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Abstract: Cu/Ti photocatalysts were prepared by the sol-gel process with different copper loadings
(1.0, 2.5, and 5.0 wt.%) and then thermally treated at several calcination temperatures from 400 to
600 ◦C. The materials were characterized by X-ray diffraction (XRD), N2 physisorption, Scanning Elec-
tronic Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDS), Ultraviolet-visible-Diffuse
Reflection Spectroscopy, Ultraviolet-visible spectroscopy as a function of the temperature, (Tempera-
ture Programmed Reduction) TPR-chemisorption, XPS (X-ray Photoelectron Spectroscopy) and OH
determination through DRIFTS (Diffuse reflectance infrared Fourier transform spectroscopy). The
Cu/Ti photocatalysts were evaluated for the photocatalytic production of hydrogen using hydrazine
as scavenging agent. Moreover, a detailed study of the Cu1+/Cu2+ ratio and the corresponding
formation of copper oxide was carried out to understand the correlation between the copper species
and the photocatalytic activity. Simultaneously, the OH groups on the TiO2 surface also show insights
into the behavior of these materials during the photocatalytic reaction. Despite the low hydrazine
concentration (20 mM), the 1.0 (wt.%) Cu/Ti 500 photocatalyst enhanced the hydrogen production
three and two times more than photolysis and bare TiO2, respectively. The 1.0 Cu/Ti 500 photocata-
lyst displayed outstanding stability for at least three continuous cycles of 8 h each, preserving the
hydrogen production. The novel ability shown in this work represents an alternative to reduce the
hydrazine residues in wastewater to transform it into a hydrogen-producing energy source and must
be extended to other reductive pollutants found in wastewater.

Keywords: water splitting; hydrogen production; hydrazine; TiO2 nanostructures; copper; photo-
catalysis

1. Introduction

The water-splitting reaction could be considered as an environmentally sustainable
method for producing hydrogen. This reaction proceeds with the use of a semiconductor
and radiation with energy equal or greater than its band-gap. In this way, the excitation of
electrons from the valence to conduction band is achieved. Therefore, the reduction in H+

to generate H2 takes place as described by Fujishima and Honda [1].
According to the literature, the yield of the water-splitting reaction improves when

organic molecules are used as hole scavengers. In this regard, ethanol has been used
widely as a sacrificial agent [2]. Other electron donors or hole scavengers that have been
used successfully are glycerol [3], ethanolamines [4], oxalic acid [5], chloroacetic acid [6],
glucose [7], sulfites [4–8], glyceraldehyde [9], and Na2S among others [10]. As a sacrificial
agent, ethanol has the disadvantage of being used in high concentrations to carry out the
water-splitting reaction. For this reason, hydrazine has been proposed as a sacrificial agent,
mainly for its reducing properties. In addition, this compound and its derivatives are major
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constituents of a variety of rocket fuels and missile propellants; these uses have led to the
release of these toxic hydrazine fuels into the environment, causing their accumulation
in industrial wastewater [11]. Fortunately, the production of hydrogen using a diluted
water–hydrazine mixture represents a sustainable way to recycle hydrazine wastewater
into alternative energy sources.

To catalyze the water-splitting reaction, a semiconductor with a narrower band gap
than the radiation with which it will be excited is necessary. For this purpose, titania (TiO2)
is an excellent semiconductor due to its physicochemical properties. However, it has been
modified to enhance these properties, where the deposition of precious metal nanoparticles
such as gold, palladium and platinum represents an expensive method [12]. On the other
hand, TiO2 can be modified by doping with transition metals to improve the electron flow
in redox reactions [13].

Due to their low cost and remarkable properties, the use of copper species at very
low concentrations has been proposed to dope the TiO2 in order to form oxygen vacancies
on the surface, where the rest of the copper that is not present in the TiO2 lattice is
capable of carrying out the formation of copper oxides. The advantages of using copper
consist of having low costs with respect to noble metals, not undergoing corrosion under
photocatalytic conditions and decreasing the recombination of the hole/electron pairs.
Specifically, Cu2O is a simple metal oxide semiconductor with low band-gap energy. As
shown by an energy correlation between the band-gap model of Cu2O and the redox
potentials of relevant electrode reactions in an aqueous solution at pH 7, the conduction
and valence band edges of Cu2O, which are separated by band-gap energy values from 2.0
to 2.2 eV, seem to be available for the reduction and oxidation of water, respectively [14].

In this work, the photocatalytic production of hydrogen using copper-TiO2 nanomate-
rials and hydrazine at negligible concentrations as a sacrificial agent is proposed. In this
sense, hydrazine wastewater was used with the environmental and energy purpose of
producing hydrogen.

2. Results and Discussion
2.1. Characterization of the Nanostructures
2.1.1. Cu/Ti Structure Determination

X-ray diffraction patterns are shown in Figure 1a,b. In all cases, the crystalline anatase
phase (JCPDS 21-1272) is present with the characteristic crystallographic plane (101) at
25◦. As the copper concentration increases, the presence of the brookite crystalline phase
starts to appear with the well-known crystallographic plane (121) at 30.7◦ (JCPDS 29-1360).
Such growth starts with even a minimal copper load of 1 wt.%; see inset of Figure 1a. For
the different heat treatments, the brookite crystalline phase disappears as the temperature
increases. Just at 500 ◦C, Cu2O (JCPDS 05-0667) becomes present with the crystalline plane
(111) located at 37.0◦, simultaneously with the CuO oxide (JCPDS 45-0937) which is evident
with the crystalline plane (111) located at 38.7◦ of 2 theta; see inset in Figure 1b. Therefore,
copper induces the presence of the brookite phase, whereas the increase in temperature
restricts the growth of brookite and favors the formation of the corresponding copper
oxides.

Using the Scherrer equation, the crystallite size of the samples was calculated, see
Table 1. For different copper contents, the crystallite sizes range from 16 to 20 nm, whereas
for the different calcination temperatures, the values are between 8.2 and 39.3 nm. As seen,
the calcination temperature plays a fundamental role since the crystallite size increases as
the temperature increases.

The above information can be correlated with the nitrogen physisorption measure-
ments, where it is found that the surface area decreases with the increase of the copper
content from 65 to 35 m2/g, where the highest value corresponds to the lowest copper
content; see Table 1. For the 1.0 Cu/Ti sample treated at different temperatures, the surface
area decreased from 115 m2/g (400 ◦C) to 14 m2/g (600 ◦C). In both cases, the decrease
in surface area was due to the segregation of copper species as oxides on the surface of
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TiO2 [15]. Nitrogen adsorption–desorption isotherms are shown in the Supplementary
Materials Section, Figure S1.
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Figure 1. X-ray diffractograms of (a) X Cu/Ti 500, and (b) 1.0 Cu/Ti calcined at different temperatures.
The insets correspond to the brookite (121) crystallographic plane and copper oxides, respectively.

Table 1. Physicochemical properties of the Cu/Ti catalysts.

Crystallite Size
(nm) a Crystalline Phases

Copper Content (%)
Band Gap (eV) Surface Area

(m2/g)Nominal Actual b

0.0 Cu/Ti 500 17.7 A 0.0 0.0 3.4 65
1.0 Cu/Ti 500 17.5 A, B 1.0 0.95 3.3 59
2.5 Cu/Ti 500 20.0 A, B 2.5 2.30 3.2 40
5.0 Cu/Ti 500 16.2 A, B 5.0 4.60 2.3 35
1.0 Cu/Ti 400 8.2 A, B 1.0 0.95 3.3 115
1.0 Cu/Ti 450 10.9 A, B 1.0 0.95 3.3 85
1.0 Cu/Ti 500 17.5 A, B 1.0 0.95 3.3 59
1.0 Cu/Ti 550 24.5 A, B, CuO, Cu2O 1.0 0.95 3.2 41
1.0 Cu/Ti 600 39.6 A, B, CuO, Cu2O 1.0 0.95 3.2 14

a Crystallite size for the anatase crystallographic plane (101); A: Anatase crystalline phase; B: Brookite crystalline phase; b Actual copper
content (X-Ray Fluorescence technique).
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2.1.2. Morphology, Structure and Elemental Semi-Quantitative Analysis

Figure 2a shows a SEM (Scanning Electronic Microscopy) image of the 1.0 Cu/Ti
500 photocatalyst. This sample was chosen because it displays the highest hydrogen
production, as will be shown later. As seen, a homogeneous cluster of titania particles
with mainly quasi-spherical morphology predominates. On the other hand, the HRTEM
(High Resolution Transmission Electron Microscopy) image reveals semi-spherical copper
nanoparticles of around 2 to 4 nm on the TiO2 surface. The measured value of the crystalline
interplanar distance was 2.4 Å, which is in good agreement with Cu2O oxide according
to the JCPDS 05-0667and 45-0937 cards. This type of morphology should not exhibit
any representative change according to the copper concentration and the heat treatment
temperature.
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2.1.3. Optical Characterization by UV-Vis Measurements 

Figure 2. (a) SEM image, (b) TEM image for the 1.0 Cu/Ti 500 photocatalyst.

The copper content was measured by X-ray Fluorescence technique, see Table 1. For
1.0 Cu/Ti sample, the experimental copper content corresponds to 0.95 wt.%. For 2.5
Cu/Ti material, the real copper amount corresponds to 2.30 wt.%, whereas a 4.60 wt.% of
copper was found in the 5.0 Cu/Ti photocatalyst. In this sense, a slight variation was found
in the nominal and experimental copper contents. Moreover, copper lixiviation did not
occur in any sample during the sol-gel process. Therefore, this method guarantees good
incorporation into the TiO2 lattice or during the formation of copper oxides.

2.1.3. Optical Characterization by UV-Vis Measurements

The band gap energies (Eg) were calculated according to F(R) UV-vis spectra and the
corresponding values are shown in Table 1. As the copper concentration increased, the
Eg decreased from 3.4 to 2.3 eV. The samples show a blue-shift, indicating that the Cu-
photocatalysts could be activated in the visible region while the Cu/Ti materials calcined at
different temperatures show almost the same Eg values of 3.3 and 3.2 eV for all the samples.
The UV-vis spectra are shown in the Supplementary Materials Section, Figure S2.

An additional UV-vis DRS experiment was carried out as a function of temperature to
elucidate the behavior of the 1.0 Cu/Ti fresh sample at different temperatures from 25 up
to 600 ◦C, see Figure 3. As the temperature increases, a shift towards a higher wavelength
was detected, while the absorbance tends to decrease as the temperature increases. On the
other hand, two additional bands are observed in the spectra ranging from 25 to 100 ◦C:
(1) one centered at 500 nm, which corresponds to the Cu2O interband absorption, and
the weak absorption from 500 to 400 nm originating from the interfacial charge transfer
from the TiO2 valence band to the copper oxides [16,17]; (2) a band starting at around
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530 nm and attributable to the intrinsic exciton band of CuO and the d–d transition of Cu
(II) species [18].
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Figure 3. UV-vis -DRS collected spectra for the 1.0 Cu/Ti fresh sample with temperature increasing
from 25 to 600 ◦C.

The presence of copper in titania photocatalysts was corroborated through this ex-
periment, but the two bands associated with copper oxides were not detected as the
temperature increased. The photocatalysts used for the photocatalytic production of hydro-
gen were tested in the range from 400 to 600 ◦C. At these temperatures, additional bands
corresponding to copper oxides were not visible. However, the calcination temperature
plays an important role due to the changes related to the copper species.

2.1.4. Temperature Programmed Reduction

The effect of the temperature and copper load during the copper oxidation stage was
evaluated through temperature-programmed reduction experiments. Figure 4a shows
the effect of varying the copper concentration. For copper loads equal to 1.0 wt.%., a low
intensity peak with width from 180 to 250 ◦C was detected. This peak is associated with
the Cu2+ → Cu+ reduction, corresponding to the copper oxide, CuO, and Cu2+ → Cu1+

reduction [19,20]. In addition, the 2.5 Cu/Ti and 5.0 Cu/Ti samples thermally treated at
500 ◦C show a well-defined reduction peak that starts at 160 and ends at 210 ◦C; this peak
is also related to the Cu2+ → Cu+ reduction. The shoulders observed for the 5.0 Cu/Ti 500
sample at 225 and 275 ◦C are associated with the continuous reduction from Cu+ to Cu0

species [21].
The behavior of the 1.0 Ti/Cu photocatalyst calcined between 400 and 600 ◦C is shown

in Figure 4b. Calcination temperatures of 500, 550, and 600 ◦C revealed a well-defined
reduction peak at 195.8 ◦C, which is associated with the Cu2+ ion reduction [22–24]. For
the samples calcined at 400 and 450 ◦C, lower intensity peaks between 280 and 450 ◦C with
maximum intensities at 340 and 400 ◦C were observed. These peaks are associated with the
Cu+→ Cu0 reduction, but exhibited a shift at higher temperatures with respect to the other
samples. This shift is related to the well-dispersed copper into the TiO2 lattice. According
to the literature, the copper reduction occurs as follows: CuO→ Cu2O→ Cu0 [25].
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Figure 4. Temperature-programmed reduction of (a) X Cu/Ti and (b) 1.0 Cu/Ti Y photocatalysts.

The TPR profiles gave information about the copper species and their correlation
with the calcination temperature. Moreover, a detailed XPS analysis was carried out to
corroborate the presence of the copper species. It is important to mention that neither
Cu2+ nor Cu+ species were detected by XRD due to the low copper loading, but they were
identified by the TPR technique and well corroborated by XPS.

2.1.5. Oxidation States of the Cu/Ti Surface by XPS

The XPS measurements are shown in Figure 5. The plots on the left correspond to
the photoelectronic splitting of Ti 2p1/2 and Ti 2p3/2 located at around 466 and 460 eV,
respectively [26]. Simultaneously, a shift towards lower binding energies could be detected
as the temperature increased. This shift is related to the surface and structural changes
caused by the thermal treatment and copper loading.
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According to the Ti4+/Ti3+ rates, the percentage of Ti4+ diminished as the temperature
and copper loading increased, see Table 2. At the same time, the Ti3+ rate increased as the
temperature increased. For example, for the 1.0 Cu/Ti 450 catalyst, the Ti4+/Ti3+ ratio is
8.1 while for the 1.0 Cu/Ti 600 photocatalyst, it is equal to 2.0, indicating a Ti3+ percentage
of 33. The presence of Ti3+ is an evidence of the copper doped TiO2 lattice. With a high
copper load of 5 wt.%, almost the same Ti4+/Ti3+ ratio was found, which means that 1 wt.%
was the highest copper concentration for doping the titania lattice; the rest of the copper
was located on the TiO2 surface, forming the corresponding copper oxides, CuO and Cu2O,
information that was corroborated by X-ray diffraction.

Table 2. Titanium and copper species ratios of the Cu/Ti photocatalysts.

Ti3+ Ti4+ Ti4+/Ti3+ Cu1+ Cu2+ Cu1+/Cu2+

1.0 Cu/Ti
450

20 80 4.0

1.0 Cu/Ti
500

22 78 3.5 71 29 2.3

1.0 Cu/Ti
550

32 68 2.1 64 36 1.7

1.0 Cu/Ti
600

28 72 2.7 60 40 1.5

5.0 Cu/Ti
500

18 82 4.5 57 42 1.3

According to the information in the plots on the right, the presence of three bands is
evident, which are associated with the photoelectronic splitting of Cu 2p3/2 and Cu 2p1/2
located at around 933 and 953 eV, respectively. The third band corresponds to a shake-up
satellite of the Cu 2p3/2 line located at around 944 eV. This last band is related to the open
3d9 shell configurations in the Cu state [27–30].

The calcination temperature exerts an important effect on the copper species rate.
According to the deconvoluted spectra, the presence of Cu1+ and Cu2+ species can be
seen, which are related to Cu2O and CuO oxides. Then, when the calcination temperature
increases, the Cu+/Cu2+ rate decreases, see intensities in Figure 5 on the right. When the
copper content increases, this rate decreases significantly. Therefore, at low copper loads
(1 wt.%) and low calcination temperature (500 ◦C), the formation of Cu2O on the TiO2
surface is guaranteed.

Specifically, Cu2O is a simple metal oxide semiconductor with low band-gap energy.
As shown by an energy correlation between the band-gap model of Cu2O and redox
potentials of relevant electrode reactions in an aqueous solution at pH 7, the conduction
and valence band edges of Cu2O, which are separated by band-gap energy values from 2.0
to 2.2 eV, seem to be available for the reduction and oxidation of water, respectively [31].
Therefore, the presence of Cu2O in the Cu/Ti photocatalysts represents an advantage
during the photocatalytic hydrogen production.

2.1.6. Surface OH Groups

Figure 6 displays the hydroxyl information of the Cu/Ti photocatalysts. It is important
to mention that all the spectra were recorded at 600 ◦C. Figure 6a shows the spectra
corresponding to the photocatalysts with different copper loadings. In this graph, three
bands are detected: one is located at 3640, the other at 3695 and the last one at 3790 cm−1.
On the other hand, Figure 6b reports the behavior of the 1.0 Cu/Ti photocatalyst thermally
treated at 450, 500 and 600 ◦C, where three bands located at 3681, 3695 and 3970 cm−1 are
also detected.
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Figure 6. FTIR spectra for (a) X Cu/Ti, and (b) 1.0 Cu/Ti Y in the absorption band of hydroxyl species in the 3200–4000 cm−1

region from 25 up to 400 ◦C.

The bands located at 3640, 3681 and 3695 cm−1 are assigned to hydrogen bound to
adjacent OH groups in terminal positions due to the stretching modes of Ti-OH, while the
band located at 3790 cm−1 is assigned to the vibrational mode of isolated/terminal OH
groups on Ti4+ centers [32,33].

In comparison, at different copper contents, the intensity of the bands at around 3640
and 3695 cm−1 indicate the probable presence of more OH groups on the TiO2 surface
than the undoped Cu/Ti photocatalyst, followed by the 1.0 Cu/Ti 500 photocatalyst; see
Figure 6a. On the other hands, at the different calcination temperatures, the 1.0 Cu/Ti 450
catalyst showed the highest number of OH surface groups, followed by the 1.0 Cu/Ti 500
photocatalyst.

The low OH concentration in the 1.0 Cu/Ti 500 sample is due to the copper bound to
OH functional groups in the TiO2 structure. Therefore, at higher copper loadings, the OH
intensity decreases while for a higher temperature treatment, a lower OH concentration
is found on the TiO2 surface. For this reason, the 1.0 Cu/Ti 500 sample has the optimal
number of OH groups necessary to carry out the water-splitting reaction. The way that
OH interacts during the hydrogen production is through the titanol groups present on the
TiO2 surface. These groups are responsible for oxidizing the organic or inorganic sacrificial
agents, which in turn are responsible for enhancing the production of hydrogen [34].

2.2. Photocatalytic Performance

The previously characterized copper photocatalysts, thermally treated at 500 ◦C, were
evaluated during the water-splitting reaction and the results are shown in Figure 7a. Com-
paratively, the hydrogen amount produced by the simple photolysis is 9.1 µmol h−1 while
the bare TiO2 shows a slight increment with a hydrogen production of 13.9 µmol h−1.
There was a remarkable enhancement during this reaction with the use of copper photo-
catalysts, showing that copper concentrations of 1.0, 2.5, and 5.0 wt.% have a hydrogen
production of 28.9, 24.3 and 16.3 µmol h−1, respectively. The best behavior was displayed
by the 1.0 Cu/Ti 500 photocatalyst with an overall hydrogen production three times higher
than that obtained with photolysis. As the copper concentration increases, the hydrogen
production decreases. This behavior is directly related to the copper oxides present in the
photocatalysts. According to XRD information, the 1.0 Cu/Ti material treated at 500 ◦C
starts showing the presence of copper oxides, which is in good agreement with XPS data
with the highest Cu1+/Cu2+ ratio of 2.3.
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Figure 7. Photocatalytic evaluation during the water-splitting reaction of the (a) X Cu/Ti 500
materials, and (b) 1.0 Cu/Ti calcined at different temperatures.

Figure 7b shows the behavior of the 1.0 Cu/Ti photocatalyst thermally treated at
different temperatures (from 400 to 600 ◦C). The 1.0 Cu/Ti catalyst was selected due to the
highest hydrogen production in comparison to other copper photocatalysts. According to
the scanning of temperatures, the thermal treatment that showed the best behavior occurred
at 500 ◦C, while higher or lower temperatures show a decrease during the hydrogen
production. The 1.0 Cu/Ti 500 sample with a full hydrogen production of 28.9 µmol h−1

was followed by the samples treated at 450, 550, 600, and 400 ◦C with hydrogen production
rates of 21.9, 17.8, 16.3, and 13.2 µmol h−1, respectively.

In both cases, the highest hydrogen production was reached by the 1.0 Cu/Ti 500
photocatalyst, which was due to its copper loading and, at this calcination temperature,
the highest Cu2O and Ti3+ formation was found; consequently, the optimal brookite
concentration and number of OH groups were obtained. All these factors are responsible
for enhancing the hydrogen production, which is due to a possible heterojunction, where
the conduction band of the Cu2O semiconductor donates electronic density to brookite
particles, and the anatase particles receive these electrons to allow the reduction of H+

to H2.



Catalysts 2021, 11, 74 11 of 15

To clarify this situation, Table 3 shows a summary of the copper species ratio and
produced hydrogen. The amount of Cu1+ and corresponding produced H2 are clearly
displayed. The 1.0 Cu/Ti 500 catalyst displayed the highest Cu1+ proportion in comparison
to the other materials that were analyzed by the XPS technique. At this copper content, the
highest hydrogen production of 231.1 µmol for a Cu1+ of 71% was found. For the rest of
the materials, both the proportion of Cu1+ and hydrogen production decreased.

Table 3. Proportion of copper species and hydrogen produced after 8 h of reaction.

* Cu1+ * Cu2+ H2 µmol

1.0 Cu/Ti 450 174.6
1.0 Cu/Ti 500 71 29 231.1
1.0 Cu/Ti 550 64 36 143.0
1.0 Cu/Ti 600 60 40 130.3
5.0 Cu/Ti 500 57 42 100.9

* Cu1+ and Cu2+ ratios obtained by XPS.

Finally, a stability test was carried out to corroborate the behavior of the 1.0 Cu/Ti
500 photocatalyst in the same water–hydrazine solution; see Figure 8. Three cycles were
carried out showing a production of 28.91, 31.84, and 30.33 µmol h−1 for each cycle after
8 h of reaction. This experiment confirmed a constant hydrogen production with the same
water–hydrazine solution. According to our previous work [15], hydrazine catalyzed
the reaction and, at the same time, enhanced the hydrogen production. Hydrazine as an
oxygen scavenger drives the hydrogen production from water, and its reaction profits
gradually, removing dissolved oxygen from the aqueous environment at room temperature,
in synergy with the Cu species, e.g., 4CuO + N2H4 → 2Cu2O + 2H2O + N2. According to
the problematic of the wastewater contaminated with space fuels, the technology showed
in this work represents an alternative to reduce the hydrazine residues in wastewater to
be transformed into an energy source producing hydrogen, and should be extended to
other reductive contaminants found in wastewater. These materials are also cost-effective
catalysts due to the use of copper, which is as effective as expensive transition metals, see
Table S1.
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Figure 8. Stability test of the 1.0 Cu/Ti 500 photocatalyst during three continuous cycles in the same
water–hydrazine solution.



Catalysts 2021, 11, 74 12 of 15

3. Experimental Section
3.1. Synthesis of Cu/Ti Nanostructures from Sol–Gel TiO2

Sol-gel-TiO2-Cu photocatalysts were prepared by means of a controlled sol-gel process
using titanium (IV) isopropoxide (Sigma-Aldrich, 97%, St. Louis, MO, USA) as a titanium
precursor and copper nitrate trihydrate (II) (Sigma-Aldrich, 98%) as a copper precursor
(doping agent). Ethanol (Le Cap Group, 96%, St. Louis, MO, USA) and distilled water
were used as solvents. According to a reported sol-gel synthesis, an appropriate amount
of nitrate salt was dissolved in water to obtain 1.0, 2.5, and 5.0 wt.% of copper. The
Cu/Ti catalysts were prepared by adding dropwise 75.6 mL of titanium isopropoxide to
an ethanol (22.9 mL)-water (18 mL) solution to which the copper precursor solution was
added; the mixture was poured into a 4-neck-round-bottom flask (1 L) equipped with a
magnetic stirrer and thermometer. The alkoxide/ethanol/water molar ratio was 1/3/8.
Later on, the solution was vigorously stirred at 50 ◦C during the addition of the reagents.
Subsequently, the solution was gradually heated up to 70 ◦C. The gelled product was aged
for 48 h at 70 ◦C. The solvents and unreacted precursors were slowly removed at 80 ◦C and
dried overnight under vacuum at 100 ◦C. Finally, the materials were thermally treated at
different temperatures within an interval ranging from 400 to 600 ◦C for 4 h at a rate of
2 ◦C min−1 [13]. The samples were identified as X-Cu/Ti-Y, where X represents the copper
load (wt.%) and Y the calcination temperature.

3.2. Characterization Techniques

The calcined samples were characterized by X-ray diffraction using an X-ray diffrac-
tometer SmartLab RIGAKU (Tokyo, Japan) with CuKα radiation (1.5404 Å).

Diffuse reflectance UV–vis spectra of the photocatalysts were obtained using a Cary
5000 (UV-vis-NIR) spectrophotometer (Santa Clara, CA, USA); Spectralon teflon (from
Agilent, Santa Clara, CA, USA) was used as a reference blank and the band-gap energy
was determined by the linearization of the slope according to Eg = (1239 ×m)/(−b). when
the absorbance results were equal to zero. The physical adsorption of N2 at −196 ◦C was
carried out using a Quantachrome Nova 3200e soptometer (Boynton Beach, FL, USA) on
previously out-gassed samples at 150 ◦C. The Brunauer–Emmett–Teller (BET) method
was used to calculate the specific surface area. Temperature-programmed reduction was
performed in a ChemBET TPR/TPD chemisorption analyzer within a temperature interval
ranging from room temperature to 600 ◦C with a rate of 10 ◦C/min and flow of 30 mL min−1

of H2 (10%)/Ar gas. A wavelength dispersive X-ray fluorescence (WDXRF) spectrometer
Rigaku ZSX Primus II model (Tokyo, Japan) (rhodium X-ray tube; 4 kW maximum power),
equipped with an automatic sampler for 12 pellets was used for a quantitative copper
content in all the Cu/Ti photocatalysts. SEM images were obtained in a Dual Beam Field
Emission Scanning Electronic Microscopy (FESEM): FEI Nanolab 600 (Lake City, UT, USA).
TEM image was obtained in a Tecnai FEI 300 transmission electron microscope (Waltham,
MA, USA) operated at 300 kV. XPS was performed with an XPS Multiab 2000 system
(Waltham, MA, USA) with an X-ray AlKα (1486.6 eV) source operated at 15 Kv and 1 mA,
400 W and 1 ma. The binding energy was determined by using carbon C (1 s) as a reference
line (284.6 eV). Peak fitting was done by using the XPS fitting program XPSPEAK 41 with
Shirley background.

3.3. DRIFTS and In-Situ UV-Vis Characterization

FTIR spectra were obtained using a Shimadzu IRTracer-100 spectrophotometer (Tokyo,
Japan) equipped with a Praying Mantis for DRIFT spectroscopy and a low/high temper-
ature reaction chamber by Harrick. In each experiment, approximately 25 mg of dried
sample were packed in the sample holder. The experiment was carried out from room
temperature under constant N2 flow (30 mL/min), and a spectrum was recorded at room
temperature and afterward, every 100 ◦C until reaching 600 ◦C.

Diffuse reflectance UV–vis spectra of the catalysts were obtained using a CARY 5000
(UV-VIS-NIR) spectrophotometer (Santa Clara, CA, USA) equipped with a Praying Mantis
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and a high temperature reaction chamber (Harrick). The spectra were recorded during
the activation thermal treatment. In each experiment, approximately 25 mg of the dried
sample were packed in the sample holder under constant nitrogen flow (30 mL min−1). A
Teflon spectrum (Aldrich Company, Santa Clara, CA, USA) was used as a reference. From
25 ◦C and every 50 ◦C, spectra were taken until reaching 600 ◦C.

3.4. Water Splitting Test

The photocatalytic activity of the Cu/Ti materials was evaluated in a home-made
cylindrical glass reactor with an inner quartz tube equipped with a UV pen-ray Hg lamp
(λ = 254 nm, I0 = 4400 microwatts/cm2). This glass reactor had a full operation volume of
250 mL and the scavenger solution consisted of water–hydrazine hydrate (199.5:0.5 mL,
99.93 vol.% of H2O). Hydrazine hydrate was purchased from Fluka (Rupert-Mayer-Str,
Munich, Germany) (24–26%). The optimal hydrazine concentration was taken from previ-
ous experiments [35]. In all the experiments, 50 mg of photocatalyst powder were used
and the suspension was stirred for 20 min while it was purged with nitrogen to remove
the dissolved oxygen from the solution. Once natural oxygen dissolved was removed, the
reactor system was sealed, and the UV lamp was turned on. Hydrogen determination
was done every hour for 8 h in a Gas Chromatograph by Thermo Scientific with thermal
conductivity detector (Waltham, MA, USA) and TracePLOT TG-BOND Msieve 5A Thermo
Scientific column (Waltham, MA, USA). The system was calibrated previously in order to
quantify the hydrogen production.

For the stability test, three cycles of 8 h each were carried out for the most active
photocatalyst (1.0 Ti-Cu), which was calcined at 500 ◦C. After running the experiments, the
UV lamp was turned off, the produced hydrogen was released, and the reaction system
was purged with nitrogen until the hydrogen chromatographic signal was zero. Then, the
reactor system was sealed, and the lamp was turned on again to start the next cycle, and so
on until the third cycle was completed.

4. Conclusions

By means of Cu/TiO2 nanostructures and hydrazine as a scavenging agent, an alter-
native method to produce hydrogen from polluted water is presented. According to the
obtained results, there is a narrow correlation between the physicochemical properties
of the Cu/Ti catalysts and photocatalytically produced hydrogen. The copper loading
and the thermal treatment temperature play an important role, leading to an optimal
brookite/anatase and Cu1+/Cu2+ ratio of 2.3. The OH groups elucidated by FTIR spec-
troscopy generate the titanol groups that were responsible for oxidizing the hydrazine and
reducing the H+ to H2. Simultaneously, a synergistic effect occurred due to the conduction
band position of the semiconductor, and Cu2O donated electronic density to brookite
particles, and the anatase particles received these electrons to allow the reduction of H+

to H2. The 1.0 Cu/Ti 500 catalyst annealed at 500 ◦C with 1 wt.% Cu featured the highest
hydrogen production. At the same time, the stability of this kind of copper materials for at
least three continuous cycles represents an alternative means to produce hydrogen from
an environmentally sustainable point of view, because hydrazine represents a hazardous
chemical that is found in wastewater due to its wide use as a space fuel. These materials
are also cost-effective catalysts due to the use of copper, which is as effective as expensive
transition metals, see Table S1.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/1/74/s1, Figure S1: Adsorption—desorption nitrogen isotherms of (a) different copper
loading Cu/Ti calcined at 500 ◦C, (b) 1.0 Cu/Ti calcined at different temperatures, Figure S2: UV-Vis
spectra of (a) different copper loading Cu/Ti calcined at 500 ◦C, (b) 1.0 Cu/Ti calcined at different
temperatures, Table S1: Some comparative examples of hydrogen production from current literature
using several transition metals.

https://www.mdpi.com/2073-4344/11/1/74/s1
https://www.mdpi.com/2073-4344/11/1/74/s1
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