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Abstract: Solar-to-fuel conversion is an innovative concept for green energy, attracting many re-
searchers to explore them. Solar-driven photocatalysts have become an essential solution to provide
valuable chemicals like hydrogen, hydrocarbon, and ammonia. For sustainable stability under
solar irradiation, titanium dioxide is regarded as an acceptable candidate, further showing excellent
photocatalytic activity. Incorporating the photo-sensitizers, including noble metal nanoparticles and
polymeric carbon-based material, can improve its photoresponse and facilitate the electron transfer
and collection. In this study, we synthesized the graphitic carbon nitride (g-C3N4) nanosheet incorpo-
rated with high crystalline TiO2 nanofibers (NF) as 1D/2D heterostructure catalyst for photocatalytic
water splitting. The microstructure, optical absorption, crystal structure, charge carrier dynamics, and
specific surface area were characterized systematically. The low bandgap of 2D g-C3N4 nanosheets
(NS) as a sensitizer improves the specific surface area and photo-response in the visible region as the
incorporated amount increases. Because of the band structure difference between TiO2 and g-C3N4,
constructing the heterojunction formation, the superior separation of electron-hole is observed. The
detection of reactive oxygen species and photo-assisted Kelvin probe microscopy are conducted to
investigates the possible charge migration. The highest photocatalytic hydrogen production rate of
Pd/TiO2/g-C3N4 achieves 11.62 mmol·h−1·g−1 under xenon lamp irradiation.

Keywords: TiO2 nanofibers; g-C3N4 nanosheets; heterostructure; photocatalyst; water splitting

1. Introduction

The depletion of energy resources and growing environmental concerns due to the
expanding world population have invigorated efforts to exploit alternative clean energy.
Photocatalytic hydrogen production as an attractive approach for resolving energy and
environmental issues has received unprecedented attention [1,2]. Since the sun is virtually
inexhaustible, photocatalysis can keep converting solar energy into hydrogen fuel during
the day. Furthermore, the photocatalyst is indispensable for solving the environmental
issue as for its degradation and antibacterial capability. However, the photocatalytic
efficiency is still limited because of the rapid recombination of photocarrier. The significant
improvement of heterostructure construction for photocatalytic water-splitting further
attracts much attention, studying interfacial engineering [3].

Among the several metal oxides, titanium dioxide (TiO2) has been seen as potential
material according to its reasonable cost, nontoxicity, high stability, and eco-friendliness.
TiO2 also shows excellent photocatalytic activity and photostability [4]. Therefore, many
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studies are devoted to TiO2 photocatalyst for photodegradation of organic pollutants [5],
photocatalytic hydrogen production [6], and photo-reduction CO2 [7]. However, there
are many obstacles on the road for obtaining high efficiencies TiO2 photocatalysts, such
as narrow spectral response interval and high recombination rate of hole and electron.
Thus, numerous studies have been devoted to overcoming these problems, such as surface
modification [8,9], fabricated heterojunction [10,11], multidimensional structure [12,13].

A variety of dimensional structures, 0D, 1D, and 2D materials, have been employed
to design the multidimensional photocatalyst. For 0D/1D heterojunction materials, the
quantum effect can effectively activate and convert the H2O molecule. The inherent ad-
vantages of 1D material, high specific surface area, great exposed edge sites, and fast and
long-distance electron transport can promote the charge separation. Therefore, the syner-
gistic effect between 0D/1D material can remarkably enhance H2 evolution activity [14,15].
The emerging 1D/2D heterojunction materials also draw ever-growing research attention
in the photocatalysis field. For designing the 2D nanomaterials, thin sheets or layers
possess a significant number of active sites on the surface, a short diffusion pathway for
facilitating excitons dissociation, superior electron mobility, and excellent catalyst supports
ability [16,17]. Combined with the aforementioned advantages, 1D/2D heterojunction
materials demonstrate rapid carrier transfer along the axial direction, restrain photocorro-
sion and agglomeration, prolonging the stability, and provide intimate interfaces between
1D/2D, favoring their versatility [18–20].

Graphitic carbon nitride (g-C3N4) as a 2D material has been highlighted as a promising
metal-free photocatalyst because of its unique electrical, optical, structural, and physic-
ochemical properties [21–23]. g-C3N4 is a visible-light-driven photocatalyst (Eg~2.7 eV)
with a conduction band edge at −1.1 eV and valence band edge at 1.6 eV (vs. normal
hydrogen electrode (NHE)). These fascinating properties allow g-C3N4 to be used in pho-
todegradation [24], CO2 photoreduction [25], water splitting [26,27], etc. Though g-C3N4
possesses remarkable properties, its low absorption coefficient and high charge carriers
recombination still limit g-C3N4 performance. To overcome these drawbacks, forming a
composite material with other semiconductors is a good strategy. Li et al. summarized
recently advanced in g-C3N4-based heterojunction photocatalysts [28]. To date, TiO2 [29],
CdS [30,31], ZnIn2S4 [32], BiOCOOH [33], MoS2 [34,35], etc., have all been attempted to
construct heterojunction g-C3N4-based heterojunction photocatalysts. 2D/1D nanostruc-
tured g-C3N4/ZnO demonstrates the formation of heterojunction effectively separates the
charge carriers and thus enhances the photocatalytic activity [36]. 2D/1D nanostructured
g-C3N4/TiO2 shows improved visible-light-driven photocatalytic activity and prolonged
charge carrier lifetime [37,38].

Herein, we proposed a multidimensional heterostructure constructed by 2D g-C3N4
nanosheet incorporated with high crystalline 1D TiO2 nanofibers for the photocatalytic
degradation and water splitting. To achieve superior hydrogen production yield, we also
introduced 0D Pd NP as cocatalyst, enriching the active site and rectifying the carrier
transport in the interface by Schottky junction. The morphology, optical absorption, crystal
structure, composition, and specific surface area were characterized systematically. The
charge transfer behavior was unveiled by using a photo-assisted kelvin probe microscope.
The superior separation of electron-hole was attributed to the heterojunction formation, and
the preferred transfer of TiO2 and g-C3N4 was interpreted. The nanoscale multidimensional
Pd/TiO2/g-C3N4 catalyst showed a high hydrogen evolution rate and presented the great
potential to address the environment and energy issue in the future.

2. Results and Discussion

Multidimensional photocatalysts usually construct the heterostructure, then perform-
ing diverse crystal structure. To unveil the incorporation of g-C3N4 NS and TiO2 NF, we
studied their crystal structure using the synchrotron X-ray spectroscopy, with a radiative
wavelength of 1.025 Å. In Figure 1a, the typical peak at the 2θ of 16.5◦ was indexed to
(101) plane of the reflection of anatase phase TiO2. Among various g-C3N4/TiO2 cata-
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lysts, the reflection of anatase TiO2 phase presented high intensity, indicating the perfect
crystalline dominated by high crystalline TiO2 NF. The related crystallite size of anatase
TiO2 in various TiO2 catalyst are all close to 34 nm, as reported in Table S1. Bulk g-C3N4
shows two diffraction peaks at 8.50 and 18.35◦, assigned to the in-plane arrangement and
out-of-plane of C-N atoms in heptazine. Both diffraction peaks were hardly observed in a
series of g-C3N4/TiO2 catalysts. For the better resolution and detailed inspection of crystal
structure examination, we further collected the magnified spectra with a slower scan rate
of 0.005◦ s−1. In Figure 1b, we observed the diffraction peak of (002) plane of g-C3N4 NS
appearing gradually as the incorporation concentration increased. Interestingly, the Raman
spectra of various g-C3N4/TiO2 catalysts revealed a strong but broad peak, which becomes
strong at Raman shift ranging from 1200 to 1800 cm−1. It further covered the typical vibra-
tion modes of anatase TiO2, including Eg (144 cm−1), B1g (397.9 cm−1), A1g (513.0 cm−1),
and Eg (637.2 cm−1) [39]. These results indicated that the expected scattering of g-C3N4 NS
coupled with incident light significantly improved the successful incorporation of g-C3N4
NS and TiO2 NF. Moreover, the evidence elaborated that the weak diffraction peak of (002)
plane could speculate the laminate structure destruction by TiO2 NF embedded and layer
disintegration.
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Figure 1. (a) Synchrotron X-ray spectra and (b) Raman spectra of the various g-C3N4/TiO2 catalysts.

To elucidate the chemical structure of g-C3N4/TiO2 catalysts, we further studied the
FTIR spectra, as shown in Figure 2. The peaks at 3300 cm−1 and 1200–1700 cm−1 were
assigned to N-H and C-N stretching vibration. N breathing mode of heptazine appeared at
980 cm−1. The out-of-plane and in-plane bending vibration were indicated at 810 cm−1

and 690 cm−1, respectively [40]. We found that the peak at low wavenumbers might be
assigned to the Eg band (144 cm−1) of anatase TiO2 because of the approximated energy
difference of the photon between infrared absorption and Raman scattering. Obviously,
with increasing amounts of g-C3N4 NS, the stretching vibrations became stronger.

The optical properties are crucial factors for the photocatalytic activity. Pristine g-C3N4
revealed an absorption peak at around 380 nm, attributed to the π-π* transition in the
aromatics. Incorporating g-C3N4 with TiO2 NF substantially improved the absorption of
the composite photocatalyst in the visible region. We found a red-shift appeared in the
absorbance spectra and became intensive with increasing the g-C3N4 amount (Figure 3a).
It also was predictable to promote the overall activity of g-C3N4/TiO2 catalysts. The PL
spectra are presented in Figure 3b; PL intensities were enhanced by incorporating g-C3N4
NS because of the strong emission by g-C3N4 NS. A slight red-shift was observed, being
consistent with the absorption behavior. Notably, the board peak containing the second
shoulder was attributed to the indirect radiative caused by a few structural defects trapping
electrons in the in-plane g-C3N4 [41]. As incorporated with TiO2 forming a heterostructure,
it might provide an available pathway for excited charge carriers migration.
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Two-dimensional g-C3N4 NS with the ultrathin structure constructed by few layers
usually shows a high specific surface area, providing rich active sites on the photocatalyst
surface compared to one-dimensional photocatalysts. Hence, we examined the surface
features of g-C3N4/TiO2 catalysts by the Brunauer–Emmett–Teller (BET) and Barrett–Joyner–
Halenda (BJH) method. The g-C3N4 NS shows the remarkable properties in SBET and pore
features. The SBET of g-C3N4 NS is about 88.9 m2·g−1, and much higher than that of TiO2
NF (49.6 m2·g−1), as shown in Table 1. When the incorporation amount of g-C3N4 NS
increased from 1.0 wt% to 10.0 wt%, the surface area of composites was gradually enhanced
(Figure 4). At the same time, the BJH pore size and volume of g-C3N4/TiO2 catalysts were
also amplified, inferring the cavities or tunnels were constructed in g-C3N4/TiO2 catalyst.
It might be beneficial to aqueous penetration in the photocatalytic reaction.

To obtain the elemental composition, we implemented the X-ray photoelectron spec-
troscopy to analyze the C1s orbital. The typical C–C bonding presented in all of the
g-C3N4/TiO2 catalysts was assigned to the binding energy of 284.8 eV, suggesting the sur-
face adsorption of carbon contamination and carbon dioxide (Figure 5). A low peak located
at 286.6 eV was attributed to the C=N group [42]. Notably, we observed the increasing
peak located at 288.6 eV referred to the C-N group, denoting the incorporation amount of
g-C3N4 increased in the g-C3N4/TiO2 catalyst. We also studied their composition change
by calculating the N/Ti and N/C atomic ratio, as reported in Table S2. Both ratios indicated
the same tendency that the ratio of nitrogen to titanium and carbon increased with the
increasing amount of g-C3N4.
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Table 1. BET specific surface area (SBET), pore size, and pore volume of various g-C3N4/TiO2 catalysts.

Sample Name SBET (m2·g−1)
Pore Size (nm) Pore Volume (cm3·g−1)

BJH Adsorption BJH Desorption BJH Adsorption BJH Desorption

TiO2 49.64 22.7 21.3 0.295 0.294

1.0 wt%-CT 58.96 25.9 24.5 0.405 0.404

3.0 wt%-CT 59.71 26.7 25.0 0.413 0.412

5.0 wt%-CT 59.91 26.8 25.1 0.426 0.425

10.0 wt%-CT 61.74 28.2 26.7 0.451 0.450

g-C3N4 88.98 25.9 24.1 0.599 0.597
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As mentioned above, the successful incorporation with the visible-driven g-C3N4 NS
significantly improved several crucial factors for photocatalytic reaction, such as optical
absorption, surface area, and heterojunction construction. To comprehend the optimal
incorporation of g-C3N4 NS for the catalytic activities, we evaluated their photodegrada-
tion of organic dyes and photocatalytic hydrogen production. In the photodegradation
of methyl orange (MO), the essential elements are rich reactive oxygen species (ROS),
which are highly active in attacking the organic dye, leading to discoloration. The 2D/1D
heterostructure of g-C3N4/TiO2 catalyst provides an alternative approach for the charge
carrier migration, inhibiting the recombination and promoting the photo-excited electron-
hole pairs to produce ROS efficiently. Figure 6a presented the photodegradation activity
using various g-C3N4/TiO2 catalysts. Bulk g-C3N4 showed lower activity compared to
TiO2 NF, which was attributed to low crystalline and structural defects in bulk g-C3N4.
Notably, incorporating the visible-driven g-C3N4 NS with TiO2 NF enhanced the overall
degradation activity, and its reaction rate constant was up to 0.0099 min−1 as the amount
added to 5.0 wt%. Up to 10.0 wt%, discoloration behavior was inhibited (Figure 6b).
It indicates that much more g-C3N4 might dominate the surface feature because of the
significant enhancement of SBET and optical absorption, whereas influenced exposure of
TiO2 active sites, leading to low intrinsic activity. Likewise, under the Xe lamp irradiation,
the photocatalytic hydrogen production presented the tendency as the g-C3N4 amounts
increased to 5.0 wt%, in which the hydrogen production rate was 11.62 mmol·h−1·g−1

(Figure 6c,d). Here, Pd NP decorated by the wet-impregnation method assisted the electron
collection on the surface for proton reduction to hydrogen. Based on our best knowledge,
excellent ordering in highly crystalline TiO2 NF retains the numbers of electron-hole pairs
and avoids the recombination as irradiated. When Pd NP locates at the interface of a metal
oxide such as TiO2, the Schottky barrier forms and facilitates electron rectification, not back
to metal oxide as electron once passes through the interface [6]. Thus, the optimal 5.0 wt%
g-C3N4/TiO2 catalyst with sufficient active sites and efficient charge transfer revealed
significant photocatalytic activities.
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We conducted the spherical-aberration corrected field-emission transmission electron
microscope to investigate the heterostructure of Pd/TiO2/g-C3N4 catalyst. Figure 7a
revealed that TiO2 NF lay on the multi-layer of g-C3N4 NS and decorated with Pd NP. In the
magnified image of g-C3N4 NS (Figure 7b), it presented an ultrathin sheet morphology,
implying the bulk g-C3N4 was disintegrated by ultrasonic treatment. The topography
was also reported in Figure S1, and the thickness is about 4.0 nm. In the case of TiO2 NF
(Figure 7c), a high ordering of anatase TiO2 was observed, and the (101) plane with an
interplanar spacing of 3.53 Å was referred to. (Figure 7d) Also, the Pd NP with a diameter
of 3.0 nm was identified, and the typical (111) plane was observed, showing an interplanar
spacing of 2.25 Å (Figure 7e).
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The scavengers were used to evaluate the reactive oxygen species (ROS) during the
photodegradation to verify the charge transfer in the g-C3N4/TiO2 catalyst’s heterostruc-
ture. Tert-butyl alcohol (TBA) and p-benzoquinone (p-BQ) can investigate the role of
relevant ROS, such as hydroxyl radical and superoxide radical, respectively. Ammonium
oxalate (AO) can capture the hole that indirectly produces hydroxyl radical from the hy-
droxyl group. Figure 8a demonstrates the photodegradation using pristine TiO2 NF. The
addition of BQ or AO into the degradation reaction inhibited the TiO2 activity. It elucidates
the superoxide radicals derived by electrons and holes play a crucial role in the photodegra-
dation. Similarly, a consistent phenomenon was observed in the photodegradation of
g-C3N4/TiO2 catalyst (Figure 8b). Notably, with the addition of TBA using TiO2, the
discoloration by TiO2 was still inhibited, implying a few hydroxyl radicals were produced.
In contrast, g-C3N4/TiO2 revealed good discoloration behavior, but the degradation rate
of methyl orange was inhibited slightly with TBA, implying few hydroxyl radicals existed.
Based on our best knowledge, the hydroxyl radical was produced by the reaction of the
TiO2-induced hole and a hydroxyl group. Combining the g-C3N4 NS, it provided the other
pathway for the hole migration, indicating the change of the selectivity of hole which might
migrate or react with the hydroxyl group on TiO2. Thus, the slight degradation activity can
be attributed to the hole remaining on TiO2, which derived fewer hydroxyl radicals. We
believed that most holes migrated from TiO2 NF to g-C3N4 NS, not producing hydroxyl
radicals on the g-C3N4 NS due to the inappropriate valance band position for hole-induced
oxidation of the hydroxyl group. Herein, we proposed the charge transfer mechanism in
the as-constructed heterostructure (Figure 8c). Under the Xe lamp irradiation, electron-hole
pairs formed in both catalysts and then separated. The holes of TiO2 NF prefer to transfer
to the valance band of g-C3N4 NS and combined with localized holes, directly oxidizing
the organic dye or sacrificing agent. The electrons of TiO2 retain in the conduction band.
On the other hand, the electrons of g-C3N4 transfer to the conduction band of TiO2 NF and
subsequently combine with local electrons to complete the photocatalytic degradation. Fur-
thermore, as decorated Pd NP on the catalyst, electrons further passthrough the Schottky
barrier and reduce protons to produce hydrogen.
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To clarify the charge transfer in the heterostructure of g-C3N4/TiO2, we measured
the surface potential and calculated the contact potential difference (CPD) with/without
UV irradiation (Figure 9). The surface topographic images for TiO2 NF and g-C3N4 NS
clearly observe the TiO2 NF laid on g-C3N4 NS in Figure 9a-1. We further conducted the
surface potential mapping in this area. In dark (Figure 9a-2), both TiO2 NF and g-C3N4
NS presented similar CPD due to the successful construction of heterostructure, causing
the fermi level alignment. As UV irradiated to the g-C3N4/TiO2 (Figure 9b-1), the surface
potential of TiO2 increased significantly instead of that of g-C3N4 (Figure 9b-2). The slight
increment of surface potential on g-C3N4 (0.073 mV) suggested an overall fermi level
increase, indicating a positive work function shift (Figure 9c). It also indicated that the
photo-induced electrons might migrate to TiO2, whose average potential change (∆P) is
about 0.263 V. A dramatic increment in potential which is observed in the interface between
TiO2 NF and g-C3N4 NS implied electrons transfer. This result elucidated the g-C3N4/TiO2
constructed with the type II heterojunction. The photo-assisted KPFM would help verify
the heterojunctions and the charge migration in the multidimensional photocatalyst.
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3. Materials and Methods
3.1. Synthesis of Catalyst

Titanium dioxide nanofibers (TiO2 NF) were prepared by the hydrothermal method
and further calcined in the air, according to our previous work [43]. About 2.50 g anatase
TiO2 powder (Acros, 98%, Geel, Belgium) was gradually poured in 62.5 mL of 10.0 M
NaOH (Fisher Scientific, >97%, Fair Lawn, NJ, USA) aqueous solution in a Teflon-lined
autoclave. The mixture solution was vigorously agitated for 30 min, followed by heating
to 150 ◦C for 24 h. Sodium titanate nanofibers were obtained and subsequently washed
by diluted hydrochloric acid (HCl, Acros, 37%, Geel, Belgium) to eliminate sodium ions.
Then, hydrogen titanate nanofibers was washed with distilled water until neutralized and
then collected by filtration. Finally, the sample was dried at 80 ◦C in the oven. The highly
crystalline TiO2 NFs were obtained after the calcination of hydrogen titanate at 600 ◦C.
On the other hand, bulk graphitic carbon nitride (g-C3N4) was synthesized by thermal
polymerization at 550 ◦C. For the excellent dispersion in aqueous and the disintegration of
bulk status, bulk g-C3N4 was vigorously agitated in aqueous by ultrasonicator. To further
obtain the g-C3N4/TiO2 catalysts, 0.50 g TiO2 NFs were suspended in 100.0 mL of DI water
and subsequently irradiated under a UV-B lamp for activation of TiO2. Various amounts
of g-C3N4, including 1.0, 3.0, 5.0, 10.0 wt%, were added into the solution and stirred for
30 min. After drying, various g-C3N4/TiO2 catalysts were acquired and named as CT.
For improving the hydrogen production ability, 1.0 wt% palladium nanoparticles were
deposited on as-prepared catalysts by the wet-impregnation method. Palladium (II) acetate
(Pd(OCOCH3)2, ACROS, 99.9%, Geel, Belgium) was dissolved in a mixture of ethanol and
acetone with a volume ratio of 1:1. Then, 0.60 g g-C3N4/TiO2 catalysts were further added
to the solution and stirred for 3 h. After dried at 80 ◦C, remained powder was calcined at
350 ◦C for 3 h under the mixture flow of 15% H2 in N2 buffer. Finally, the multidimensional
Pd/TiO2/g-C3N4 catalyst was obtained.
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3.2. Material Characterization

The crystal structures of various g-C3N4/TiO2 catalysts were characterized by syn-
chrotron X-ray spectroscopy (λ~1.025 Å) on beamline 13A1 of the National Synchrotron
Radiation Research Center (NSRRC) in Taiwan. It was recorded from 2θ between 5 and 45
with a 0.01◦ step at 0.05◦ s−1. The magnified X-ray spectra were obtained from 2θ between
17.00 and 20.00 with a 0.01◦ step at 0.005◦ s−1. The chemical structure was analyzed using
Fourier-transform infrared spectroscopy (FT-IR, Tensor 27, Bruker, Karlsruhe, Germany)
in the range of 4000 to 450 cm−1 with a resolution of 2.0 cm−1. In the absorbance charac-
terization, catalyst powders were dispersed in the DI water and then placed in a quartz
cuvette. The absorbance spectra were measured by UV–VIS spectrophotometer (V-730,
JASCO, Tokyo, Japan). For the photoluminescence measurement, catalysts were squeezed
as the pellet and determined by photoluminescence spectrophotometer (UniDron-TRPL,
CL technology, New Taipei City, Taiwan) with an excitation of 375 nm laser. The surface
feature of photocatalysts, including specific surface area, pore size, and pore volume, were
investigated by surface area and porosity analyzer (ASAP 2020, Micromeritics, Norcross,
GA, USA). The X-ray photoelectron spectrometer with an X-ray source of Al Kα (K-alpha
X-ray photoelectron spectrometer, Thermo Fisher Scientific, Waltham, MA, USA) was used
to analyze the chemical state and precise composition. The morphology of Pd/TiO2/g-
C3N4 catalysts was observed by using the spherical-aberration corrected field-emission
transmission electron microscope (JEM-ARM200FTH, JEOL, Tokyo, Japan).

3.3. Photocatalytic Experiment

We implemented two methods, including photodegradation of methyl orange
(C6H4(OH)2, Acros, 99.5%, Geel, Belgium) and photocatalytic hydrogen production, to
evaluate the photocatalytic activity of various g-C3N4/TiO2 catalysts. In the former part,
20.0 mg of the catalyst was dispersed in the 10.0 ppm of methyl orange aqueous, further
stirred for 60 min in the dark to lower the surface adsorption error. The suspension was
then irradiated to two UV-B lamps (G8T5E 8W, SANKYO DENKI, Kanagawa, Japan) at
ambient conditions under continuous stirring. The distance of lamps-to-reactor was kept
about 5.0 cm. At the optimal time interval, we sampled about 3.0 mL of the suspension.
Before the absorbance spectra examination, these samples were centrifuged for 15 min at
5000 rpm. The concentration of residue dye in the supernatant was estimated by using a
UV–VIS spectrophotometer (V-730, JASCO, Tokyo, Japan) in the 400–900 nm, followed by
recalculated from the calibration equation.

In the photocatalytic hydrogen production, the experiment was conducted in the
Labsolar 6A system (Perfectlight Technology, Beijing, China) with a 300.0 mL glass reactor
under 300 W Xenon irradiation. Total of 50.0 mg catalyst was dispersed in the 100.0 mL
mixture of equivolume deionized water and ethanol. The hydrogen concentration was
determined by online gas chromatography with a barrier ionization discharge detector
(Shimadzu, Nexis GC-2030, with helium as a carrier gas, Kyoto, Japan) at a time interval of
30 min for 3 h.

For the investigation of different reactive oxygen species, we used the specific scav-
engers including p-benzoquinone (Acros, 99%, Geel, Belgium), ammonia oxalate (VETEC,
98%, trademark of Sigma-Aldrich, St. Louis, MO, USA), and tert-butyl alcohol (J.T.Baker,
≥99.0%, Phillipsburg, NJ, USA) in the photodegradation of 5.0 ppm methyl orange for the
captivity of superoxide radicals, holes, and hydroxyl radicals.

4. Conclusions

Multidimensional Pd/TiO2/g-C3N4 catalysts were fabricated for the photocatalytic
hydrogen production under xenon lamp irradiation. Constructing the heterostructure
of 2D g-C3N4 NS and 1D TiO2 NF can associate both advantages, such as the enhanced
specific surface area, optical absorption in the visible region, and excellent charge transfer.
The Pd NP decoration on the optimal g-C3N4/TiO2 catalyst improved the overall hydrogen
production up to 11.62 mmol·h−1·g−1. Through the ROS detection and KPFM investigation,
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we clarified the charge transfer behavior belonged to type II heterojunction. The photo-
induced electrons prefer to migrate from g-C3N4 NS to TiO2 NF, reducing proton for
hydrogen evolution on Pd cocatalyst. It also contributed to the excellent and rational
electron-holes separation, inhibiting the recombination. In summary, the 0D/1D/2D
multidimensional Pd/TiO2/g-C3N4 catalyst demonstrated excellent feasibility for the
photocatalytic material design, also showing high activity under solar irradiation for
solving the energy crisis and environmental concerns in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/1/59/s1, Figure S1: Surface topographic image of g-C3N4 NS. Table S1: The calculated
crystallite size of anatase TiO2 in various catalysts. Table S2: The calculated atomic ratio.
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