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Abstract: Strontium oxide (SrO) is an effective catalyst for transesterification. SrO powder that is
firmly deposited onto a light titanium plate (TiO2_P), denoted as SrO/TiO2_P, can be reinforced
by forming strontium titanate (SrTiO3) at the interface. Exposed SrO agglomerates can promote
subsequent continuous transesterification process. In this work, conversion efficiency and production
of biodiesel from olive oil on SrO/TiO2_P is investigated. The as-designed SrO/TiO2_P was followed
by dip-coating and heat treatment. The physical properties of SrO/TiO2_P were verified through
ASTM D3359; the chemical structures before and after transesterification, were respectively identified
by X-ray photoelectron spectroscopy and Raman spectroscopy. A focused microwave heating system
was utilized for transesterification. In the optimized sample SrO/TiO2_P (x) (x = 0.5 M), SrO firmly
bonds with TiO2_P and forms the SrTiO3 structure. With the support of TiO2_P, the tested oil with
SrO agglomerates subsequently reacts with SrO under microwave heating. The biodiesel conversion
rate reaches 87.7% after a reaction time of 4 min, while the biodiesel product has an average of
39.37 MJ/kg of combustion heat and less than 1 vol% of water content. The as-designed SrO/TiO2_P
(0.5) thus has great potential for biodiesel production and is promising with high stability in particular
for a continuous fluid flow system.

Keywords: strontium oxide (SrO); titanium plate (TiO2_P); transesterification process; biodiesel
production; microwave heating system

HIGHLIGHTS:

• Titanium powder is formed into a TiO2 plate (TiO2_P) as a load-bearable support and
designed to integrate with catalytic SrO agglomerates.

• The synergic effect of SrO/TiO2_P is realized by forming SrTiO3 phase at their interface
and SrO agglomerates upon the surface.

• By applying focused microwave heating, the exposed SrO agglomerates and olive oil
are effectively interacted by transesterification reaction.

• The quality of the as-produced biodiesel is examined by the characteristic Raman
peak, conversion rate, combustion heat, and water content.

• The used SrO/TiO2_P is mostly re-cyclable for subsequent uses, which reduced the
wastes when the biodiesel is produced.

1. Introduction

It has been noted that circular economy where nothing is wasted and where natu-
ral resources are managed sustainably and biodiversity is protected [1,2]. In the recent
development, waste management originated on the realization of a circular economy is
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eventually to reduce, reuse, and recycle wastes [3]. Alternatively, due to the economic
benefits, one of green energies using a recycled resource has attracted more and more at-
tention [4,5]. In the past decades, a significant portion of the energy demand for electricity
generation has been met through the combustion of fossil fuels. The emission of hazardous
substances such as NOx, HC, smoke, CO, and SOx is widely concerned. Biodiesel is an
eco-friendly alternative; it can be prepared from waste oil [6,7] or less economically used
plants [8–10] without changing the existing engines or generators [11,12]. As reported from
Brazil, Germany, France, the United States of America, and Belgium, biodiesel is considered
to have the unprecedented potentiality for endurable renewable energy applications in the
future [13–15].

In fact, biodiesel is one of the promising alternatives as a kind of biofuels, especially
when non-edible feedstocks are used in the production process [16]. Currently, there are
many methods that have been provided for the generation of biodiesel resources [16,17]. For
examples, they can be made by direct use and blending of raw oil [18], micro-emulsions [19],
thermal cracking [20], and transesterification [16,21,22]. For the direct use and blending of
raw oil, a condition of liquid nature-portability is applied for a heat content of ~80% from
diesel fuel, which is relatively spectacular. However, because it easily deteriorates and loses
its volatility, it is difficult to consider for practical use [18]. Micro-emulsions are considered
to be a colloidal equilibrium dispersion of an optically isotropic fluid microstructure with
a size usually in the range of 1–150 nm formed naturally from two kinds of immiscible
fluids and one or even more ionic or non-ionic amphiphile substances [19,23]. However,
when using this method, the cetane number and energy content are insufficient that
make it not suitable for the subsequent application, wherein an irregular injector needle
may cause stickiness and insufficient fluidity, leading to incomplete combustion [19].
Transesterification mainly works as the interaction between a solid fat or liquid oil and
alcohol under a catalyst used to generate glycerol and esters [24,25]. Additionally, by
the selection of microwave heating process, less reaction time and purer products can be
achieved [26,27]. For example, the microwave-assisted reaction rate is enhanced by an
extremely high value of around five to one thousand times comparing with traditional
heating methods [28,29]. Therefore, transesterification with the assistance of microwave
heating highly focuses on reliability and high cetane number that indicates a fast fuel
burning process and makes somewhat flammable; it is thus an efficient way to prepare an
energy resource.

In various transesterification reactions, homogeneous acidic catalysts [30], and alkaline
catalysts [30,31] are commonly used. However, these methods are sensitive to impurities
found in oils such as free fatty acids and water [32]. For instances, liquid acid and base
catalysts are corrosive and difficult to be recycled (i.e., homogeneous catalysts such as
H2SO4 and KOH). The production cost is greatly increased by the complicated processing
steps and costly anticorrosive facilities. In addition, large amounts of waste catalysts
and water are formed, which have seriously polluted our environment. Moreover, potas-
sium hydroxide catalysts have a characteristic of good solubility to be used as biodiesel
fuel and its common byproduct, glycerin, makes it difficult to be purified and therefore
lowers their practical efficiency [32–34]. The lifetimes of the engine and exhaust system
are likely shortened by burning alkali and acid contaminated fatty acid methyl esters
(FAME) products [35,36]. Therefore, to overcome the technical shortcomings associated
with conventional catalysts for the production of biodiesel, a great deal of research has
been conducted to develop heterogeneous catalysts [37]. A solution for these problems
has been found in the application of heterogeneous catalysts such as alkali metal oxides
as neat or loaded on the support. Their advantages over homogeneous catalysts refer
to easy separation from the reaction mixture and the possibility to be reused, selectivity
and longer catalyst lifetimes [38,39]. Since recently, the heterogeneous catalysts have been
improved by loading a metal onto the catalyst surface to increase its hydrophobicity, which
prevents the absorption of generated water during the reaction and contributes to the
catalyst stability [40].
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Since the transesterification reaction involves the presence of alcohol, it is worthwhile
to determine its quantity with respect to the other reactant or oil. A proper ratio of oil:
methanol in 1:6 has been developed [41]. In addition, a 3 wt% of catalyst as SrO in terms
of oil weight has been particularly used [16,42]. For most supported alkali catalysts, the
active ingredients are easily corroded by methanol and they exhibit short catalyst lifetimes.
For examples, BaO is noxious and can be dissolved by methanol [43]; MgO has low activity
in transesterification of vegetable oils to biodiesel [44]; and CaO provides a slow reaction
rate and it takes about 2 h to reach a state of equilibrium [45]. On the other hand, SrO takes
some advantages: it can catalyze many chemical reactions, such as oxidative coupling of
methane, selective oxidation of propane, nitroaldol reactions, and mixed reactions. Further,
it is insoluble in methanol, vegetable oils, and fatty acid methyl ester. Therefore, SrO is
relatively suitable for our study [38].

With an increasing demand for transesterification reaction efficiency, SrO has been
designed to be deposited upon bead- or plate-like supports. For examples, SrO particles
were deposited into SiO2 composite, followed by microwave heating for biodiesel produc-
tion [38]. The strong adhesion of SrO on silica beads would allow the use of the catalyst in
a continuous flow microwave system facilitating production of large quantities of biodiesel.
Similar approaches have been developed using activated carbon [46], Al2O3 [47] as the
support for biodiesel production, in particular for the transesterification reaction from e.g.,
waste cooking oil. Our previous studies used a highly porous and calcinated scaffold that
provides load-bearable support for a continuous process, while the calcinated SrO catalyst,
as it is well distributed inside the porous matrix, could extend its surface contact area
with the reactants. In these studies, a microwave heating system for the transesterification
reaction was particularly introduced to increase the reaction efficiency [17].

In this study, SrO powder deposited upon a titanium plate is designed. The titanium
plate is chosen as the support owing to likely formation of strontium titanate (SrTiO3) at
their interface after heat treatment. The as-formed SrO upon TiO2 plate is then examined
to be load-bearable during the transesterification process. The production and quality of
biodiesel are also assessed. Thereafter, a transesterification reaction mechanism based upon
the assessments is proposed.

2. Results and Discussion
2.1. Physical Properties of the Surface of SrO/TiO2_P (x)

Surface morphologies of SrO/TiO2_P (x) (x = 0.1, 0.3, 0.5, or 0.7 M) were respectively
shown in Figure 1a–d; the top-right images were taken from EDS element mapping, while
the red color is the distribution of the element Sr. The results indicated that the coverage
of Sr element increased with the added concentration of Sr-containing solution. Surface
morphology of SrO clusters exhibited a broccoli shape aggregated structure.

XRD patterns of SrO/TiO2_P (x) (x = 0.1, 0.3, 0.5, or 0.7 M) were respectively shown in
Figure 1e. Note that according to JCPDS card No. 06-0520, the cubic-SrO can be found in
the 2θ diffraction range of 30 to 65◦, corresponding to (111), (200), (220), (311), and (222);
according to JCPDS card No. 35-0734, the cubic-SrTiO3 can be found in the 2θ diffraction
range of 23◦ and 73◦ [48], corresponding to (100), (110), (111), (200), (211), (220), and (300).
The results indicated that for SrO/TiO2_P (x), SrO structure was found on all the surfaces,
whereas SrTiO3 could only be found on lower concentrations, i.e., x = 0.1, 0.3, or 0.5 M.
Based on the XRD pattern found in SrO/TiO2_P (0.7), the peaks for cubic-SrO were much
significant, therefore the pattern for cubic-SrTiO3 (i.e., under the coverage of cubic-SrO
structure) was most likely shaded by the coverage of SrO aggregates [49]. The results
correspond well with the surface morphologies presented in Figure 1a–d.

In Figure 1f, the surface roughness of SrO/TiO2_P (x) was measured. The profiles
showed that their roughness increased with the addition of SrO aggregates. However, for
SrO/TiO2_P (0.7), the coverage of SrO aggregates was significant that reduced the surface
area or therefore the average roughness.
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Figure 1. SEM morphologies from the surfaces of SrO_TiO2_P (x), x = (a) 0.1, (b) 0.3, (c) 0.5, and (d) 0.7. (e) XRD patterns
and (f) surface roughness of SrO_TiO2_P (x) were measured.

2.2. Chemical Analysis on the Surfaces of SrO/TiO2_P (x)

In Figure 2a, XPS survey spectra of SrO/TiO2_P (x) showed the presence of Sr, Ti, C,
and O elements. Note that the adsorbed C, O-containing species is minor, therefore only Sr
3d, Ti 2p, and O 1s spectra are studied for SrO/TiO2_P (x) before the transesterification
reaction, whereas for SrO/TiO2_P (x) after the reaction Sr 3d, C 1s, and O 1s spectra are
studied owing to the surface of TiO2_P is covered by the reactants and products.

In Figure 2b, Sr 3d spectra for SrO/TiO2_P (x) were deconvoluted into Sr 3d5/2 and
Sr 3d3/2 at binding energies (BEs) of 132.9 (peak (1)) and 134.6 eV (peak (2)) with the
difference of 1.7 eV. The intensity and the area of Sr 3d5/2 and 3d3/2 spectra increased with
the addition of concentrations. In Figure 2c, Ti 2p spectra were deconvoluted into Ti 2p3/2
and 2p1/2 at 458.6 (peak (3)) and 464.3 eV (peak (4)) with the difference of 5.7 eV, indicated
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that Ti4+ is the dominant surface chemical state, which corresponded to the formation of
TiO2 or probably SrTiO3 phase. The intensity and area of Ti 2p spectra decreased with the
addition of SrO concentrations. In Figure 2d, O 1s spectra were deconvoluted into BEs
peaked at 529.2 eV (peak (5)) for SrTiO3, 530.5 eV (peak (6)) for SrO, and 532.0 eV (peak (7))
for M-OH. Note that the peaks (3) and (5) represent the presence of SrTiO3, which exhibit
obvious as SrO coverage is minor [50]. In addition, M-OH species may derivate from the
metal-hydroxide group during the preparation process in the ambient atmosphere [51].
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Figure 2. XPS studies of SrO_TiO2_P (x) (x = 0.1, 0.3. 0.5, or 0.7) before transesterification process were demonstrated:
(a) Wide-scan XPS spectra and (b) curve-fitted XPS spectra for Sr 3d, (c) Ti 2p, and (d) O 1s. The curve-fitted peaks
are respectively assigned at: (1) 132.9 eV, Sr 3d5/2, (2) 134.6 eV, Sr 3d3/2, (3) 458.6 eV, Ti 2p3/2, (4) 464.3 eV, Ti 2p1/2,
(5) 529.2 eV, Sr-Ti, (6) 530.5 eV, Sr-O, and (7) 532.0 eV, loosely bound hydroxide groups.

2.3. Biodiesel Conversion for Products

Based on the evaluation of surface morphologies, XRD patterns, surface roughness,
and XPS spectra of SrO/TiO2_P (x), SrO/TiO2_P (0.5) is an optimized sample for subse-
quent studies.

In Figure 3a, XPS survey spectra of SrO/TiO2_P (0.5), after the transesterification
reaction time of 1, 2, 3, and 4 min (i.e., the duration for microwave heating), showed the
major presence of Sr, C, and O elements. Note that after the reactions, the surfaces of TiO2_P
is covered by the reactants and products. In Figure 3b, Sr 3d spectra for SrO/TiO2_P (x)
showed similar peaks and BEs with SrO/TiO2_P (0.5) in Figure 2b. The results indicated
that the structure SrO still remains after the reaction time. The intensity and the area of Sr
3d5/2 and 3d3/2 spectra significantly decreased with the reaction time of 4 min, indicating
the addition of reactants and products. In Figure 3c, C 1s spectra were deconvoluted into
three component spectra with the peaks 3′ at 284.8 eV (C-C), 4′ at 287.1 eV (C-O), and
5′ at 289.2 eV (O-C=O) [17]. The peaks intensity roughly increased with the addition of
reaction time, except for the reaction time of 4 min. The main chemical contributions of C
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1s peaks for biodiesel (FAME) compounds correspond to peaks 3′ and 5′. In addition, the
spectrum of FAME (a methyl ester) has the characteristic -O-CH3 peak 6′ [52] at 287.1 eV.
In Figure 3d, O 1s spectra were deconvoluted into five peaks, in which the peak 6′ at
530.5 eV is correlated with Sr-O, and the peaks 7′ at 531.0 eV with C-O (or C 1s at 287.1 eV),
9′ at 532.8 eV with C=O [53], and 10′ at 533.7 eV with O-C=O (or C 1s at 289.2 eV). The
latter three component peaks represent the formation of FAME. The peak 8′ at 532.0 eV is
correlated with M-OH, corresponding with the peak 7 in Figure 2d. Overall, the chemical
analysis by XPS, before and after the transesterification reaction and reaction time, is
almost interrelated.
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Figure 3. XPS studies of SrO_TiO2_P (0.5) after transesterification process with different reaction time (t, t = 1, 2, 3, or 4 min)
were demonstrated: (a) wide-scan XPS spectra and (b) curve-fitted XPS spectra with different reaction time for (b) Sr 3d,
(c) C 1s, and (d) O 1s. The curve-fitted peaks are respectively assigned at: (1) 132.9 eV, Sr 3d5/2, (2) 134.6 eV, Sr 3d3/2,
(3) 284.8 eV, C-C, (4) 287.1 eV, C-O, (5) 289.2 eV, O=C-O, (6) 530.5 eV, Sr-O, (7) 531.0 eV, C-O, (8) 532.0 eV, M-OH, (9) 532.8 eV,
C=O, and (10) 533.7 eV, O-C=O.

In Figure 4a, Raman spectra of olive oil before and after transesterification reaction
were taken. The peak at 1655 cm−1 is frequently used as the indicator of FAME produc-
tion [54,55]. By taking the peak as the reference, as the quantity of FAME production
increased, the intensity of 1655 cm−1 reduced with the increasing reaction time; as esti-
mated in Figure 4a, the relative reduction in intensities from 24, 30, 30 to 41% with respect to
the reaction time of 1, 2, 3, and 4 min was observed. In Figure 4b, the conversion efficiency
of olive oil to biodiesel reached 87.7% after 4 min from the onset of the reaction; however,
the relative increase in biodiesel conversion, as shown in lines, reached a maximum of ~10%
after 3 min of the reaction time, but sharply dropped to ~2% after 4 min of the reaction
time. It indicates two possibilities: (1) a reaction time over 3 min may result in an optimal
increased rate of biodiesel conversion; (2) the conversion of olive oil into biodiesel near
SrO agglomerates (or therefore at the oil/SrO interface) may reach a reaction limit.
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(d) water content (in %) in biodiesel were respectively determined.

The quality of as-produced biodiesel was measured. In Figure 4c, its combustion
heat ranged from 39–42 MJ/kg with an average value of 39.37 MJ/kg, as compared with a
general value of 42 MJ/kg for a general diesel [56]. In Figure 4d, the water content of the
as-produced biodiesel was also estimated; its value was slightly higher than that specified
in both EN 14214 and ASTM D6751 standards [57,58]. Nevertheless, by improving the
storage and delivery procedures, it should be very likely to eliminate water content in
biodiesel. In addition, oil with a high acid value tends to generate non-esterified fatty acids
in the biodiesel products, which can deteriorate equipment components. In the case about
waste cooking oil (WCO), the high percentage of water molecules in WCOs may inhibit the
catalyst activity and the ability of methanol to separate triglycerides from WCOs. Moreover,
the high quantity of non-esterified species in the products of methanol, biodiesel, and crude
glycerol makes the solution sticky and increasingly reduces the biodiesel conversion rate
with reaction time.

2.4. Proposed Reaction Mechanism and Application

By taking SrO/TiO2_P (0.5) as the example and reacting with olive oil by focused
microwave heating for 1 to 4 min, the reaction mechanism of transesterification process,
followed by batch biodiesel production is presumably proposed. Firstly, as shown in Figure
5a, SrO particles form agglomerates or clusters upon TiO2_P (0.5), which are resistant to
subsequent microwave heating and transesterification process. In Figure 5b, at the interface
between SrO agglomerates and olive oil, biodiesel conversion is performed by an effective
microwave heating that is characterized by XPS studies before and after the reaction. The
structure of SrTiO3 binds the SrO agglomerates with TiO2_P and SrO particles reaction
with olive oil under microwave heating. In Figure 5c, the quality of the as-produced
biodiesel, FAME, is examined by the characteristic Raman peak at 1655 cm−1, conversion
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rate, heat combustion heat, and water content and reported as a promising biodiesel
through this production method. In addition, the by-products can be collected for other
uses. In Figure 5d, by acetone or ethanol cleaning under ultrasonic vibration at 10 min,
the used SrO/TiO2_P (0.5) can be re-used for succeeding transesterification processes,
re-starting from Figure 5a, which becomes an innovative design as a re-cyclable and
productive material. The information related recyclability of the catalyst could be found in
our previous studies [16].
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3. Experimental Section
3.1. Preparation of SrO Powder Deposited upon a Titanium Plate (SrO/TiO2_P)

Ti powder with a particle size of ~45 µm (Zhongrui Material Technology Corp., Tainan,
Taiwan) was used. A Ti plate could be formed by the P/M method [17,59]. As illustrated
in Figure 6a (1)–(4), for one plate, Ti powder of 0.5 g was compacted into a cylindrical
disc of ~10 mm in diameter and ~7 mm in thickness; the compression stress was 200 MPa.
The as-compacted sample is denoted as TiO2_cp. Then, SrO metal precursors were dip-
coated on TiO2_cp. Especially, Sr complexions were prepared by mixing strontium nitrate
(Sr(NO3)2, 99%, Aldrich, St. Louis, MO, USA) and deionized water (DI water) with 0.1,
0.3, 0.5, or 0.7 M SrO metal precursors. Afterward, 100 µL of citric acid (C6H8O7) was
added for every 1 mL of the as-prepared solution. These mixed solutions were used for
subsequent dip-coating of SrO-containing solution on TiO2_cp with a speed of 50 mm/min.
The pre-coated samples, denoted as SrO/TiO2_cp (x) (x = 0.1, 0.3, 0.5, or 0.7 M), were dried
at 80 ◦C for 20 min and then heat-treated at 1000 ◦C for 3 h. The final products are denoted
as SrO/TiO2_P (x) (x = 0.1, 0.3, 0.5, or 0.7 M).
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Figure 6. (a) The fabrication process and physical strength testing of SrO/TiO2_P (x): (1) Pressing of TiO2 powder into a
plate was (TiO2_p) (2) then dipping into SrO precursor solution with different concentrations; (3) drying of SrO/TiO2_p (x)
at 80 ◦C for 20 min, then 1000 ◦C for 3 h under vacuum; (4) resulting samples were denoted as SrO_TiO2_P (x), (x = 0.1, 0.3,
0.5, or 0.7 M); (5) adhesion strength between SrO2 and TiO2_P, tested through the modified ASTM D3359 tape test; (6) a
roughness test was measured by using α step for SrO2 upon TiO2_P; (b) the catalytic property of SrO/TiO2_P (0.5); (7) ratio
of olive oil: methanol was maintained at 1:6; (8) focused microwave-assisted heating system was employed and measured
as a function of reaction time; (9) transesterification reaction for biodiesel production; (10) collection of products (esterified
products, FAME) and byproducts (glycerol, excess olive oil and methanol) for examination.

3.2. Quality Assessment of SrO_TiO2_P (x)

In Figure 6a (5), surface morphology of SrO/TiO2_P (x) were sputtered with a layer
of Pt and then characterized by a field-emission scanning electron microscope (FE-SEM,
JSM-7000, JEOL, Tokyo, Japan) with an accelerating voltage of 10 kV, under a chamber
vacuum of 4.15 × 10−3 Pa. Crystalline structure of SrO_TiO2_P (x) was determined using
X-ray diffraction with CuKα radiation (XRD, D8 Discover, Bruker, Germany). In Figure 6a
(6), chemical composition of SrO_TiO2_P (x), before and after transesterification reaction,
were characterized using X-ray photoelectron spectroscopy (XPS, PHI 5000, Versa Probe
II, ULVAC-PHI, Incorporate„ Chigasaki, Japan) and Raman spectrometer with a confocal
microscope (Renishaw, Gloucestershire, UK). For the former, SrO_TiO2_P (x) were scanned
with an exposure time of 10 sec over an area of 1 µm × 1 µm, using a 50X objective.
Ten consecutive measurements on different samples were averaged. All spectra were
normalized using the peak fit software. The chemical bonds on the surfaces of SrO_TiO2_P
(x) were respectively characterized. The functionalities of constituent elements (i.e., Sr
3d and O 1s for the catalyst SrO, Ti 2p for TiO2_P, and C 1s and O 1s for the reactants
and products) were curve-fitted using the software Origin and related data information in
order to clarify the formation of the esterification reaction. For the latter, Raman spectra
were obtained using He-Ne and diode lasers with an excitation wavelength of 785 nm. All
Raman spectra were normalized using the PeakFit software. An air-cooled CCD was used
as the detector and the incident power was ~3 mW.
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3.3. Transesterification Reaction Measurement and Energy Conversion

As illustrated in Figure 6b (7)–(10), the catalysis of SrO_TiO2_P (x) in transesterification
reaction was evaluated using olive oil (Taiwan Sugar Corp., Taiwan) as the reactant. In the
experiment, the olive oil was mixed with methanol in a volume ratio of 1:6 and ~3 wt % of
SrO catalyst in SrO_TiO2_P (x) and introduced into a built-in batch unit with a modified
transesterification system, containing a microwave oven chamber with the capacity of
~15 mL. When microwave heating (i.e., for 1, 2, 3, or 4 min) was applied, the evaporated
methanol and water were simultaneously cooled down to maintain the constancy of oil-to-
methanol ratio by preventing methanol from the evaporative loss. Finally, the products
were collected in a container.

Gas chromatography equipped with a flame ionization detector (GC-FID, GC-2014,
Shimadzu, Japan) was employed to determine and verify the conversion efficiency of olive
oil to biodiesel via the transesterification reaction. Note that the use of focused microwave
heating tends to reduce the required power and time for the conversion, and thus decrease
the output temperature from the reaction system.

The combustion heat of biodiesel was measured by bomb calorimeter (Model 1341,
Parr Instrument Company, Moline, IL, USA) in accordance with the ASTM D240. After
standardization with benzoic acid, samples with 0.5 g from each fuel were burned in the
bomb. All measurements were repeated six times.

The water content in biodiesel was measured by Karl Fischer titrator (C30S Karl Fisher
titrator, Zurich, Switzerland). The highest accuracy of moisture determination is equivalent
to a relative standard deviation of 1.48%. Other parameters (e.g., extraction time) have
little or no effect on improving the accuracy of moisture determination.

The samples was cleaned on EtOH or Acetone aqueous (Ultrasonic, DC-300H, Delta,
Taiwan) under ultrasonic vibration (40 kHz) at 10 min.

4. Conclusions

Titanium powder can be formed into a TiO2 plate (TiO2_P) as a load-bearable support
and designed to integrate with catalytic SrO agglomerates (SrO). The synergic effect of
SrO agglomerates with TiO2 plate (SrO/TiO2_P) is realized by forming SrTiO3 phase at
their interface and most of the exposed and dispersed SrO agglomerates on the upper part
are in full contact with olive oil. By applying effective focused microwave heating, the
transesterification reaction process is carried out in a batch mode. Then, before and after
the transesterification process, the optimized surface of SrO/TiO2_P (0.5) is characterized
by XPS study, so that the reactions can be interpreted. The quality of the as-produced
biodiesel is examined by the characteristic Raman peak, conversion rate, combustion heat,
and water content. The report is promising, however, there is still room for effort in the
biodiesel production process. Moreover, the by-products derived from the reactions can
be collected for other applications, while the used SrO/TiO2_P can be cleaned and mostly
re-cyclable for subsequent uses. This innovative and re-cyclable design can thus promote
production efficiency of biodiesel.
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