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Abstract: Flax shive is the main waste (up to 70 wt %) in the production of flax fiber. It represents
the lignified parts of the flax stem mainly in the form of small straws. Complex processing of such
wastes is a significant problem due to the heterogeneity of the chemical structure of lignin. This
article presents the results of reductive catalytic fractionation (RCF) of flax shive in ethanol and
isopropanol at elevated temperatures (225–250 ◦C) in the presence of a bifunctional catalyst (Ru/C)
and molecular hydrogen. This provides solvolytic depolymerization of lignin and hemicelluloses
presented in flax shive. Catalytic hydrogenation effectively stabilizes the formed lignin interme-
diates and prevents repolymerization reactions producing the lignin fraction with a high degree
of depolymerization. RCF of flax shive produces solid products with a high cellulose content and
liquid products consisting mainly of monophenolic compounds. Furthermore, the effect of different
characteristics (the ruthenium content, particle size, and support acidity) of the bifunctional cata-
lysts containing ruthenium nanoparticles supported on mesoporous, graphite-like carbon material
Sibunit®-4 on the yield and composition of the products of hydrogenation of flax shive in sub- and
super-critical ethanol has been studied. Bifunctional catalysts Ru/C used in the RCF of flax shive
increase its conversion from 44 to 56 wt % and the yield of monophenols from 1.1 to 10.2 wt % (based
on the weight of lignin in the sample). Using the best Ru/C catalyst containing 3% of Ru on oxidized
at 400 ◦C carbon support, the high degree of delignification (up to 79.0%), cellulose yield (up to
67.2 wt %), and monophenols yield (up to 9.5 wt %) have been obtained.

Keywords: flax shive; reductive catalytic fractionation; Ru/C catalysts; valorization; biomass

1. Introduction

The depletion of fossil resources and CO2 emissions, negatively affecting the environ-
ment, require new methods for use of renewable plant raw materials, including agricultural
waste, to ensure environmental safety and social and economic sustainability [1].

Flax shive is the nonfibrous fraction of flax straw. It has a highly lignified structure and
represents an agricultural waste widespread in Europe and North America. The flax shive
composition includes lignin (~25%), cellulose (50%), and hemicelluloses (20%) [2,3]. Lignin
is one of the three main (20–30 wt %) polymeric components of plant biomass. It is formed
by biochemical oxidation of the coniferyl, sinapic, and p-coumaric alcohols and consists
mainly of the corresponding phenylpropane units [4]. The lignin of herbaceous plants
contains all three structural units. herbaceous biomass has the potential of becoming the
largest renewable source of bioproducts and biofuels. Lignin is conventionally extracted
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by sulfate and sulfite pulping of the lignocellulosic raw materials. Such lignins are more
condensed than native ones and contain sulfur, which is a catalytic poison and a dangerous
pollutant. An intensively studied method for obtaining relatively pure and more reactive
lignin is organosolv pulping. however, even such a sustainable method results in partial
condensation of lignin with the simultaneous cleavage of the β-aryl ether bonds [5].

Recently, new methods for efficient conversion of lignins and lignocellulosic biomass
to fuel components and chemical products have been developed [6–9]. Reductive catalytic
fractionation (RCF) of plant biomass is one of these methods, which includes catalytic
depolymerization of lignin and isolation of cellulose [10,11]. The lignin obtained in this way
contains macromolecular components with high oxygen content [12,13]. Their selective
depolymerization and deoxygenation uses the catalysts based on noble metals (e.g., Au,
Pd, Pt, and Ru) and less expensive but also less active transitional metals (e.g., Fe, Cu, and
Ni) [14,15]. Ru is most efficient catalyst for the aqueous-phase hydrogenation of biosourced
compounds [16]. On the other hand Ru is least expensive noble metal [17].

A presence of acid catalysts in the reaction mixture accelerate RCF process and results
in lignin mononers yields increase due to acidolysis of ether bonds between phenyl-
propane units [18,19]. Our group previously studied supported ruthenium catalysts
based on oxidized graphite-like carbon Sibunit®-4 (containing acid surface species [20,21])
for lignin and wood conversion, and subsequently set out to identify lower cost, easily
available, and highly efficient catalysts to enhance the efficiency of the lignin conversion
process [22–24].

This study investigates the biorefining of flax shive using the reductive catalytic frac-
tionation (RCF) process over bifunctional catalysts bearing nanodispersed ruthenium, sup-
ported on carbon material Sibunit®-4 (S4) containing acidic surface functional groups. herein,
various fractions of Ru/C catalysts based on S4 oxidized at different temperature were
prepared and characterized. Lastly, catalysts were evaluated in reductive depolymerization
of lignin. The effect of the main catalysts characteristics (acidity and Ru content) and the
process conditions (temperature, solvent) on the flax shive biomass conversion, yields
of gaseous, liquid, and solid products, and composition of the liquid products and their
molecular weight distribution was studied.

2. Results and Discussion
2.1. Catalysts Preparation and Characterization

In early works [22–24], the reductive catalytic fractionation of woody biomass with
powder Ru/C catalysts based on graphite-like mesoporous carbon Sibunit@-4 (S4) was
considered. In this work, a number of catalyst characteristics were varied, including
temperature of the support oxidation, the ruthenium content and the fractional composition
of the catalyst (granular or powder).

Firstly, four carbon supports were prepared based on S4: initial powder S4, this
powder oxidized at 400 and 450 ◦C, granular S4 oxidized at 500 ◦C. The supports were
labeled as: S4, S400, S450, S500 g, respectively (Table 1). Varying the oxidation temperature
allows us to obtain different amounts of oxidized centers on the surface of the carbon which
can affect not only the acidic properties, but also the distribution of active component. The
granular support was used for the estimation of diffusion limits. Secondly, Ru-containing
catalysts with 3 wt % of Ru were prepared based on the obtained supports (Tables 1 and 2).
Catalysts were labeled 3RSg, 3RS500g, 3RS400, 3RS450, respectively. In order to decrease
the amount of the noble metal we also obtained the catalyst with 1 wt % of Ru (1RS450)
based on S450 support.
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Table 1. Texture and acid characteristics of carbon support and the supported ruthenium catalysts (3 wt % of Ru).

Support Code
BET Surface Area

SBET, m2/g
Pore Volume
Vpore, cm3/g

Average Pore Size
<dpore>, nm pHpzc

1

Support Catalyst Support Catalyst Support Catalyst Support Catalyst

Sibunit-4 S4 364 273 0.51 0.32 5.66 4.77 7.66 8.05
Sibunit-4

oxidized at
400 ◦C

S400 332 300 0.42 0.37 5.06 5.01 6.88 7.12

Sibunit-4
oxidized at

450 ◦C
S450 380 341/368 2 0.53 0.50/0.52 2 5.66 5.88/4.80 2 5.33 6.89/6.06 2

Sibunit-4
oxidized at

500 ◦C
(grains)

S500g 287 233 0.37 0.28 5.14 4.80 3.34 6.44

1 pHpzc is the pH of the point of zero charge. 2 1 wt % Ru catalyst.
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Figure 1. Transmission electron microscopy images of (a) the 3%Ru/Sib-4 and (b) 1%Ru/Sib-4-ox-450 catalysts.

Table 2. Ru particle sizes and dispersion in the prepared catalysts (results of statistical processing of
the TEM data, Figure 1).

Support
Ruthenium

Content,
wt %

Code
Ru Particle Size, nm 1

DRu
dmin dmax <dl> <dS>

Sibunit-4, grains 2 3 3RSg 0.76 3.46 1.42 ± 0.02 1.71 0.77
Sibunit-4 oxidized
at 500 ◦C 2, grains 3 3RS500g 0.69 3.14 1.30 ± 0.01 1.53 0.85

Sibunit-4 oxidized
at 400 ◦C 3 3 3RS400 0.66 3.00 1.19 ± 0.01 1.40 0.94

Sibunit-4 oxidized
at 450 ◦C 3 3 3RS450 0.52 2.37 1.13 ± 0.01 1.39 0.94

Sibunit-4 oxidized
at 450 ◦C 3 1 1RS450 0.52 1.79 1.06 ± 0.03 1.27 1.03

1 dmin and dmax—the minimum and maximum particle diameters, <dl> = Σdi/N—the mean linear particle size,
<dS> = Σdi

3/ Σdi
2—the mean volume-surface particle size, DRu—the dispersion of Ru 2 1.0–1.6 mm fraction.

3 56–94 µm fraction.
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Texture properties, morphology and acid properties of the supports and catalysts were
studied using N2 adsorption (Table 1), transmission electron microscopy (TEM) (Table 2,
Figure 1) and acid titration (Table 2). An increase in the temperature of the oxidative
treatment of the carbon support (CS) and the deposition of ruthenium reduced the specific
surface area SBET, pore volume Vpore, and average pore size dpore, probably due to partial
destruction of the graphite-like structure of the Sibunit-4 CS during oxidation and blocking
of some support pores with particles of the active component due to its precipitation
(Table 1).

An increase in the temperature of the oxidative treatment of the CS also results in a
decrease in the pHpzc value, which apparently results from an increase in the concentration
of the surface acid species [25]. The deposition of ruthenium is accompanied by a slight
increase in the pHpzc values (Table 1) obviously due to deactivation of the acid sites as a
result of Ru particle deposition.

The statistical analysis of TEM images was performed to investigate Ru particles
distribution in relation to Ru loadings (1 and 3 wt %) and catalyst support acidity (Table 2).
All the catalysts based on the oxidized supports have a smaller ruthenium particle size
and a narrower pore size distribution as compared with the initial support (Tables 1 and 2,
Figure 1). The average ruthenium particle diameter decreases in the series 3RSg >3RS500g
>3RS400 >3RS450 >1RS450 (Table 2). This can be explained by the interaction of negatively
charged surface oxidized centers, the number of which increases with temperature of the
support oxidative treatment, with ruthenium ions. The distribution of ruthenium particles
on granular supports is less uniform.

Ru loading as low as 1 wt % gives a better Ru distribution in comparison to 3 wt %
catalysts providing smaller ruthenium particle size (Table 2, Figure 1). Ru dispersion in the
1RS450 catalyst, appeared to be higher than 1 (Table 2). Taking into account the error in the
mean particle diameter measurements, a conclusion may be made, that for 1RS450 catalyst
all ruthenium atoms are located on the surface and fully available for the reaction.

The X-ray photoelectron spectroscopy (XPS) was used for a quantitative and qualita-
tive analysis of the obtained catalysts (Table 3, Figure 2). The XPS shows that for all the
samples, the most intense peaks are observed in the range of 284-285 eV, which is typical of
graphite. In the range of 285-287 eV, there are peaks attributed to carbonyl, hydroxyl, and
ether groups, as well as fragments of carboxyl groups. The Ru 3d5/2 peak observed near
281 eV is typical for oxidized ruthenium RuO2. Metallic ruthenium is characterized by a
peak near 280 eV; however, this shift toward higher binding energies can also be explained
by the relaxation shift observed for very fine metallic particles [26,27].

Table 3. Surface elemental composition of the catalyst determined by XPS.

Catalyst.
C O Ru

at % wt % at % wt % at % wt %

3RS450 91.9 84.9 7.5 9.2 0.6 4.7
1RS450 92.0 85.0 7.6 9.4 0.4 3.1

2.2. Catalytic hydrogenation of Flax Shive in Ethanol

The choice of the process temperature, duration and hydrogen pressure is based on
the analysis of literature [11,19,24,28]. The results of experiments on hydrogenation of flax
shive in ethanol without and with the different Ru/C catalysts are given in Table 4.
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Table 4. Results of noncatalytic and catalytic hydrogenation of flax shive in subcritical ethanol at
225 ◦C.

No. Catalyst Conversion 1,
wt %

Liquid
Yield

Solid
Yield Gas Yield Monophenols 2,

wt %

1 no 44.1 38.5 41.0 5.6 1.52
2 3RS450 55.3 42.5 33.0 1.6 5.65
3 1RS450 52.2 44.5 41.0 7.7 4.30
4 3RS500g 46.7 41.0 40.0 5.7 3.54
5 3RS400 50.5 41.5 45.6 9.0 4.78
6 3RSg 56.3 39.8 39.0 16.5 4.44
7 S450 39.0 34.5 41.0 4.5 2.24
8 3RS450 3 43.5 21.4 56.5 16.8 3.47
9 3RS450 4 87.6 31.6 12.4 37.8 5.27

1 Conversion to the liquid and gaseous products; 2 per flax shive sample mass; 3 isopropanol as a solvent; 4 the
process temperature 250 ◦C.

During hydrogenation of flax shive in subcritical ethanol, the catalysts significantly
intensify the biomass conversion (from 44 to 56 wt %) and increase the yield of liquids
(from 38 to 44 wt %) and gases (from 5.6 to 16 wt %). While using the catalysts, the yield of
monophenols grows significantly (from 1.5 to 3.5-5.6 wt %) (Table 4). These characteristics
are improved due to the depolymerization of native lignin in the presence of the catalysts,
which accelerates the cleavage of the C-O and C-C bonds [29].

The maximum yield of monophenols (5.6 wt % per shive and 10.2 wt % per lignin),
which are the most valuable products, is obtained using the catalyst oxidized at 450 ◦C and
containing 3 wt % of Ru. The reductive catalytic fractionation of flax shive with the use
of the carbon support (Sib-4) yields 2.24 wt % of monophenols. When using the granular
catalysts (runs 4 and 6), the monophenol yield does not exceed 4.4 wt %. It should be noted
that the use of the granular 3% Ru/C catalyst on CS oxidized at 500 ◦C enhances the gas
yield up to 16.5 wt %.

Thus, the highest efficiency of the catalytic process is attained by the 3RS450 charac-
terized by the maximum specific surface area and porosity (Table 1) and the minimum
ruthenium particle size (Table 2).

The catalysts change the CO2 yield of the process insignificantly, but fundamentally
increase the CO and CH4 yields, from trace amounts to 2–7 wt % per shive weight (Table 5).
The catalysts on the support oxidized at 450 ◦C is most active in the shive conversion
(Table 5) and gives the highest CO and CH4 yields. The growth of the CO yield is caused
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by the intensification of decarbonylation of the Gibbert ketones [30–33] formed on the
catalyst metal sites. Methane is formed mainly at hydrocracking of the aliphatic structural
fragments of lignin [34,35]. Increase the CO and CO2 yields in the presence of catalyst
indicates the catalytic deoxygenation of the lignin structural fragments.

Table 5. Yield and composition of the gaseous products of hydrogenolysis of flax shive.

No. Catalyst CO wt % CO2 wt % CH4 mass %

1 no - 5.6 -
2 3RS450 3.6 6.8 2.2
3 1RS450 1.8 5.9 traces
4 3RS500g traces 5.7 traces
5 3RS400 1.4 6.6 1.0
6 3RSg 7.4 6.5 2.6
7 Sib-4 (450) traces 4.5 traces
8 3RS450 1 4.9 7.6 7.6
9 3RS450 2 18.3 13.2 6.3

1 Isopropanol as a solvent. 2 the process temperature 250 ◦C.

Table 6 shows the data on the composition of the solid residue of the flax shive hydro-
genation process. The highest (79.5 wt %) cellulose and the lowest (15.5 wt %) lignin content
in the solid product were obtained with the most active 3RS450 catalyst. The comparison
of the data given in Tables 3–5 shows that 3RS450 catalyst both destroys the ether bonds of
the lignin structure and partially prevents destruction of the cellulose polymer chain.

Table 6. Composition of the solid product, degree of delignification, and cellulose yield in noncatalytic
and catalytic hydrogenation of flax shive in subcritical ethanol at 225 ◦C.

No. Catalysts
Composition of Solid Products Degree of

Delignification,
%

Cellulose
Yield, wt %Hemicelluloses Lignin Cellulose

1 no 4.2 27.3 68.5 63.3 55.4
2 3RS450 5.8 15.5 79.5 83.2 51.8
3 1RS450 10.4 16.3 73.3 78.1 59.3
4 3RS500g 3.0 19.2 77.8 74.8 61.3
5 3RS400 11.4 14.0 74.6 79.0 67.2
6 3RSg 5.7 25.1 69.2 66.6 55.3
7 Sib-4 (450) 3.1 27.6 69.3 64.9 52.9
8 3RS450 1 7.8 24.7 67.5 54.9 74.1
9 3RS450 2 2.1 9.2 88.7 93.1 39.7

1 Isopropanol as a solvent. 2 The process temperature 250 ◦C.

It should be noted that addition of oxidized Sibunit without ruthenium reduces
the hemicellulose yield, whereas ruthenium reached catalysts increase it (Table 6). The
decomposition of hemicelluloses into soluble products can be caused by the acidic proper-
ties of the carbon support, and deposition of ruthenium onto Sibunit reduces its acidity
(Table 1).

It should be emphasized that the use of the 3RS400 catalyst leads to the formation of a
solid product with the highest (67.2 wt %) cellulose yield at high degree of delignification
(79.0%). Increasing the process temperature up to 250 ◦C leads to a higher degree of
delignification (up to 93%) and stronger depolymerization of cellulose, the yield of which
drops to 40 wt %.

Despite the obviously higher hydrogen donating activity of isopropanol as compared
to ethanol, the use of this secondary alcohol as a solvent reduces the hydrogenation
efficiency: The degree of delignification decreases to 55% from 83% for ethanol and the
cellulose yield increases to 74% from 52% in ethanol. This can be caused by several factors,
for example, the isopropanol amount used in the experiment (0.8 mol) is less than the
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ethanol amount (1.05 mol). This leads to the weaker extraction of lignin from the flax shive
and, therefore, retards its depolymerization.

Thus, the maximum degree of delignification (up to 83%) is obtained with the 3RS450
catalyst used in the reductive catalytic fractionation of flax shive in the subcritical ethanol
medium. however, the use of the 3RS400 catalyst ensures the higher (up to 67 wt %)
cellulose yield at the comparable degree of delignification (79 wt %).

2.3. Characterystics of the Liquid Products of Reductive Catalytic Fractionation of Flax Shive

GC-MS analysis of the liquid product composition of the flax shive hydrogenation
showed that the products of lignin conversion are mainly guaiacyl derivatives and, to a
lesser extent, syringyl derivatives, since flax shive have a high content of guaiacyl-type
fragments [36]. The main products are guaiacylpropanol (1), guaiacylpropene (2), and
guaiacylpropane (3) (Tables 7–9).

Table 7. Yield (relative to the areas of all peaks, %) and composition of monomeric methoxyphenols included in the liquid
products of noncatalytic and catalytic hydrogenation of flax shive in subcritical ethanol at 225 ◦C.

Substance Structure
Catalyst

Non 3RS450 1RS450 3RS500g 3RS400 3RSg Sib-4 450

Guaiacol
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Table 8. Yield and composition of monomeric methoxyphenols (wt % per lignin) in the liquid products of noncatalytic and
catalytic hydrogenation of flax shive in subcritical ethanol at 225 ◦C.

Substance Structure
Sample

Non 3RS450 1RS450 3RS500g 3RS400 3RSg Sib-4 450

Guaiacol
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Total yield of minor methoxyphenol
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In addition, other aromatic compounds with the carbonyl and ester groups were
identified. Their total yield ranged from 0.5 to 2 wt %, depending on the process conditions.
Along with the methoxyphenol derivatives, the liquid products contained compounds
formed from biomass polysaccharides: furfural derivatives (furfuryl alcohol and difurfuryl
ether), methyl esters of the oxy- and hydroxy acids, ethyl levulinate, alcohols, and ketones
(1-hydroxy-2-propanone and 3-hydroxy-2-butanone) with yields of 0.6–2.3 wt %. The
liquid products contained also ethyl esters of fatty acids (palmitic, stearic, and linoleic).
Most of them were obtained without catalysts or using only the support as a catalyst, while
in the case of using the ruthenium-containing catalysts, these compounds were found in
trace amounts or not found at all.

The use of the ruthenium catalysts in the hydrogenolysis process enhanced the total
yield of methoxyphenols in the liquid products by a factor of 1.6-2.3 (Tables 7 and 8). The
maximum total yield (9.48 and 10.21 wt %) of methoxyphenols was observed for the 3RS400
and 3RS450 catalysts. When the granular catalysts are used, the monomer yields are twice
as low. This is probably due to the slow diffusion of reagents to the inner surface of a
catalyst grain in the liquid-phase processes.

Comparing the results of Figure 3 and Tables 2 and 3 shows that the total yield
of monomeric methoxyphenols increases with increasing the ruthenium dispersion and
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availability: 1RS450 catalyst possess highest dispersion and almost the same surface
ruthenium concentration compared to 3RS450.
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Figure 3. Yields of the methoxyphenols (1), (2), (3) for different catalysts used.

A significant increase (by a factor of more than 20) is noted in the guaiacylpropane (3)
yield while growing the total monomeric methoxyphenols yield by a factor of 3 due to the
increase of the catalysts activity (Figure 3). This is probably due to the high stability of the
guaiacylpropane (3), the final product of hydrogenation, as compared to guaiacylpropene
(2) and guaiacylpropanol (1).

The catalysts differ not only in the ruthenium particle size, but also in acidity of the
support. Liu et al. showed [37] that, in the process occurring with the Ni@ZIF-8 catalyst at
260 ◦C for 8 h, monolignols are hydrogenated first along the C=C bond with the formation
of substituted propanols, acid-catalyzed dehydration of the latter, and hydrogenation
of the resulting propenes to phenylpropanes (Figure 4). The presence of Lewis acid
sites, e.g., Zn and Fe, on the catalyst surface is shown to shift the selectivity of product
formation from guaiacylpropanol to guaiacylpropane [31,38]. The results presented in
Figure 3 allow us comparing the two catalysts, 3RS400 and 3RS450, with different oxidation
temperatures and, correspondingly, different acidities. The maximum yield of compound
(1) (2.9 wt %) is obtained on the less acidic 3RS400 catalyst, and the maximum yield of
compound (3) (4.9 wt %) is done on the more acidic 3RS450 catalyst. This is probably
due to the acid-catalyzed dehydration of guaiacylpropanol to guaiacylpropene; hence, the
similar regularities of these transformations are observed on the Bronsted (Figure 3) and
Lewis [35,36] sites.
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In addition, the use of a ruthenium-containing catalyst leads to the formation of
mainly propyl-substituted phenolic compounds, while with the use of the Pd/C catalyst,
propanol-substituted compounds are the major ones [28,39,40].

The data reported in [37,41] showed that compound (3) can be formed as a result of the
catalytic hydrogenation of the C=C bond of compound (2) formed due to the dehydration
of compound (1), which is the result of hydrogenation of coniferyl alcohol (Figure 4).
Indeed, the most yields of guaiacylpropene (2) were observed for Sibunit-4 and 1RS450
catalyst (1.9–3.2 wt %), the acid systems with minimum hydrogenating activity.

The liquid products of fractionation of herbaceous plants contain some specific com-
pounds, including ferulic and p-coumaric acid esters [28,40,42]. In the products of flax
shive hydrogenation these compounds were not found, and this is apparently due to their
almost complete lack or decarboxylation to guaiacylethane, with its maximum content of
0.73 wt % in the presence of the 3RS500g catalyst.

Table 9. Data on the molecular weight distribution of the liquid products of reductive catalytic
fractionation of flax shive in subcritical ethanol at 225 ◦C.

No. Catalyst Mn (Da) Mw (Da) PD

1 no 530 1240 2.34
2 3RS450 430 830 1.95
3 1RS450 450 930 2.07
4 3RS500g 450 1050 2.32
5 3RS400 420 770 1.81
6 3RSg 460 1110 2.39
7 Sib-4 (450) 490 1070 2.20

Ethanol lignin of flax shive * 890 2100 2.35
* Obtained using the technique proposed in [43].

2.4. Molecular Weight Distribution of the Liquid Products

The studied ruthenium catalysts significantly affect the molecular weight distribution
of the liquid products of flax shive hydrogenation in ethanol (Figure 5, Table 9). In the
absence of a catalyst, the liquids are mainly the products of incomplete depolymerization
with the fractions of dimers and small amounts of monomeric compounds. The Ru/C
catalysts significantly change the molecular weight distribution profile and, consequently,
the qualitative composition of the liquid products. In particular, the region of oligomers
with a molecular weight above 1 kDa lacks in the presence of a catalyst; a significant signal
intensity shift toward lower molecular weights is observed, which suggests a large amount
of monomer fraction in the liquid products. A slight change in the region of dimeric
products of catalytic hydrogenation confirms stabilization of the obtained liquids and
absence of repolymerization reactions. The maximum depth of lignin depolymerization
was obtained with 3RS450 and 3RS400 catalysts.

2.5. Influence of Solvent

Hydrogenation of flax shive in isopropyl alcohol in the presence of the 3RS450 catalyst
results in the lower yields of monomeric methoxyphenols as compared to the sub- and
supercritical ethanol used (Table 10). These results responds to the data [44]: The use of
isopropanol also resulted in a lower monomer yields in comparison with such solvents as
ethanol, methanol, and ethylene glycol.
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Table 10. Effect of solvent on the yield (wt % per lignin) and composition of monomeric methoxyphenols included in the
liquid products of hydrogenation of flax shive in the presence of the 3RS450 catalyst.

Substance Structure

Solvent

Subcritical Ethanol
(225 ◦C)

Subcritical
Isopropanol (225 ◦C)

Supercritical Ethanol
(250 ◦C)

Guaiacol
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Syringylpropene 

 

0.06 - 0.34 

Total yield of alkyphenols. wt % 10.21 6.27 9.72 

Total yield of minor methoxyphenol impurities *. 

wt % 
2.00 0.33 0.01 

* Not given in Table 9. 

1.09 - 0.85
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Table 10. Cont.

Substance Structure

Solvent

Subcritical Ethanol
(225 ◦C)

Subcritical
Isopropanol (225 ◦C)

Supercritical Ethanol
(250 ◦C)

Syringylpropene
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The yields and composition of the major monomers during hydrogenation of flax shive
in supercritical ethanol (250 ◦C, 9.7 wt %) are close to the results obtained in subcritical
ethanol (225 ◦C, 10.2 wt %), except for the higher 4-guaiacylethane yield and almost com-
plete lack of guaiacylpropene (2). A higher total yield (27 wt %) of monomeric compounds
was obtained in RCF of miscanthus in methanol with the 5% Ru/C catalyst at 250 ◦C [28].
These differences can be caused by the nature of the hydrogenating substrates (flax and
miscanthus), solvent, and also by the higher ruthenium content in the catalyst [28].

Based on the results obtained, several conclusions may be made. First, temperature
is the most powerful parameter that determines conversion of flax shive and gas yield.
Second, the catalysts acidity increases the carbohydrates conversion. Third, the best yields
of monophenols and guaiacylpropane are obtained on the most active catalysts, 3RS450
and 3RS400, possessing highest ruthenium activity and acidity.

3. Materials and Methods
3.1. Catalysts Preparation

To prepare the Ru/C catalysts mesoporous graphite-like carbon material Sibunit®-
4 (CNCT Boreskov Institute of Catalysis SB RAS, Omsk, Russia) was used [21]. Before
catalysts preparation the carbon was cleaned with hot deionized water, air-dried and
grinded to the fraction of 56–94 µm. The fractional composition of the initial Sibunit®-4
was varied from 1.0 to 1.6 mm.

Oxidized carbon samples were prepared using granular or powder Sibunit®-4 carbon
support by oxidation with oxygen of a mixture containing 20 vol % of O2 in N2 in the
presence of water vapor (saturation at 90 ◦C, vapor pressure 70.1 kPa, flow 200 mL/min) at
a specified temperature (400, 450, or 500 ◦C) for 2 h [21].

The ruthenium catalysts based on the initial and oxidized Sibunit®-4 samples (1% and
3% Ru/C) were prepared by incipient wetness impregnation using an aqueous solution of
Ru(NO)(NO3)3 followed by sample drying at room temperature for 2–3 h and at 60 ◦C for
12 h. The active component was reduced in a hydrogen stream (30 mL/min) at 300 ◦C for 2 h
(temperature ramp: 1 ◦C/min). After cooling down to room temperature under hydrogen,
the catalyst was passivated using a gas mixture of 1% of O2 in N2 flow 30 mL/min [25].

The texture characteristics of the samples were determined from the N2 adsorption
isotherms at 77 K with a automatic analyzer of specific surface area and porosity instrument
(Micromeritics ASAP-2020 Plus, USA, 2018).

High-resolution electron microscopy images and the size distribution of ruthenium
particles were studied using a transmission electron microscope hT7700 (Hitachi, Tokyo,
Japan, 2014) at an accelerating voltage of 110 kV and a resolution of 2 Å. Particle size
distribution histograms were obtained by statistical (500-800 particles) analysis of the TEM
images. The mean linear (<dl>) and the mean surface-volume (<ds>) particle diameters
were calculated using the formulas:

<dl> = Σdi/N, <ds> = Σdi
3/Σdi

2 (1)
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where di is the diameter of a deposited particle and N is the total number of particles.
The ruthenium dispersion DRu in the catalysts was calculated using the formula:

DRu = 6 × MRu

αRu × ρ× N0 ×< ds >
(2)

where MRu = 0.101 kg/mol is the ruthenium molar weight, ρ = 12,410 kg/m3 is the metallic
ruthenium density, aRu = 6.13 × 10−20 is the average effective area of the metal atom on
the surface (m2), N0 is the Avogadro number, and ds is the weight-average diameter of
ruthenium particles [25].

The acidity of the catalysts was estimated by the point of zero charge (pzc) by the
Sorenson–de Bruyn method [45].

A Spectrometer (SPECS, Germany, 2007) with a PHOIBOS MCD9 energy analyzer,
excited by monochromatic Al Kα radiation at an electron collection angle of 90◦) was used
to obtain photoelectron spectra. The element contents were determined from the survey
spectra. At the CasaXPS (Casa Software Ltd., Teignmouth, UK) software processing, the
Shirley nonlinear background was subtracted and a Gaussian/Lorentzian peak shape
was used.

3.2. Flax Shive Samples Preparation

Flax shive (growing region—Tver region, Russia) was provided by Tver State Technical
University. An air dried flax shive was ground in a VR-2 disintegrator (Russia, 2010), after
which dry fractionation was carried out on sieves. For this work, we used a flax shive
fraction size 0.5–2 mm.

The flax shive components (% of the absolutely dry substrate weight) were cellulose
(50.6), lignin (30.4), hemicelluloses (17.1), and ash (1.9). Flax shive was dried at 80 ◦C to
moisture content lower than 1 wt %.

3.3. Hydrogenation of Flax Shive

Flax shive were hydrogenated in a 300 mL autoclave (ChemRe SYStem R-201, Gyeonggi-
do, Korea, 2017). The reactor was loaded with 60 mL (1.05 mol) of ethanol or 60 mL
(0.80 mol) of isopropanol, 3.0 g of the support, and 0.3 g of the catalyst. The autoclave was
sealed and purged with argon to remove air. Then, hydrogen was supplied to an initial
pressure of 4 MPa on a manometer. The reaction occurred at a temperature of 225 ◦C for 3 h
under constant stirring at a rate of 1000 rpm. The working pressure in the reactor ranged
from 9.1 to 11.5 MPa, depending on the process conditions.

After each run, the reactor was cooled down to room temperature. The gaseous
products were collected in a gasometer and their volume was measured and analyzed by
gas chromatography (GC). Then, the reaction products were quantitatively collected from
the autoclave by washing with ethanol. The mixture of the liquid and solid products was
separated by filtration. The solid residue was washed with ethanol until the decolorization
of the filtrate.

Ethanol was removed from the product solution using a rotary evaporator and the
residue was brought to constant weight in vacuum (1 mmHg) at room temperature. The
liquid yield (Y1) was calculated by the formula (wt %):

Y1 =
ml
mfs

× 100% (3)

where: ml is the mass of liquid products (g), mfs is the mass of the flax shives (g).
The solid residue yield Y2 was calculated as (wt %):

Y2 =
msr − mcat

mfs
× 100% (4)
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where: msr is the mass of the solid residue after extraction (g), mcat is the mass of the
catalyst (g).

The total gas yield (Y3) (wt %) was calculated using the formula:

Y3 =
mg

mfs
× 100% (5)

where: mg is the mass of the gaseous products (g).
The conversion of flax shive Xfs (wt %) was calculated by the formula:

Xfs =
mfs − msr

mfs
× 100% (6)

The degree of delignification (Xl) was calculated using the formula (wt %):

Xl =
mlfs − mlsr

mlfs
× 100% (7)

where: mlfs and mlsr — mass of lignin in flax shives and in the solid residue (g).
The cellulose yield (Xc) (wt %) was calculated using the formula:

Xc =
mcsr

mcfs
× 100% (8)

where: mcfs and mcsr are the mass of cellulose in flax shives and in the solid residue.

3.4. Analytical Methods

The composition of the gaseous products of flax hydrogenation in ethanol was an-
alyzed by GC on a chromatograph (Crystal 2000 M, Chromatec JSC SDO, Russia, 2015)
with a thermal conductivity detector. helium was used as a carrier gas (15 mL/min); the
detector temperature was 170 ◦C. For the CO and CH4 analysis, a column packed with
NaX zeolite (3 m × 2 mm) in the isothermal mode at 60 ◦C was used. The analysis of CO2
and hydrocarbon gases was made on a column with Porapak Q for 1 min at 60 ◦C; after
that, the temperature was increased to 180 ◦C at a rate of 10 ◦C/min.

The residual lignin content in the solid product was determined by hydrolysis with
72% sulfuric acid [46]. The hemicellulose content was determined as content of pentosanes
in the obtained hydrolysates by GC. The content and composition of monosaccharides in
the hydrolysates were determined by GC with pre column derivatization on a VARIAN-
450 GC gas chromatograph (Varian Inc., Palo Alto, CA, USA) with a flame ionization
detector and a VF-624ms capillary column with a length of 30 m and an inner diameter
of 0.32 mm. The chromatography conditions were helium as a carrier gas, an injector
temperature of 250 ◦C, an initial column temperature of 50 ◦C (5 min), a rate of 10 ◦C/min
of the temperature growth to 180 ◦C, and exposure at 180 ◦C for 37 min. Before the
analysis, the hydrolysate was derivatized according to the procedure described in [47]
to produce trimethylsilyl derivatives. Sorbitol was used as an internal standard. The
peaks were identified using the retention times of tautomeric forms of monosaccharides.
Cellulose in the solid products was analyzed using the alcohol-nitric acid (Kürschner-
Hoffer) method [48–50].

GC-MS analysis of liquid products was carried out using an Agilent 7890A chro-
matograph equipped with an Agilent 7000A Triple Quad mass selective detector (Agilent,
Santa Clara, CA, USA, 2008) (with an hP-5MS capillary column (30 m × 0.25 mm inner
diameter)), by recording the total ion current. The chromatographic separation of products
soluble in ethanol was carried out by increasing temperature from 40 to 250 ◦C at a rate of
3 ◦C/min. The NIST MS library and literature data were used to identify chromatographic
peaks. To quantify the yield of monomer compounds, the standard substances, such as
guaiacol, syringol, 2-methoxy-4-methylphenol, isoeugenol, 4-ethylguaiacol, 4-allyl-2,6-
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dimethoxyphenol (Sigma–Aldrich, St. Louis, Missouri, USA), ethyl palmitate (Tokyo Chem.
Ind., Tokyo, Japan) were used. Phenanthrene was used as an internal standard.

Molecular-weight distribution of the liquid samples were determined by gel perme-
ation chromatography (GPC) on Agilent 1260 Infinity II Multi-Detector GPC/SEC System
(Agilent, Santa Clara, CA, USA, 2018). The separation was made by a PLgel Mixed-E
column with tetrahydrofuran stabilized with 250 ppm 2,6-di-tert-butyl-4-methylphenol as
an eluent. The columns were calibrated with polystyrene calibration kit (Agilent, Santa
Clara, CA, USA). The eluent flow was set at 1mL/min and the volume of the injection loop
was 100 µL. All samples were dissolved in eluent with concentration 1 mg/mL and left
to dissolve completely overnight. After dissolution all samples were filtered through a
0.22-µm Agilent PTFE membrane filter.

4. Conclusions

Flax shive is a low-value waste residue of the flax fiber production. In this paper, a
reductive catalytic fractionation (RCF) of flax shive was studied. The bifunctional ruthe-
nium catalysts based on oxidized Sibunit demonstrated the high efficiency in the reductive
fractionation of flax shive at 225 ◦C for 3 h. In the experiments without a catalyst under
these process conditions, the conversion was found to be no more than 44.1 wt % and the
content of phenolic monomers in the liquid fractionation products was 1.1 wt %. The use of
the Ru/C catalysts result in a significant increase in the monophenol yield (up to 10.2 wt %
per lignin weight in the sample)) and enhanced the conversion of flax shive to 56 wt %.

The effect of different characteristics (the ruthenium content, particle size, and sub-
strate oxidation temperature) of the bifunctional Ru/C catalysts on the reductive catalytic
fractionation of flax shive was examined. The highest degree of delignification (up to
79.0%) and cellulose yield (up to 67.2 wt %) were obtained with the Ru/C catalyst con-
taining 3 wt % of Ru on carbon support oxidized at 400 ◦C. In addition, the use of this
catalyst ensured the high (up to 9.5 wt %) monophenol yield. The main characteristics
of the catalysts that determine the high conversion of lignin to guaiacylpropane are the
ruthenium dispersion and surface area. Bronsted acid sites plays an important role in
the guaiacylpropane formation due to catalyzing the dehydration of guaiacylpropanol
to guaiacylpropene.

The granular ruthenium-containing catalysts showed the low monomer yields and
degrees of delignification in comparison with the powdered catalysts due to the low
diffusion that limits the transfer of reagents to the inner surface of catalyst grains in the
liquid phase.

To conclude, the catalytic conversion of flax shive provides a solution to the problem
of its waste utilization. The most promising individual compounds obtained as products
of the hydrogenation processing of the flax shive lignin can be guaiacylpropane.
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