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Abstract: The bis-NHC–Ag/Pd(OAc)2 catalytic system (NHC = N-heterocyclic carbene), a combina-
tion of bis-NHC–Ag complex and Pd(OAc)2, was found to be a smart catalyst in the Pd-catalyzed
transfer hydrogenation of various functionalized arenes and internal/terminal alkynes. The catalytic
system demonstrated high efficiency for the reduction of a wide range of various functional groups
such as carbonyls, alkynes, olefins, and nitro groups in good to excellent yields and high chemose-
lectivity for the reduction of functional groups. In addition, the protocol was successfully exploited
to stereoselectivity for the transformation of alkynes to alkenes in aqueous media under air. This
methodology successfully provided an alternative useful protocol for reducing various functional
groups and a simple operational protocol for transfer hydrogenation.
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1. Introduction

Metal-N-heterocyclic carbene (NHC) complexes possess a strong metal–carbene bond
and these complexes play an important role in organometallic catalysis [1–5]. They have
been developed into valuable catalytic systems in various reactions including Pd-catalyzed
C–C cross-coupling reactions [6–8], C–N formation [9], hydrogenation [10,11], etc. The
transfer hydrogenation reaction in particular has attracted much attention. Transfer hy-
drogenation [12–16] is one of the useful synthetic methods for various hydrogenated
compounds, is inherently safer than direct hydrogenation, and has an easy operational
setup. Transfer hydrogenation donors such as 2-propanol [17–21], ethanol [22–24], and
formic acid are desirable because of their easy handling. Formic acid in particular has been
widely studied as an environmentally friendly transfer hydrogenation agent due to its
accessibility and high stability [25–29].

Due to the reductive elimination of the hydrido-palladium complexes of NHC, lead-
ing to catalyst deactivation [30–34], Pd–NHC-catalyzed transfer hydrogenation has less
successful examples. In 2004, Cavell and co-workers demonstrated the first successful
example of a stable tricarbene-Pd-hydrido complex [35], and Pd–NHC-catalyzed transfer
hydrogenation has recently attracted much attention. Elsevier et al. and Cazin et al. also
illustrated the Pd(NHC)-catalyzed reduction of alkynes employing triethylammonium
formate (TEAF) as the hydrogen source. They also proposed a catalytic mechanism to illus-
trate the formation of Z-alkenes in the transfer hydrogenation of alkynes [36–42]. Bis-NHC
binds to metal to form stable complexes compared to their monodentate NHC complexes.
In addition, bis-NHC ligand diversity could be easily accessed by the modification of the
linker and the wingtips. In 2013, Elsevier et al. established various bis-NHC–Pd complexes
and applied them to the semihydrogenation of 1-phenyl-1-propyne [43]. Unfortunately,
only 18% conversion was obtained by using formic acid (5.0 eq) as a hydrogen donor at
70 ◦C in acetonitrile. The authors mentioned that the transfer semihydrogenation gave
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a mixture of Z-alkene, E-alkene, and alkane (over-reduced product) in a 98:2:0 ratio. Al-
though an excellent Z/E ratio was displayed, the challenges are still functional group
compatibility, chemoselectivity, stereoselectivity, and the control of over reduction. There-
fore, it is desirable to develop an alternative method for efficient transfer hydrogenation.
On the other hand, NHC ligands were recently found to play an important role in the
synthesis of metallic nanoparticles (MNPs). Pd nanoparticles (Pd NPs) were formed by
the decomposition of Pd–NHC bonds in a Pd/NHC catalytic system or by the reduction
of the Pd precursor, especially in the presence of aliphatic amines such as triethylamine.
The NHC-ligated Pd NPs present an efficient catalytic activity in the catalysis [44–48]. We
recently reported an in situ-generated bis-NHC/Pd(OAc)2 catalytic system, which was
derived from bis-benzimidazolium salt and Pd(OAc)2, as a catalyst for the Suzuki–Miyaura
reaction, Mizoroki–Heck reaction, and Friedel-Crafts alkylation reaction of indole and
nitrostyrene in good to excellent yields (Figure 1a) [49,50]. Motivated by these results
we continued our efforts to develop an efficient bis-NHC–Ag/Pd(OAc)2 catalytic sys-
tem to catalyze chemoselective transfer hydrogenation with TEAF as a hydrogen donor
(Figure 1b).
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2. Results

A testing protocol was examined by using trans-cinnamyl alcohol, formic acid, triethy-
lamine, and a bis-NHC–Ag/Pd(OAc)2 catalytic system at 80 ◦C. To screen the optimized
reaction conditions fast, various factors such as Pd loading, equivalents of TEAF, and sol-
vents were evaluated (Table 1). Preliminary results illustrated that N,N-dimethylformamide
(DMF) was a suitable solvent for transfer hydrogenation (entry 2 vs. 4). trans-cinnamyl
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alcohol was hydrogenated completely to 3-phenylpropan-1-ol in the presence of 1.0 mol %
catalyst loading and a 4-fold excess of HCO2H/NEt3 in DMF (entry 5). A dramatic drop in
conversion was obtained in the absence of bis-NHC–Ag complex (8% conversion, entry 6),
which means the bis-NHC–Ag/Pd(OAc)2 catalytic system raises the reactivity of the Pd
metal center on the catalytic hydrogenation reaction (entry 5 vs. entry 6).

Table 1. Bis-NHC–Ag/Pd(OAc)2 catalytic system catalyzed transfer hydrogenation reaction of
trans-cinnamyl alcohol 1.

Entry bis-NHC–Ag/Pd (mol %) TEAF (equiv) Solvent Conv. (%) 2

1 0.5 3.0 DMF 44
2 1.0 5.0 tBuOH 67
3 2.0 7.0 PhMe 42
4 1.0 3.0 DMF 74
5 1.0 4.0 DMF >99

6 3 1.0 4.0 DMF 8
1 Reaction conditions: trans-cinnamyl alcohol (1.0 mmol), Pd(OAc)2 (mol % as indicated), bis-NHC–Ag (0.5 equiv
to Pd), and TEAF (equiv as indicated) at 80 ◦C in dry solvent (5 mL) for 24 h under a N2 atmosphere. 2 Determined
by 400 MHz 1H NMR (in Supplementary Materials). 3 The reaction was carried out in the absence of bis-NHC–
Ag complex.

After screening the optimal reaction conditions, the reduction of various functionalized
substrates was studied. As illustrated in Table 2, quantitative conversions were observed
in the reduction of olefins containing alcohol, acid, and ester functionalities (entries 1–3).
Notably, the reduction of 1,2-diphenylacetylene 3a produced (Z)-4a as the only product,
without the formation of the over-reduced product, 1,2-diphenylethane and (E)-4a (entry
4, 85%). The reduction of nitrobenzene catalyzed by the bis-NHC–Ag/Pd(OAc)2 catalytic
system gave aniline 6a in a 99% isolated yield (entry 5). With a substrate containing
two active functional groups, 4-nitroacetophenone 6b, the catalytic system was found
to selectively reduce the nitro group, while no reduction product of the carbonyl group
was observed on benzene ring 6b (entry 6). This demonstrates that the reduction rate
of the nitro group is faster than that of ketone. In addition, aldehyde-bearing strong
electron-withdrawing group CF3, which could afford the corresponding alcohol 8a in
a 92% yield (entry 7), indicates that our reaction works for both electron-donating and
electron-withdrawing substituents.

Recently, numerous studies of Pd-catalyzed transfer hydrogenation using H2O as the
hydrogen agent and the solvent have been reported [51–59]. We turned our attention to the
possibility that the transfer hydrogenation of internal/terminal alkynes may also continue
in the presence of the bis-NHC–Ag/Pd(OAc)2 catalytic system in aqueous media under air.
We began to develop a general method for the transfer hydrogenation of internal alkynes
by using 1,2-diphenylacetylene 3a and formic acid (4 equiv) and triethylamine (4 equiv)
as the model substrates. As described in Table 3, 3a was reduced to semihydrogenation
product 4a with a Z/E ratio of 94/6 in DMF/H2O (9/1) mixed solvent (entry 1). The
over-reduced product 9a was fully inhibited. When we continued to increase the amount
of water, the conversion yields decreased because of the low solubility of 3a, but (Z)-4a
was still the major product (entries 1–4). Notably, the ratio of (Z)-4a and (E)-4a decreased
slightly as the amount of water decreased (entries 1–4). cis-Stilbene 8a was afforded as
a major product regardless of the proportion of water. This observation is contrary to
recent reports, in which trans-alkenes were found to be a major product through in situ
Z→E isomerization in the Pd-catalyzed semihydrogenation of internal alkynes in aqueous
solution [52,53,56–58]. In addition, K2CO3 and K3PO4·H2O were not the best choices as
the base, indicating that the basicity of the base might affect the reaction rate (entries 2, 5,
and 6) [60]. With Pd(II) sources, 3a was transformed to olefin efficiently, but Pd(OAc)2 was
the best choice (entries 2, 7–9).
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Table 2. Transfer hydrogenation catalyzed by bis-NHC–Ag/Pd(OAc)2 catalytic system 1.

Entry Substrate Product Yield (%) 2

1
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the possibility that the transfer hydrogenation of internal/terminal alkynes may also con-
tinue in the presence of the bis-NHC–Ag/Pd(OAc)2 catalytic system in aqueous media un-
der air. We began to develop a general method for the transfer hydrogenation of internal 
alkynes by using 1,2-diphenylacetylene 3a and formic acid (4 equiv) and triethylamine (4 
equiv) as the model substrates. As described in Table 3, 3a was reduced to semihydro-
genation product 4a with a Z/E ratio of 94/6 in DMF/H2O (9/1) mixed solvent (entry 1). 
The over-reduced product 9a was fully inhibited. When we continued to increase the 
amount of water, the conversion yields decreased because of the low solubility of 3a, but 
(Z)-4a was still the major product (entries 1–4). Notably, the ratio of (Z)-4a and (E)-4a de-
creased slightly as the amount of water decreased (entries 1–4). cis-Stilbene 8a was af-
forded as a major product regardless of the proportion of water. This observation is con-
trary to recent reports, in which trans-alkenes were found to be a major product through 
in situ Z→E isomerization in the Pd-catalyzed semihydrogenation of internal alkynes in 
aqueous solution [52,53,56–58]. In addition, K2CO3 and K3PO4·H2O were not the best 
choices as the base, indicating that the basicity of the base might affect the reaction rate 
(entries 2, 5, and 6) [60]. With Pd(II) sources, 3a was transformed to olefin efficiently, but 
Pd(OAc)2 was the best choice (entries 2, 7–9). 
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The over-reduced product 9a was fully inhibited. When we continued to increase the 
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forded as a major product regardless of the proportion of water. This observation is con-
trary to recent reports, in which trans-alkenes were found to be a major product through 
in situ Z→E isomerization in the Pd-catalyzed semihydrogenation of internal alkynes in 
aqueous solution [52,53,56–58]. In addition, K2CO3 and K3PO4·H2O were not the best 
choices as the base, indicating that the basicity of the base might affect the reaction rate 
(entries 2, 5, and 6) [60]. With Pd(II) sources, 3a was transformed to olefin efficiently, but 
Pd(OAc)2 was the best choice (entries 2, 7–9). 
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1 Reaction conditions: trans-cinnamyl alcohol (1.0 mmol), Pd(OAc)2 (1 mol %), bis-NHC–Ag (0.5 mol %), and
TEAF (4 equiv) at 80 ◦C in dry DMF (5 mL) for 24 h under a N2 atmosphere. 2 Isolated yield.

Based on this observation, transfer hydrogenation of internal alkynes 3 was subse-
quently investigated in aqueous media under air. The results summarized in Table 4
showed that various internal alkynes were readily reduced to the corresponding alkenes in
moderate to excellent conversion yields. For 1,2-diphenylacetlene 3a as the substrate, the
use of a DMF/H2O (5/5) solvent system at 80 ◦C (condition A) produced a 100% conversion
yield confirmed by GC (Gas Chromatography) with a Z/E ratio of 93/7 (entry 1). On the
other hand, the use of a DMF/H2O (9/1) solvent system at 80 ◦C (condition B) generated a
100% conversion GC yield and 94/6 Z/E ratio (entry 2). Surprisingly, the corresponding
product 4b was formed in a 97% isolated yield with a Z/E ratio of 30/70 under condition B
(entry 3) when using heteroaromatic alkynes 3b as a substrate. That might be the reason
why the stereoselectivity of the product is affected by the pyridinyl group, the coordi-
native moiety [61,62]. It should be mentioned that 3c was successfully reduced to (Z)-4c
with excellent stereoselectivity under condition B (entry 5). For the semihydrogenation
of conjugated alkynes bearing ester 3d, good performance was demonstrated with a Z/E
ratio of 95/5 under condition B (entry 6). In particular, only (Z)-alkenylamide, (Z)-4e, was
prepared in an 83% isolated yield for 1 h at 60 ◦C (entry 8) and over-reduced amide 9e
was the only product in a quantitative yield for 2 h at 80 ◦C (entry 7). This illustrated that
the excellent chemoselectivity of the reduction of 3e can be controlled by prolonging the
reaction time and conditions.



Catalysts 2021, 11, 8 5 of 13

Table 3. Bis-NHC–Ag/Pd(OAc)2 catalytic system catalyzed transfer hydrogenation 1.
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Similarly, the catalytic system was efficiently used to employ in the reduction of
various terminal alkynes 10 (Table 5). The catalytic system was effective in the hydrogena-
tion of phenylacetylene under condition B and styrene was observed with an 89% GC
yield (entry 1). On the contrary, ethylbenzene 12a was obtained when the reaction time
was spread to 5 h (entry 2). It was also noted that the terminal-alkyne-bearing electron-
donating group on the benzene ring, i.e., 10b, 10c, and 10d, was easily reduced to the
corresponding olefins within 30 min with conversion yields of 82–92% (entries 3 and 5).
Completely reduced products, saturated alkanes 12, were achieved by extending reaction
time to 3 h and moderate GC yields in the range 40–68% were obtained (entries 4 and 6).
Notably, 4-nitrophenylacetylene, 10d, shows that the catalytic system displays excellent
chemoselectivity between the alkyne and nitro groups (entry 7). Interestingly, the com-
plete reduction product, 4-ethylaniline 12d, was generated in an 80% isolated yield when
increasing reaction time to 2 h (entry 8). In addition, the catalytic system also tolerates well
functionalities such as alcohol, methoxy, and nitro groups. Heteroaryl alkyne, 10e, was
reduced to the corresponding olefin in a 72% GC yield (entry 9). In addition to aryl alkynes,
the aliphatic alkynes, 10f and 10g, were also investigated in an aqueous medium under air.
The semi-reduction products, 11f and 11g, were obtained in 99% and 78% isolated yields
(entries 10 and 12), while the over-reduction products, 12f and 12g, were given in 97% and
72% isolated yields, respectively (entries 11 and 13).

Table 5. Chemoselectivity studies for bis-NHC–Ag/Pd(OAc)2 catalytic system catalyzed transfer
hydrogenation of terminal alkynes in aqueous media 1.

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 14 

 

under air. The semi-reduction products, 11f and 11g, were obtained in 99% and 78% iso-
lated yields (entries 10 and 12), while the over-reduction products, 12f and 12g, were given 
in 97% and 72% isolated yields, respectively (entries 11 and 13). 

Table 5. Chemoselectivity studies for bis-NHC–Ag/Pd(OAc)2 catalytic system catalyzed transfer 
hydrogenation of terminal alkynes in aqueous media 1. 

 

Entry Substrate Time (h) 11:12 2 GC yield (%) 3 
1 

10a  

3 100:0 89 

2 
5 0:100 34 

3 

10b

MeO

 

0.5 100:0 92 

4 
3 0:100 63 

5 

10c

Me

 

0.5 97:3 88 

6 
3 0:100 40 

7 

10d

O2N

 

1 100:0 83 4 

8 2 0:100 5 80 4 

9 

N

10e  

3 100:0 72 

10 

10f
8

 

2 100:0 99 4 

11 24 0:100 97 4 

12 6 24 100:0 78 4 

Entry Substrate Time (h) 11:12 2 GC Yield (%) 3

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 14 

 

under air. The semi-reduction products, 11f and 11g, were obtained in 99% and 78% iso-
lated yields (entries 10 and 12), while the over-reduction products, 12f and 12g, were given 
in 97% and 72% isolated yields, respectively (entries 11 and 13). 

Table 5. Chemoselectivity studies for bis-NHC–Ag/Pd(OAc)2 catalytic system catalyzed transfer 
hydrogenation of terminal alkynes in aqueous media 1. 

 

Entry Substrate Time (h) 11:12 2 GC yield (%) 3 
1 

10a  

3 100:0 89 

2 
5 0:100 34 

3 

10b

MeO

 

0.5 100:0 92 

4 
3 0:100 63 

5 

10c

Me

 

0.5 97:3 88 

6 
3 0:100 40 

7 

10d

O2N

 

1 100:0 83 4 

8 2 0:100 5 80 4 

9 

N

10e  

3 100:0 72 

10 

10f
8

 

2 100:0 99 4 

11 24 0:100 97 4 

12 6 24 100:0 78 4 

1 3 100:0 89

2 5 0:100 34

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 14 

 

under air. The semi-reduction products, 11f and 11g, were obtained in 99% and 78% iso-
lated yields (entries 10 and 12), while the over-reduction products, 12f and 12g, were given 
in 97% and 72% isolated yields, respectively (entries 11 and 13). 

Table 5. Chemoselectivity studies for bis-NHC–Ag/Pd(OAc)2 catalytic system catalyzed transfer 
hydrogenation of terminal alkynes in aqueous media 1. 

 

Entry Substrate Time (h) 11:12 2 GC yield (%) 3 
1 

10a  

3 100:0 89 

2 
5 0:100 34 

3 

10b

MeO

 

0.5 100:0 92 

4 
3 0:100 63 

5 

10c

Me

 

0.5 97:3 88 

6 
3 0:100 40 

7 

10d

O2N

 

1 100:0 83 4 

8 2 0:100 5 80 4 

9 

N

10e  

3 100:0 72 

10 

10f
8

 

2 100:0 99 4 

11 24 0:100 97 4 

12 6 24 100:0 78 4 

3 0.5 100:0 92

4 3 0:100 63

5

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 14 

 

under air. The semi-reduction products, 11f and 11g, were obtained in 99% and 78% iso-
lated yields (entries 10 and 12), while the over-reduction products, 12f and 12g, were given 
in 97% and 72% isolated yields, respectively (entries 11 and 13). 

Table 5. Chemoselectivity studies for bis-NHC–Ag/Pd(OAc)2 catalytic system catalyzed transfer 
hydrogenation of terminal alkynes in aqueous media 1. 

 

Entry Substrate Time (h) 11:12 2 GC yield (%) 3 
1 

10a  

3 100:0 89 

2 
5 0:100 34 

3 

10b

MeO

 

0.5 100:0 92 

4 
3 0:100 63 

5 

10c

Me

 

0.5 97:3 88 

6 
3 0:100 40 

7 

10d

O2N

 

1 100:0 83 4 

8 2 0:100 5 80 4 

9 

N

10e  

3 100:0 72 

10 

10f
8

 

2 100:0 99 4 

11 24 0:100 97 4 

12 6 24 100:0 78 4 

0.5 97:3 88

6 3 0:100 40

7

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 14 

 

under air. The semi-reduction products, 11f and 11g, were obtained in 99% and 78% iso-
lated yields (entries 10 and 12), while the over-reduction products, 12f and 12g, were given 
in 97% and 72% isolated yields, respectively (entries 11 and 13). 

Table 5. Chemoselectivity studies for bis-NHC–Ag/Pd(OAc)2 catalytic system catalyzed transfer 
hydrogenation of terminal alkynes in aqueous media 1. 

 

Entry Substrate Time (h) 11:12 2 GC yield (%) 3 
1 

10a  

3 100:0 89 

2 
5 0:100 34 

3 

10b

MeO

 

0.5 100:0 92 

4 
3 0:100 63 

5 

10c

Me

 

0.5 97:3 88 

6 
3 0:100 40 

7 

10d

O2N

 

1 100:0 83 4 

8 2 0:100 5 80 4 

9 

N

10e  

3 100:0 72 

10 

10f
8

 

2 100:0 99 4 

11 24 0:100 97 4 

12 6 24 100:0 78 4 

1 100:0 83 4

8 2 0:100 5 80 4

9

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 14 

 

under air. The semi-reduction products, 11f and 11g, were obtained in 99% and 78% iso-
lated yields (entries 10 and 12), while the over-reduction products, 12f and 12g, were given 
in 97% and 72% isolated yields, respectively (entries 11 and 13). 

Table 5. Chemoselectivity studies for bis-NHC–Ag/Pd(OAc)2 catalytic system catalyzed transfer 
hydrogenation of terminal alkynes in aqueous media 1. 

 

Entry Substrate Time (h) 11:12 2 GC yield (%) 3 
1 

10a  

3 100:0 89 

2 
5 0:100 34 

3 

10b

MeO

 

0.5 100:0 92 

4 
3 0:100 63 

5 

10c

Me

 

0.5 97:3 88 

6 
3 0:100 40 

7 

10d

O2N

 

1 100:0 83 4 

8 2 0:100 5 80 4 

9 

N

10e  

3 100:0 72 

10 

10f
8

 

2 100:0 99 4 

11 24 0:100 97 4 

12 6 24 100:0 78 4 

3 100:0 72



Catalysts 2021, 11, 8 7 of 13

Table 5. Cont.

Entry Substrate Time (h) 11:12 2 GC Yield (%) 3
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3. Materials and Methods

3.1. General Methods

Unless otherwise noted, commercially available materials, which were received from
Aldrich and Acros, were used without further purification. Anhydrous solvent, DMF,
was received from Aldrich. Acetonitrile was obtained by distillation over calcium hydride.
Toluene and t-BuOH were distilled and used after treatment with sodium. Reactions were
monitored with pre-coated silica gel 60 (F-254) plates. The purification of products was per-
formed by column chromatography (silica gel, 0.040–0.063 µm) eluting with n-hexane/ethyl
acetate. 1H and 13C NMR spectra, found in the Supplementary Materials, were analyzed
with an Agilent Mercury 400 spectrometer. J-values are given in Hz. Chemical shifts (δ)
were recorded from CDCl3 (δ = 7.26 ppm) in the 1H NMR spectra and the central peak
of CDCl3 (δ = 77.0 ppm) in the 13C NMR spectra. GC-FID (Gas Chromatography-flame
ionization detector) was analyzed on a Shimadzu GC-2014 equipped with a capillary
column (SPB®-5, 60 m × 0.25 mm × 0.25 µm). The conversion yields, GC-yield, and ratios
were determined by using undecane as an internal standard. High-resolution mass spectra
were obtained with a Finnigan/Thermo Quest MAT 95XL mass spectrometer using either
the electron impact (EI) or the electrospray ionization (ESI) method. The synthesis of the
bis-NHC–Ag complex was carried out according to our previous report [50].

3.2. Description of the Screening Experiments
3.2.1. General Procedures for Transfer Hydrogenation Reactions in Organic Solvent
under N2

A Schlenk tube was charged with bis-NHC–Ag complex (0.5 mol %), Pd(OAc)2
(1 mol %), NEt3 (4 mmol), HCO2H (4 mmol), substrate (1 mmol), and DMF (5 mL). After
stirring at 80 ◦C for 24 h under N2, 5 mL of brine were added to the reaction mixture. The
aqueous phase was extracted with EtOAc (5 mL × 3). The combined organic phases were
dried (Na2SO4) and filtered. The filtrate was concentrated under reduced pressure and the
residue was purified by column chromatography.

3.2.2. General Procedures for Transfer Hydrogenation Reactions in Aqueous Media
under Air

A Schlenk tube was charged with bis-NHC–Ag complex (0.5 mol %), Pd(OAc)2
(1 mol %), NEt3 (4 mmol), HCO2H (4 mmol), substrate 3 (1 mmol), and DMF/H2O (5 mL).
After stirring at 80 ◦C for 24 h under air, 5 mL of brine were added to the resulting solution.
After extracting the aqueous layer with EtOAc (5 mL × 3), the combined organic layers
were dried (Na2SO4) and filtered. The filtrate was concentrated under reduced pressure
and the residue was purified by column chromatography.
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3.3. Analytical Data of the Reduction Products
3.3.1. Transfer Hydrogenation Reactions in Organic Solvent under N2

3-Phenylpropanol (2a) (Table 2, entry 1) [63]. 1H NMR (CDCl3, 400 MHz): δ 7.31−7.18
(m, 5H), 3.68 (t, J = 7.6 Hz, 2H), 2.72 (t, J = 7.6 Hz, 2H), 1.92 (quintet, J = 7.6 Hz, 2H); 13C
NMR (CDCl3, 100 MHz): δ 141.7, 128.3, 128.2, 125.7, 61.8, 34.0, 31.9.

3-Phenylpropanoic acid (2b) (Table 2, entry 2) [64]. 1H NMR (CDCl3, 400 MHz): δ
7.32−7.21 (m, 5H), 2.97 (t, J = 7.6 Hz, 2H), 2.69 (t, J = 7.6 Hz, 2H); 13C NMR (CDCl3,
100 MHz): δ 179.5, 140.1, 128.5, 128.2, 126.3, 35.6, 30.5.

Methyl 3-phenylpropanate (2c) (Table 2, entry 3) [64]. 1H NMR (CDCl3, 400 MHz):
δ 7.31−7.27 (m, 2H), 7.33−7.19 (m, 3H), 3.67 (s, 3H), 2.95 (t, J = 8.0 Hz, 2H), 2.64 (t,
J = 8.0 Hz, 2H).

cis-Stilbene (4a) (Table 2, entry 4) [36]. 1H NMR (CDCl3, 400 MHz): δ 7.29–7.20 (m,
10H), 6.62 (s, 2H); 13C NMR (CDCl3, 100 MHz): δ 137.2, 130.2, 128.9, 128.2, 127.1.

Aniline (6a) (Table 2, entry 5) [65]. 1H NMR (CDCl3, 400 MHz): δ 7.17 (t, J = 7.6 Hz,
2H), 6.77 (t, J = 7.6 Hz, 1H), 6.70 (d, J = 7.6 Hz, 2H), 3.65 (br, 2H); 13C NMR (CDCl3,
100 MHz): δ 146.3, 129.1, 118.3, 114.9.

1-(4-Aminophenyl)ethan-1one (6b) (Table 2, entry 6) [65]. 1H NMR (CDCl3, 400 MHz):
δ 7.81 (d, J = 8.4 Hz, 2H), 6.65 (d, J = 8.4 Hz, 2H), 4.11 (br, 2H), 2.51 (s, 3H); 13C NMR
(CDCl3, 100 MHz): δ 186.5, 151.1, 130.8, 127.7, 113.6, 26.1.

(4-(Trifluoromethyl)phenyl)methanol (8a) (Table 2, entry 7) [63]. 1H NMR (CDCl3,
400 MHz): δ 1H NMR (CDCl3, 400 MHz): δ 7.51 (d, J = 7.6 Hz, 2H), 7.32 (d, J = 7.6 Hz,
2H), 4.58 (s, 2H), 3.99 (bs, 1H, OH); 13C NMR (CDCl3, 100 MHz): δ 144.6, 129.4 (q,
JC−F = 32.1 Hz), 126.7, 125.2, 124.1 (q, JC−F = 270.5 Hz), 63.8.

3.3.2. Transfer Hydrogenation Reactions in Aqueous Media under Air

(E)-2-Styrylpyridine (4b) (Table 4, entry 3) [62]. 1H NMR (CDCl3, 400 MHz): δ 8.61
(d, J = 4.8 Hz, 1H), 7.69−7.64 (m, 2H), 7.64 (d, J = 16.0 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H),
7.43−7.36 (m, 3H), 7.30 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 16.0 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H);
13C NMR (CDCl3, 100 MHz): 145.7, 128.4, 127.4, 125.3, 70.3, 25.1.

The mixture of 3-phenyl-2-propyn-1-ol (3c) and (Z)-cinnamyl alcohol (4c) (Table 4,
entry 4) [66]. The ratio (3c/4c = 84/16) was determined by 1H NMR signals at 4.50 ppm
(alkyne protons of 3c) and 4.45 ppm (olefin protons of 4c). (Z)-4c: 1H NMR (CDCl3,
400 MHz): δ 7.37−7.20 (m, 5H), 6.58 (d, J = 11.6 Hz, 1H), 5.88 (dt, J = 11.6, 6.0 Hz, 1H), 4.45
(d, J = 6.0 Hz, 2H), 1.50 (br, 1H).

The mixture of (Z/E)-Methyl cinnamate (Z-4d and E-4d) (Table 4, entry 6) [67]. The
ratio (Z-4d/E-4d = 95/5) was determined by 1H NMR signals at 6.46 ppm (E-4d) and
5.96 ppm (Z-4d). (Z)-4d: 1H NMR (CDCl3, 400 MHz): δ 7.59 (d, J = 7.6 Hz, 2H), 7.40−7.37
(m, 1H), 7.34 (t, J = 7.6 Hz, 2H), 6.96 (d, J = 12.4 Hz, 1H), 5.96 (d, J = 12.4 Hz, 1H), 3.71
(s, 3H).

(Z)-3-Phenylacrylamide (4e) (Table 4, entry 8) [57]. 1H NMR (CDCl3, 400 MHz): δ 7.48
(d, J = 6.8 Hz, 2H), 7.38−7.32 (m, 3H), 6.86 (d, J = 12.4 Hz, 1H), 5.99 (d, J = 12.4 Hz, 1H),
5.47 (br, 2H); 13C NMR (CDCl3, 100 MHz): δ 169.1, 137.5, 134.8, 128.9, 128.7, 128.5, 123.8.

Styrene (11a) (Table 5, entry 1) [68]. 1H NMR (CDCl3, 400 MHz): δ 7.41 (d, J = 6.8 Hz,
2H), 7.32 (t, J = 6.8 Hz, 2H), 7.25 (t, J = 6.8 Hz, 1H), 6.72 (dd, J = 17.6, 10.8 Hz, 1H), 5.75 (d,
J = 17.6 Hz, 1H), 5.24 (d, J = 10.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz): δ 137.5, 136.8, 128.5,
127.8, 126.2, 113.8.

Ethylbenzene (12a) (Table 5, entry 2) [68]. 1H NMR (CDCl3, 400 MHz): δ 7.29 (t,
J = 7.2 Hz, 2H), 7.21 (d, J = 7.2 Hz, 2H), 7.18 (t, J = 7.2 Hz, 1H), 2.66 (q, J = 7.6 Hz, 2H), 1.25
(t, J = 7.6 Hz, 3H); 13C NMR (CDCl3, 100 MHz): δ 144.2, 128.3, 127.8, 125.6, 28.9, 15.6.

4-Methoxystyrene (11b) (Table 5, entry 3) [69]. 1H NMR (CDCl3, 400 MHz): δ 7.35 (d,
J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 6.67 (dd, J = 17.6, 11.2 Hz, 1H), 5.61 (d, J = 17.6, Hz,
1H), 5.13 (d, J = 11.2 Hz, 1H), 3.81 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ 159.3, 136.2, 130.4,
127.4, 113.9, 111.6, 53.3.
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4-Ethylanisole (12b) (Table 5, entry 4) [68]. 1H NMR (CDCl3, 400 MHz): δ 7.12 (d,
J = 7.6 Hz, 2H), 6.84 (d, J = 7.6 Hz, 2H), 3.80 (s, 3H), 2.60 (q, J = 7.6 Hz, 2H), 1.22 (t, J = 7.6 Hz,
3H); 13C NMR (CDCl3, 100 MHz): δ 157.6, 136.4, 128.7, 113.7, 55.3, 27.9, 15.9.

4-Methylstyrene (11c) (Table 5, entry 5) [69]. 1H NMR (CDCl3, 400 MHz): δ 7.32 (d,
J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.70 (dd, J = 17.6, 10.8 Hz, 1H), 5.76 (d, J = 17.6 Hz,
1H), 5.19 (d, J = 10.8 Hz, 1H), 2.35 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ 137.6, 136.7, 134.8,
129.2, 126.1, 112.7, 21.2.

4-Ethylaniline (12d) (Table 5, entry 8) [70]. 1H NMR (CDCl3, 400 MHz): δ 6.99 (d,
J = 8.4 Hz, 2H), 6.63 (d, J = 8.4 Hz, 2H), 3.55 (br, 2H), 2.54 (q, J = 7.6 Hz, 2H), 1.19 (t,
J = 7.6 Hz, 3H).

2-Vinylpyridine (11e) (Table 5, entry 9) [71]. 1H NMR (CDCl3, 400 MHz): δ 8.57 (d,
J = 4.0 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 6.82
(dd, J = 17.2, 10.8 Hz, 1H), 6.20 (d, J = 17.2 Hz, 1H) 5.48 (d, J = 10.8 Hz, 1H); 13C NMR
(CDCl3, 100 MHz): δ 155.7, 149.4, 136.9, 136.4, 122.4, 121.1, 118.1.

Dodec-1-ene (11f) (Table 5, entry 10) [72]. 1H NMR (CDCl3, 400 MHz): δ 5.82 (m, 1H),
4.99 (d, J = 17.2 Hz, 1H), 4.93 (d, J = 9.6 Hz, 1H), 2.05−2.01 (m, 2H), 1.39−1.26 (m, 16H),
0.88 (s, J = 6.8 Hz, 3H); 13C NMR (CDCl3, 100 MHz): δ 139.7, 114.1, 33.8, 31.9, 29.6, 29.5,
29.5, 29.2, 29.0, 22.7, 14.1.

Dodecane (12f) (Table 5, entry 11) [73]. 1H NMR (CDCl3, 400 MHz): δ 1.36–1.20 (m,
20H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (CDCl3, 100 MHz): δ 31.9, 29.7, 29.4, 22.7, 14.1.

Undec-10-en-1-ol (11g) (Table 5, entry 12) [74]. 1H NMR (CDCl3, 400 MHz): δ 5.81
(ddd, J = 17.2, 10.4, 6.8 Hz, 1H), 4.99 (dd, J = 17.2, 0.8 Hz, 1H), 4.93 (dd, J = 10.4, 0.8 Hz,
1H), 3.64 (t, J = 6.8 Hz, 2H), 2.04 (dd, J = 13.6, 6.8 Hz, 2H), 1.69−1.51 (m, 2H), 1.50−1.18 (m,
13H); 13C NMR (CDCl3, 100 MHz): δ 139.2, 114.1, 63.1, 33.8, 32.8, 29.5, 29.4, 29.1, 28.9, 25.7.

Undecan-1-ol (12g) (Table 5, entry 13) [72]. 1H NMR (CDCl3, 400 MHz): δ 3.64 (t,
J = 6.8 Hz, 2H), 1.51–1.62 (m, 2H), 1.40–1.19 (m, 16H), 0.88 (t, J = 6.8 Hz, 3H); 13C NMR
(CDCl3, 100 MHz): δ 63.0, 32.7, 31.9, 29.6, 29.4, 29.3, 25.7, 22.6, 14.1.

4. Conclusions

In summary, we have developed a practical and efficient in-situ-generated bis-NHC–Pd
catalytic system which was applied in the transfer hydrogenation of various functionalized
arenes in good to high yields with excellent chemoselectivity. The catalytic system was also
applied in the semihydrogenation of internal alkynes to provide outstanding stereoselectiv-
ity. The chemoselectivity was shown in the reduction of terminal alkynes by controlling the
reaction time and conditions. The simplicity of the procedure is outlined by the application
of the commercially available triethylammonium formate as a hydrogen source under mild
and non-inert conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-434
4/11/1/8/s1, Figure S1: 1H NMR spectrum of 1-(4-methoxyphenyl)-1H-benzo[d]imidazole in CDCl3,
Figure S2: 13C NMR spectrum of 1-(4-methoxyphenyl)-1H-benzo[d]imidazole in CDCl3, Figure S3:
1H NMR spectrum of 5,5′-(pentane-1,5-diyl)bis(1-(4-methoxyphenyl)-1H-benzo[d]imidazol-3-ium)
bromide in CD3OD, Figure S4: 13C NMR spectrum of 5,5′-(pentane-1,5-diyl)bis(1-(4-methoxyphenyl)-
1H-benzo[d]imidazol-3-ium) bromide in CD3OD, Figure S5: 1H NMR spectrum of bis-NHC–Ag
complex in DMSO-d6, Figure S6: 13C NMR spectrum of bis-NHC–Ag complex in DMSO-d6, Figure S7:
1H NMR spectrum of compound 2a in CDCl3, Figure S8: 13C NMR spectrum of compound 2a in
CDCl3, Figure S9: 1H NMR spectrum of compound 2b in CDCl3, Figure S10: 13C NMR spectrum
of compound 2b in CDCl3, Figure S11: 1H NMR spectrum of compound 2c in CDCl3, Figure S12:
1H NMR spectrum of compound (Z)-4a in CDCl3, Figure S13: 13C NMR spectrum of compound
(Z)-4a in CDCl3, Figure S14: 1H NMR spectrum of compound 6a in CDCl3, Figure S15: 13C NMR
spectrum of compound 6a in CDCl3, Figure S16: 1H NMR spectrum of compound 6b in CDCl3,
Figure S17: 13C NMR spectrum of compound 6b in CDCl3, Figure S18: 1H NMR spectrum of
compound 8a in CDCl3, Figure S19: 13C NMR spectrum of compound 8a in CDCl3, Figure S20: 1H
NMR spectrum of compound (E)-4b in CDCl3, Figure S21: 13C NMR spectrum of compound (E)-4b
in CDCl3, Figure S22: 1H NMR spectrum of the mixture of (Z)-4c and 3c in CDCl3, Figure S23: 1H
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NMR spectrum of the mixture of (Z)-4d, (E)-4d, and 9d in CDCl3, Figure S24: 1H NMR spectrum
of the mixture of (E)-4e and (Z)-4e in CDCl3, Figure S25: 1H NMR spectrum of compound (Z)-4f in
CDCl3, Figure S26: 13C NMR spectrum of compound (Z)-4f in CDCl3, Figure S27: 1H NMR spectrum
of compound 11a in CDCl3, Figure S28: 13C NMR spectrum of compound 11a in CDCl3, Figure S29:
1H NMR spectrum of compound 12a in CDCl3, Figure S30: 13C NMR spectrum of compound 12a in
CDCl3, Figure S31: 1H NMR spectrum of compound 11b in CDCl3, Figure S32: 13C NMR spectrum
of compound 11b in CDCl3, Figure S33: 1H NMR spectrum of compound 12b in CDCl3, Figure S34:
13C NMR spectrum of compound 12b in CDCl3, Figure S35: 1H NMR spectrum of compound 11c in
CDCl3, Figure S36: 13C NMR spectrum of compound 11c in CDCl3, Figure S37: 1H NMR spectrum
of compound 12d in CDCl3, Figure S38: 1H NMR spectrum of compound 11e in CDCl3, Figure S39:
13C NMR spectrum of compound 11e in CDCl3, Figure S40: 1H NMR spectrum of compound 11f in
CDCl3, Figure S41: 13C NMR spectrum of compound 11f in CDCl3, Figure S42: 1H NMR spectrum
of compound 12f in CDCl3, Figure S43: 13C NMR spectrum of compound 12f in CDCl3, Figure S44:
1H NMR spectrum of compound 11g in CDCl3, Figure S45: 13C NMR spectrum of compound 11g in
CDCl3, Figure S46: 1H NMR spectrum of compound 12g in CDCl3, Figure S47: 13C NMR spectrum
of compound 12g in CDCl3.
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