assisted one-pot tandem
deacetalization–Knoevenagel condensation reactions under environmentally friendly con-
ditions. The recyclability of catalysts 1 was also evaluated, showing that it can be used up
to three cycles without losing its activity.

This study shows the relevance of flexible dicarboxylate ligands with both Lewis
acidic and basic sites on the catalytic behavior of Zn(II) CPs for the tandem deacetalization–
Knoevenagel condensation reactions. Further research on the architectural and rational
design of new CPs/MOFs, based on different metals, using a ligand system with the
properties for such a type of catalytic systems, is worthy of being explored.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/1/90/s1, Electronic Supplementary Information (ESI) available: Scheme S1, Figures S1–S8
containing FT-IR, 1H, 13C-NMR, and PXRD. Selected bond distances and angles are presented in
Tables S1–S3. CCDC 2051303-2051304.
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