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Abstract: In this work, zinc oxide (ZnO) nanoparticles were modified in a circulating fluidized bed
through argon and hydrogen (Ar–H) alternating-current (AC) arc plasma, which shows the character-
istics of nonequilibrium and equilibrium plasma at the same time. In addition, a circulating fluidized
bed with two plasma jets was used for cyclic processing. The catalytic degradation performance on
Rhodamine B (Rh B) by Ar–H plasma-modified ZnO and pure ZnO was tested in aqueous media to
identify the significant role of hydrogen atoms in Rh B degradation mechanism. Meanwhile, the effects
of plasma treatment time on the morphology, size and photocatalytic performance of ZnO were also
investigated. The results demonstrated that ZnO after 120-min treatment by Ar–H plasma showed Rh
B photocatalytic degradation rate of 20 times greater than that of pure ZnO and the reaction follows
a first kinetics for the Rh B degradation process. Furthermore, the photocatalyst cycle experiment
curve exhibited that the modified ZnO still displays optimum photocatalytic activity after five cycles
of experiment. The improvement of photocatalytic activity and luminescence performance attributes
to the significant increase in the surface area, and the introduction of hydrogen atoms on the surface
also could enhance the time of carrier existence where the hydrogen atoms act as shallow donors.

Keywords: plasma; zinc oxide; photocatalysis; nanomaterials

1. Introduction

The world environmental problems today are excessive pollution, waste of resources
and energy shortages. Semiconductor photocatalysis on waste or pollution treatments is a
promising environment-friendly and effective method [1]. This technology makes full use
of the semiconductor photocatalysts through photoelectric chemistry to degrade organic
pollutant molecules based on the efficient use of solar energy [2,3].

Among various semiconductors, zinc oxide (ZnO) with the wide band gap (3.37 eV) [4],
large exciton binding energy (60 meV) [5], good photoelectric properties, nontoxicity, abun-
dance and environmental stability [6,7] performs much better than other semiconductors.
Therefore, ZnO has been widely researched for various applications including photo-
catalysts [8–10], chemical sensors [11], transparent electrodes [12], solar cells [13] and
luminescent materials [14,15].

In the past decades, the application of ZnO in the field of photocatalysis has gradually
become known since the Honda-Fujishima effect was reported in 1970s. In the photocat-
alytic process, ZnO nanoparticles are not easy to react with other substances and resistant
to high temperatures. At the same time, when ZnO is irradiated by ultraviolet light, the
electrons obtain light energy to transit from the valence band to the conduction band,
and generate electron–hole pairs. Simultaneously, some electrons return to the valence
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band in the form of heat and light emission, and other carriers move on the ZnO sur-
face. Among them, electrons have strong reducing ability, and photogenerated holes have
strong oxidizing properties. They further react with pollutants to achieve photocatalytic
effects [16].

However, ZnO nanoparticles as photocatalyst also suffers several problems: (i) The
bandgap of ZnO is too wide for electron transition, which makes it only respond to the
ultraviolet region of sunlight [8], and the ultraviolet region only occupies a ratio of 5–7%
sunlight. To expand the region of light response, modification of ZnO nanopowders is
essential. (ii) The rapid recombination of electron–hole pairs in the catalytic process is also
the main problem that seriously affects the photocatalytic performance [17–19]. To improve
the photocatalytic performance of ZnO, the reduction in the energy band gap of ZnO
and the effective separation of the photogenerated carriers have to be achieved. Several
methods for modifying ZnO have been developed, such as metal element doping modifica-
tion [20], nonmetal element doping modification [21], semiconductor material composite
loading [17,22], surface modification [23] and so on. However, these methods have dis-
advantages such as cumbersome preparation, serious post-treatment process or serious
pollution of by-products, which limits the large-scale application of these methods [24].

Currently, plasma become a research hot point and has been extensively used in
synthesis and modification of ZnO in recent years [25–27] because the high energy of
the plasma could remove the surface state of the material, surface impurities or defects,
and different plasmas would produce doping, deposition or reaction phenomena [26].
In particular, the arc plasma is highly valued due to combining the characteristics of
nonequilibrium plasma and equilibrium plasma. Continuous modification of materials by
arc plasma is a facile method of high yield [28].

Photocatalytic performance of ZnO depends on the modification conditions and meth-
ods [29]. Dao et al. [30] modified ZnO thin films by Ar plasma, and etching was observed
on the surface. The grains on the surface were etched out, leading to a flatter surface with a
smaller roughness. It suggested that the improvement of photoelectronic properties may be
due to the effects of hydrogen ions produced by high-energy plasma ionized residual gases.
Dev et al. [23] and Baratto et al. [31] reported similar improvements by Ar plasma treatment
and proposed that the effects were attributed to incorporation of hydrogen. Nam et al. [26]
proposed the synthesis and modification methods of ZnO nanoparticles. No changes in
specific surface area were observed, but oxygen was introduced into the ZnO surface and
O-H stretching peak was increased on the ZnO nanoparticles surface. The increase in free
radicals is the main reason to enhance the photocatalytic performance. Nitrogen (N2) [32]
and ammonia (NH3) [33] plasma treatments were also reported, and they showed similar
effect of the argon plasma.

In the previous work by research groups, the preparation method of zinc oxide [34] was
studied, and modification methods such as aluminium doping [35] and Ar plasma [36] were
also studied. In this article, based on previous research work, we combined plasma and
fluidized bed to develop a more efficient, green and convenient new modification method.

In this study, ZnO nanoparticles were modified by Ar and Ar–H plasma in a circulat-
ing fluidized bed, and factors on the photocatalytic performance were studied including
plasma treatment time. We compared the photocatalytic activity of ZnO before and af-
ter modification and studied the mechanism of plasma to improve the photocatalytic
performance. At the same time, the role of hydrogen ions in modification process was
investigated. Finally, the ZnO nanoparticles with excellent photocatalytic ability were
successfully obtained and applied.

2. Results
2.1. XRD Analysis of ZnO before and after Modification

Figure 1 shows the XRD patterns of ZnO before and after modification. The char-
acteristic diffraction peaks of the samples are 31.7◦, 34.4◦, 36.2◦, 47.5◦, 56.7◦, 63.0◦, 66.4◦,
68.1◦ and 69.3◦, corresponding to the crystal planes of (100), (002), (101), (102), (110), (103),
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(200), (112) and (201), respectively. This result is consistent with the diffraction peaks of
hexagonal wurtzite phase ZnO in the JCPDS standard card (No. 361451) [37]. As shown in
Figure 1, the width at half maximum (FWHM) of ZnO before and after plasma treatment
are 0.52962 and 0.45477, respectively, suggesting that the plasma treatment increased the
crystallite size of ZnO nanoparticles and the plasma modification process did not just act
on the surface.
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Figure 1. XRD patterns of pure ZnO nanoparticles and T-4 sample.

Figure 2 shows (002) and (100) XRD profiles of ZnO nanoparticles before and after
120 min treatment. The (002) peak moved to a lower angle, while the (100) peak moved to
a higher angle, corresponding to an increase in the lattice constant c and a decrease in the
lattice constant a, respectively. These results mean that new ions/atoms are introduced at
the crystal plane through plasma treatment and modification, and the lattice united in the
crystal grain block are stressed and deformed. At the same time, it can also be proved that
plasma acts not only on the surface but also on the bulk crystalline structure.
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2.2. SEM Analysis of ZnO before and after Modification

SEM images of original ZnO and T-4 samples are shown in Figure 3a,b, respectively. As
shown in Figure 3b, the pure ZnO shows a spherical agglomerated structure with a diameter
of 100–800 nm. After 120 min of modification process, the etching and bombardment effects
were found on the surface of ZnO as well as a decrease in the degree of agglomeration,
accompanied by smoother surfaces and smaller roughness, as shown in Figure 4a. In theory,
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the improvement of dispersibility and the reduction in nanoparticle size can effectively
increase the specific surface area of ZnO, thereby increasing the number of reactive sites
and improving photocatalytic efficiency. The specific verification can be observed from the
BET test below.
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2.3. Characterization of Specific Surface Area and Carrier Lifetime

Figure 4 shows the changes in specific surface area and pore size distribution before
and after plasma modification of ZnO. As shown in Figure 4a, the specific surface area of
ZnO increased to 20.5630 m2/g after 120 min of plasma treatment, which is 4.3 times higher
than that of pure ZnO. This may be due to the high energy of the plasma particles that etch
the ZnO surface. The increase in the specific surface area can provide more reaction active
sites for the photocatalytic reaction and improve the degradation efficiency. Figure 4b
shows the pore size distribution curve of the sample. It can be seen that the small pores
of pure ZnO and T-4 are all distributed around 3 nm, and the large pores of T-4 are all
distributed between 15 and 30 nm. This porous structure is possibly caused by the gaps
between small nanoparticles.

Photoluminescence spectrum (PL) was used to examine the luminescence intensity
of ZnO and the recombination time of photogenerated electrons and holes. As shown in
Figure 5a, after plasma treatment, the luminescence intensity of ZnO at 380 nm decreased
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significantly, but the luminescence intensity increased at 450 nm. This may be due to the
following two reasons:
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of T-4 sample.

(i) The recombination rate of photogenerated electrons and holes decreases, which
leads to a decrease in luminescence intensity at 380 nm [38] and (ii) the slight increase
in luminescence intensity at 450 nm may be related to the increase in oxygen vacancy
concentration [39], while the reason why this peak is not observed in pure zinc oxide may
be due to the too low concentration of oxygen vacancies.

The existence of average lifetime was also found in the decay profile at 375 nm in
Figure 5b,c [40]. The carrier average lifetime of ZnO was changed from 194.4 to 251.5 ns,
suggesting that the photogenerated electron–hole recombination rate slowed down, which
also proved the above conclusion.

2.4. XPS Analysis

X-ray electron spectroscopy (XPS) was used to eValuate the difference before and after
Ar–H plasma surface treatment. Figure 6a shows the XPS spectra for Zn 2p core level
peaks; the Zn 2p core energy peak shifted from 1022.6 eV to the binding energy region of
1021 eV. The results display that the Zn on the surface of ZnO changes from oxygen-rich
zinc before treatment to ZnO containing metallic zinc after treatment. O 1s spectra is
shown in Figure 6b; it can be seen that the main O 1s peaks of ZnO nanoparticles are fitted
to the three peaks of 531.25, 532.7, and 534.4 eV, corresponding to Zn-O, the physically
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absorbed OH radicals and molecular water on the surface of ZnO, respectively [41]. The
shoulder peaks matching the OH radicals and molecular water increase significantly after
plasma treatment and the peak intensity increased significantly, indicating that the chemical
adsorption and physical adsorption of OH radicals and molecular water on the surface of
ZnO are enhanced. Figure 6c shows the specific changes in the intensity of OH radicals
and molecular water peaks before and after plasma treatment. The results show that Ar–H
plasma treatment not only increases the concentration of OH radicals but also has an effect
on the surface adsorption of molecular water in the air, which can cleave the double bond
(C=N) to decompose the Rh B solution and couple with the N-H single bond of the Rh B
solution, improving effectively the photocatalytic effect ultimately.
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2.5. Photocatalytic Degradation of Rh B Solution

To study the effect of treatment time on the activity of semiconductor catalysts, ZnO
(T-1, T-2, T-3, T-4 and T-5) was used for photocatalytic degradation of Rh B solution. The
experimentally measured change curve of C/C0 of Rh B solution with catalytic time is
shown in Figure 7a. The blank experiment is the Rh B solution, which is directly illuminated
by a 50 W light source with no catalyst. It is worth noting that ultraviolet light illumination
in the absence of any photocatalyst or dark conditions with catalysts do not lead to the
degradation of Rh B. In fact, in the blank experiment, only 6.3% of the Rh B solution was
degraded under the UV light source within 100 min (6.3%). In the degradation experiment
after addition of pure ZnO, the degradation rate of Rh B was improved but still showed
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poor degradation capacity. The Ar–H plasma-modified ZnO significantly enhanced the
degradation of Rh B, and the degradation rate first increased and then decreased with time.
The degradation efficiency was the highest when the plasma treatment is 120 min, and the
Rh B solution was degraded by 97.8% within 40 min.
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The apparent enhancement in photocatalytic degradation capacity of ZnO nanopar-
ticles could be due to the effect of the increase in specific surface area (BET), decrease
in electron–hole recombination rate (PL), increase in surface OH radicals (XPS), and H
atoms/ions as a shallow donor. However, long-term plasma treatment time will cause the
photocatalytic ability to decrease (T-5), which may be attributed to the high energy of the
plasma causing irreversible structural damage to the ZnO nanoparticles. In conclusion, the
best modification time for plasma is 120 min. The temporal eVolution about the degrada-
tion of Rh B solution over T-4 is shown in Figure 7b. The concentration of Rh B solution
was indicated by the decrease in the intensity of the absorption peak.

2.6. Photocatalytic Degradation Kinetics

The concentration of the solution can be calculated by measuring the absorbance of
the Rh B solution, according to the degradation efficiency of each catalyst based on the
solution concentration. It is known through Equation (1) fitting that the Rh B degradation
process conforms to the first-order reaction kinetics:

−dC/dt = k × C
− ln(C/C0) = k × t
ln(C0/C) = k × t

(1)

where, C, C0, k and t represents the Rh B concentration of “t” time, the initial concentration
of the dye, reaction rate constant (min−1) the time at which photocatalytic degradation
takes place, respectively.

Fitting the reaction kinetics of the results of each group of photocatalytic degradation
experiments, the results are shown in Figure 8. The degradation rate of Rh B solution
decreased significantly after 90% degradation, therefore, for this experiment, a fitting analysis
was performed up to a 90% degree of degradation. It can be seen from the Figure 8 that the
reaction rate constant k in the blank experiment was only 0.00065 min−1. After the catalyst
was added, the degradation rate of Rh B was significantly increased, in which the reaction
rate constant was 0.08933 min−1 when the treatment time was 120 min. The fitting data of the
experimental results are shown in Table 1. In all the results, R2 is greater than 0.99, indicating
that ln(C0/C) in the Rh B degradation experiment results shows a linear relationship with
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time t, which is a first-order reaction and meet the above equation. It can be seen that the
sample with the best photocatalytic degradation effect on Rh B solution is T-4.
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Table 1. Degradation effect of samples with different plasma treatment time on Rhodamine B (Rh B)
solution.

Sample Degradation Rate (%) Reaction Rate Constant (min−1) R2

Blank 6.4 0.00065 0.999
Pure ZnO 28.3 0.00396 0.998

T-1 62.0 0.01089 0.994
T-2 72.5 0.01291 0.999
T-3 94.4 0.03485 0.991
T-4 99.4 0.08933 0.991
T-5 89.9 0.02675 0.997

To further study the mechanism of improving photocatalysis and the mechanism of
plasma modification, more characterization methods were used. The ultraviolet–visible
diffuse reflectance spectroscopy (DRS) was used to characterize the degree of electron–hole
pairs generated by the samples and the band gap width. As shown in Figure 9a, the
ultraviolet–visible (UV) absorption edge wavelength was observed at the wavelength of
375 nm, which is the inherent absorption band gap of ZnO (3.2 eV) [42]. The plasma
modification process did not affect the change of the main absorption band of ZnO, the
main absorption band of ZnO is shorter than 400 nm, and the absorption band of the T-4
sample was very similar to that of pure ZnO. T-4 sample also reveals other absorption
peaks, which is due to plasma treatment in the visible light region (400–700 nm). T-4
nanomaterial exhibits an absorption ability also in the visible range.

The energy band theory provides a theoretical basis for the catalytic process of ZnO. As
a typical semiconductor, ZnO exhibits a valence band and a conduction band. The valence
band is usually occupied by electrons and exhibits lower energy, while the conduction
band is empty and the energy is higher than the valence band. After the electron gains
enough energy, it will transition from the valence band to the conduction band and generate
carriers. The minimum energy required for the transition is Eg [43].
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According to the Kubelka-Munk function [44], the band gap (Eg) is determined from
the absorption spectra using equation as follows:

αhν = A(hν − Eg)
n, (2)

where, α, h, v, A, Eg, η represents optical absorption coefficient, Planck constant, frequency of
the incident photon, absorption constant for direct transition, band gap and index characterized
by light absorption process, respectively. ZnO is a direct band gap semiconductor, so the value
of η is 1/2. The values of α and A can be obtained according to the Formula (3) and (4):

α = A(1−R)2/2R (3)

A = −lg(R), (4)

where, R is the reflectance. As shown in Figure 9b, the band gap was calculated by
Equations (2)–(4). The results showed that the band gap of ZnO was reduced from 3.22 to
2.99 eV after 120 min plasma modification process. Theoretically, the narrower the band
gap, the easier it is to generate carriers, which has a higher photocatalytic degradation
efficiency. The possible reason is that hydrogen acts as a shallow donor in ZnO, leading to
a reduced band gap [30].

2.7. Cycle Experiment

The recycling of photocatalyst is of great significance to practical applications. When
evaluating the performance of a catalyst, stability is also an important indicator. The less
the catalytic efficiency decreases after the catalyst is recycled, the stronger the stability.
Through five repeated experiments under the same conditions, the stability of T-4 sample to
the photocatalytic degradation of Rh B solution was tested. As shown in Figure 10a,b, the
T-4 sample degraded about 99.4% of Rh B in the first circle and the degradation efficiency of
Rh B decreased to 89.76% within 100 min in the 5th cycle test. The decrease in photocatalytic
efficiency may be due to the scattering of ionized impurities during the cycle. In addition,
the process of centrifugation, washing and drying will also cause sample loss, so it is
reasonable to maintain a degradation rate close to 90% after 5 cycles.
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3. Discussion

Based on the above analysis, the mechanism to improve the photocatalytic activity was
speculated. The possible mechanism responsible for the increases in photocatalytic activity
is due to oxygen vacancies produced by the etching of argon-hydrogen plasma [45–47].
Oxygen vacancies are considered to be one of the main defects generated by carriers in
ZnO, and the increase in oxygen vacancies concentration will increase the photocatalytic
activity of ZnO [48]. First, the plasma particles have ultrahigh energy, which can modify the
surface of ZnO to produce some defects without changing the lattice structure. Moreover,
hydrogen plasma can combine with oxygen to deepen the concentration of oxygen vacan-
cies, theoretically. Another mechanism that leads to the improvement of photocatalytic
performance may result from hydrogen or hydrogen incorporation acting as shallow donors.
As shown in Figure 11, hydrogen may also occupy interstitial positions in the ZnO lattice
and form impurity levels, which helps to increase the carrier concentration. In addition, we
also discussed the problem of photocatalytic performance degradation caused by prolonged
plasma modification. One possible explanation is that the ionized impurities are scattered,
when the modification time is extended and the concentration of hydrogen ions reach a
certain value, hydrogen will help the charge scattering [49,50]. On the other hand, prolonged
plasma modification time will damage the surface of the sample, generate unsaturated
dangling bonds and capture photogenerated electrons or holes [51]. These factors ultimately
reduce the number of reactive sites and the concentration of surface free radicals.
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4. Materials and Methods
4.1. Materials and Apparatus

Argon (99.99%) and hydrogen (99.99%) were purchased from Xinhang Industrial Gases
Co. Ltd. (Fuzhou, China). AC high voltage power supply and transformer were obtained from
Jiaxing Jialin Electronic Technology Co. Ltd. (open circuit voltage 20 kV, Jiaxing, China). Zinc
oxide (ZnO) nanoparticles were obtained from Aladdin Co. (Shanghai, China).

Figure 12a shows plasma fluidized bed equipment used in the experiments, which
is made up of stainless steel. It mainly consists of two compartments: (i) The plasma
generator is composed of a pair of ceramic discharge nozzles (length 150 mm and inner
diameter 40 mm) and two pairs of parallel electrodes (length 120 mm and bottom diameter
20 mm) and (ii) The separation and collection units include cyclone separation, bag filter
and induced draft fan. The fan helps the carrier gas to circulate the ZnO in the plasma
reactor. The products are mainly collected by a cyclone separator, and the rest is collected
after being separated from the exhaust gas through a cloth bag. The details on the facility
are referred to Figure 12a and Table 2 [52].
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Table 2. Detailed parts list.

Part Number Part Name Part Number Part Name

1 Induced draft fan 12 Vacuum pump
2 Governor-1 13 Valve-2
3 Pressure gauge 14 Outlet
4 Blower 15 Governor-2
5 Bag separator 16 AC power
6 Rotary feeding valve 17 Screw propeller
7 Cyclone separator-1 18 Argon
8 Cyclone separator-2 19 Hydrogen
9 Oscillator 20 Filter membrane
10 Valve-1 21 Circulation pump
11 Feeding port 22 Desiccant

The diameter of all pipes in the device is 600 mm 23 Flowmeter

4.2. Modification Process of ZnO

The modification process of ZnO nanoparticles by argon–hydrogen (Ar–H) arc plasma
is shown in Figure 12a and the specific reaction area is shown in Figure 12b. First, the
vacuum pump extracts the air from the reaction device to −0.1 MPa. Then, the induced
draft fan was turned on to induce the Ar–H mixed gas into fluidized bed. When the AC
power was supplied, the arc was generated between two parallel electrodes at the top
region (as shown in the Figure 12c). The arc discharged in the direction of the airflow in
a yellow white colour. With the Ar–H gas flow rate increasing, the semicircular plasma
beam enlarged and tended to be flame shape. At the same time, the semicircular plasma
beam became sparse and nonuniform as the arc was elongated. The inhomogeneous arc
was probably owing to the rough surfaces of the parallel electrodes. Finally, when the arc
remained stable, Ar and H2 gas mixture was introduced in proportion into the plasma
reactor where the ratio and the gas flow rate were controlled and adjusted by a flow meter.
The plasma treatment time of ZnO were kept constant in five groups, which were 30, 60,
90, 120, and 150 min, and the corresponding products were denoted as T-1, T-2, T-3, T-4
and T-5, respectively.

4.3. Characterizations

The crystal structure of ZnO nanoparticles was investigated by X-ray diffraction (XRD)
and the data were collected on Cu Kα radiation (DY1602/Empyrean, Malvern Panalytical,
Malvern, UK), using a step size of 0.2◦ and a counting time of 1 s per step in the range of
5–80◦. The surface morphology of plasma-treated ZnO nanoparticles was characterized
by scanning electron microscopy (SEM, TecnaiG220, FEI, Hillsboro, OR, USA). PL spectra
was used to observe luminous performance at room temperature. The specific surface area
was measured by Brunauer–Emmett–Teller (BET, ASAP 2460, Mike Company, Hong Kong,
China). To investigate the photocatalytic capacity and optical performance of ZnO, the
measurement by ultraviolet–visible spectroscopy (UV–VIS, TU-1900, Beijing Puxi General
Instrument Co., Ltd., Beijing, China) was carried out in the range of 200–900 nm. The
band gap and the photocatalytic reaction kinetic constant are calculated by UV diffuse
reflectance, absorption spectra using the Kubelka-Munk method and the degradation curve
of Rhodamine B. X-ray photoelectron spectroscopy (XPS, ESCALAB 250, Thermo Fisher
Scientific, Waltham, MA, USA) was used to characterize element differences before and
after plasma treatment. The average lifetime was calculated by Formula (5) [53].

τavg = (α1τ12 + α2τ22 + α3τ32)/(α1τ1 + α2τ2 + α3τ3), (5)

where τavg is average lifetime, τ1, τ2, and τ3 are decay times and α1, α2, and α3 are relative
magnitudes [54].
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4.4. Measurement of Photocatalytic Abilities

The photocatalytic capacity of plasma-modified ZnO nanoparticles was investigated
by degrading Rhodamine B (Rh B). In the experiments, 0.1 g of the modified samples
was dispersed in 200 mL of Rh B aqueous solution (10 mM). The suspension was kept in
dark condition for 60 min until reaching adsorption and desorption equilibrium before
illumination. Subsequently, the reaction was carried out at room temperature under a
50 W high-pressure mercury lamp (365 nm) with continuous cooling water. Before the
irradiation, 4 mL of dye mixture was taken to centrifuge for eVery 10 min, and then the
UV–VIS spectrophotometer was used to analyse supernatant at 554 nm. Therefore, the
photocatalytic degradation curves of Rh B solution were obtained, and the reaction type
and kinetic constant of the degradation reaction of rhodamine B were calculated. The
degradation percentages of Rh B solution were calculated using Equation (5). The stability
of the catalyst was also tested using cycle experiments.

5. Conclusions

In this work, a new process combining plasma and fluidized bed has been developed
for the modification of ZnO nanoparticles continuously using AC arc plasma. Compared
with the traditional plasma modification methods, the process has the advantages of simple
operation and continuous modification in large quantities. Under the optimal conditions
of plasma modification for 120 min, the band gap of ZnO was reduced to 2.99 eV, and
the specific surface area was increased to 20.5630 m2/g. As the plasma treatment time
increased, the photocatalytic efficiency of the sample first increased and then decreased,
and the maximum degradation rate of Rh B solution was 0.08933 min−1, which was 22 times
than that of unmodified ZnO. In addition, taking into consideration the characterization
results of SEM, XPS, UV–VIS, DRS and other techniques, the photocatalytic mechanism
of modified ZnO was speculated. The Ar–H plasma treatment increased the specific
surface area while reducing the band gap of ZnO, and an impurity level was formed in the
band gap of ZnO by hydrogen elements, which was conducive to generate and transform
photogenerated electron–hole pairs. Therefore, the plasma fluidized bed-modified ZnO
nanoparticles might provide a new idea to improve the application of ZnO photocatalysis.
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