
catalysts

Review

The Application of Catalytic Processes on the Production of
Algae-Based Biofuels: A Review

Antonio Zuorro 1,* , Janet B. García-Martínez 2 and Andrés F. Barajas-Solano 2

����������
�������

Citation: Zuorro, A.; García-Martínez,

J.B.; Barajas-Solano, A.F. The

Application of Catalytic Processes on

the Production of Algae-Based

Biofuels: A Review. Catalysts 2021, 11,

22. https://doi.org/10.3390/catal

11010022

Received: 25 September 2020

Accepted: 27 November 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18,
00184 Roma, Italy

2 Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia
No. 12E-96, Cucuta 540003, Colombia; janetbibianagm@ufps.edu.co (J.B.G.-M.);
andresfernandobs@ufps.edu.co (A.F.B.-S.)

* Correspondence: antonio.zuorro@uniroma1.it

Abstract: Over the last decades, microalgal biomass has gained a significant role in the development
of different high-end (nutraceuticals, colorants, food supplements, and pharmaceuticals) and low-
end products (biodiesel, bioethanol, and biogas) due to its rapid growth and high carbon-fixing
efficiency. Therefore, microalgae are considered a useful and sustainable resource to attain energy
security while reducing our current reliance on fossil fuels. From the technologies available for
obtaining biofuels using microalgae biomass, thermochemical processes (pyrolysis, Hydrothermal
Liquefaction (HTL), gasification) have proven to be processed with higher viability, because they
use all biomass. However, due to the complex structure of the biomass (lipids, carbohydrates,
and proteins), the obtained biofuels from direct thermochemical conversion have large amounts of
heteroatoms (oxygen, nitrogen, and sulfur). As a solution, catalyst-based processes have emerged as
a sustainable solution for the increase in biocrude production. This paper’s objective is to present a
comprehensive review of recent developments on the catalyst-mediated conversion of algal biomass.
Special attention will be given to operating conditions, strains evaluated, and challenges for the
optimal yield of algal-based biofuels through pyrolysis and HTL.

Keywords: microalgal biomass; thermochemical conversion; catalytic upgrading; liquid fuels;
hydrothermal liquefaction; pyrolysis; gasification

1. Introduction

Fossil fuels have been a critical commodity for the economic and social development
of the modern world. However, their consumption has inevitably increased the levels of
anthropogenic carbon dioxide (CO2) emissions to concentrations that exceed the earth’s
absorption capacity through the natural carbon cycle [1]. Biomass-based fuels (or biofuels)
are considered as a substitute for traditional fossil fuels [2] for both developed and non-
developed countries due to their abundance and distribution [3].

Over the last years, several biomass resources such as grass, wood, crops and residues,
animal waste, municipal solid waste, and even aquatic plants have been studied to produce
biofuels [4]. However, up to date, microalgae are considered one of the most attractive
sources of renewable energy and raw materials; it diversifies the scope of different indus-
tries in the elaboration of food and feed, pharmaceuticals, pigments, colorants, bioplastics,
and protein hydrolysates [5].

Microalgae and cyanobacteria are a diverse group of photosynthetic microorganisms
that naturally grow in lakes, rivers, and oceans. Microalgae offer several advantages over
plant-based biofuels such as (i) high growth rate, (ii) use of non-arable lands, (iii) can
be grown in wastewater, (iv) high consumption of CO2, and (v) their production can be
directed toward the synthesis of several compounds of commercial interest [6].
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To obtain biomass with a high concentration of specific metabolites is one the corner-
stones of microalgae biotechnology. Several authors have proved that specific culturing
conditions such as nutrient concentration [7], photobioreactor configuration [8], environ-
mental conditions (temperature and illuminance), agitation, and pH [9] directly influence
the cellular composition, resulting in the final concentration and productivity of the strain,
as well as the variation in the content of specific metabolites (lipids, carbohydrates, proteins,
and other components) [10].

The transformation of algal biomass into biofuels is not new. Several studies have
covered different areas on the strain selection, culture method, and transformation into
biofuel, which is the critical link in the production chain toward obtaining sustainable
biofuels from microalgae.

The algal biomass produced under specific conditions can be transformed into energy
by applying thermochemical and biochemical methods. Biofuel such as Bio-oil, biochar,
synthesis gas (syngas), and heat are obtained through thermochemical conversion. On the
other side, biodiesel, biohydrogen, biomethane (or biogas), and bioethanol can be produced
via the biochemical conversion of algal biomass [1]. Although different forms of cultivation
and production have been developed in recent years, it is still necessary to find an effective
and sustainable production mechanism to reach the full potential of microalgae-based
biofuels, especially in large-scale industrial applications.

One possible solution to achieve the potential of algae as a feedstock for biofuels is
the use of reactions that employ whole biomass such as anaerobic digestion (AD) and
thermochemical conversion. Biogas is the main product of AD and is considered one
of the most promising biofuels that can address rising concerns about fossil fuels [11].
Another alternative is the application of catalytic-based processes such as Hydrothermal
Liquefaction (HTL) and pyrolysis. Through thermochemical conversion, the biomass is
decomposed under oxygen/air deficient conditions to produce Bio-oil, Biochar (specially
on HTL and pyrolysis process), and syngas (especially on gasification process), which pri-
marily consists of carbon monoxide (CO) and carbon dioxide (CO2) [12], the quantity and
quality of the final product depends upon the process, reaction temperature, heating rate,
and oxygen supply [13]. In comparison to the biochemical conversion of algal biomass,
the thermochemical approach is a more straightforward route to produce biofuels due to
several factors: (i) the entire biomass is employed as feedstock, (ii) the process times is
shorter, and (iii) the final yield can be improved by the addition of chemical catalyst [14].
The present study is intended to give a comprehensive overview of the state-of-the-art
usage of catalysts on the thermochemical conversion of algal biomass into solids, liquids,
and gas biofuels. Special attention will be given to operating conditions, strains evaluated,
and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.

2. Algae-Based Biofuels

Biofuels are broadly classified by generations. First-generation (1st gen) biofuels are
produced from food feedstock (corn, sugarcane, soybean, potato, beet, soybeans, coconut,
sunflower, rapeseed, palm oil, switchgrass, Jatropha, Camelina, Cassava). Although 1st gen
is considered a sustainable source of energy due to the reduction on greenhouse gas (GHG)
emissions, specific details such as their competition with food supply, high requirement
of government subsidies, large amounts of non-sustainable fertilizers, and environmental
concerns due to the loss of biodiversity linked to the promotion of deforestation for large
monoculture areas [15] hinder their true impact as a cleaner and more sustainable option
over fossil fuels.

Second-generation (2nd gen) was conceived as a partial solution of several drawbacks
of 1st gen biofuels. This generation relies on nonfood items such as cellulosic biomass,
straw, manure, used cooking oil, and other non-conventional sources, which usually finish
in landfills once their useful portion has been removed [12]. However, 2nd gen is still
not industrially profitable due to biomass complexity and problems associated with its
production, storage, and transportation [2].
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Third-generation (3rd gen) focuses on the upgrade of aquatic feedstock, such as
microalgal and cyanobacterial biomass, into different fuels. Microalgae have been praised
as a better solution for the energy problem due to specific qualities of algal production:
(i) do not compete with human and animal food stock, (ii) harvesting can be done through
the year, (iii) can employ saline and wastewater, (iv) have better growth rate than higher
plants, (v) can convert up to 183 G tons of CO2 to produce 100 G tons of biomass in
comparison to higher plants such as wood crops (165 G tons of CO2 to produce 100 G
tons of biomass) [16], and (vi) the concentration of transformable metabolites (lipids and
carbohydrates) is stable in the biomass. First, the selected strain had to be cultured until it
reaches the largest possible biomass concentration in the photobioreactor; once reached,
the biomass is removed from the culture media (centrifugation, flocculation, filtration,
and other techniques) and dried. Then, the dried biomass is ready to be used as feedstock
for several biofuels (biodiesel, bioethanol, biogas, and so on). These different sections
have been the main topic of research over the last 20 years, attracting the attention of
different universities, research centers, and energy companies worldwide such as Ecopetrol
(Colombia), Exxon Mobile, Shell (US), Petrobras (Brazil), and Total (France).

2.1. How the Production of Algae-Based Biofuels Changed over Time

Several companies worldwide such as Solix biofuels, Corbion (previously known as
Terravia or Solazyme), Cellana, Sapphire Energy, Seambiotic, Oil Fox, Synthetic genomics,
Euglena, and others started the race for algae-based biofuels. However, after years of research,
none of the companies proved the economic balance of algal-based biofuels [2]. The latter
can be due to several problems identified through the last decade. First, the microalgal
biodiversity is so vast that after ten years of research, we are still far from identifying the total
diversity of algae and cyanobacteria [15]. Another problem related to the strains is the stability
of their growth on industrial photobioreactors and the synthesis of the target metabolite [5,6].

Limited studies reported that few species of microalgae and cyanobacteria possess an
inherent capacity for lipid synthesis and storage (Table 1).

Table 1. Different strains studied for biodiesel production.

Strain Lipids
(wt%)

Carbohydrates
(wt%)

Proteins
(wt%) Reference

Arthrospira platensis 30.23 31.89 16.81 [17]
Auxenochlorella protothecoides 42 26 30 [18]

Botryococcus braunii 45 10 44 [19]
60 20 18 [20]

Chlamydomonas reinhardtii 22.11 52.2 23.69 [21]
Ch. reinhardtii CC-400 28.5 n/a n/a [22]

Ch. Reinhardtii CC-4349 64.25 n/a n/a [23]
Chlorella sp G-9 36.5 n/a n/a [24]

C. kessleri 20 18.7 53.8 [25]
C. pyrenoidosa 19.8 14.8 57.3 [26]

C. vulgaris UTEX 259 28 35 20 [27]
C. vulgaris UTEX 1803 12 36 41 [28]

C. vulgaris Mutant (UV715) 41 n/a n/a [29]
Chlorococcum oleofaciens 20 42 35 [30]

Dunaliella tertiolecta 15 10 56 [31]
Nannochloropsis gaditana 17.6 n/a 24.1 [32]

Pseudokirchneriella Subcapitata 40 20 30 [30]
Phaeodactylum tricornutum 55.7 9 22 [33]

Scenedesmus almeriensis 13.1 n/a 30 [34]

S. obliquus
32.5 n/a n/a [35]
24.9 n/a n/a [36]
35 22 32 [37,38]

Tetraselmis suecica
9.03 20 37.27 [39]
25.07 17.52 42.05 [40]
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Initially, the studies focused on applying industrially relevant strains such as Spir-
ulina (Arthorspira) [17], Auxenochlorella [18], Botryococcus [19,20], Chlamydomonas [21–23],
Chlorella [24–29], Dunaliella [34], Scenedesmus [38–43], and Tetraselmis [44,45]. Over time,
other strain with a unique capacity for the synthesis of lipids and hydrocarbons such as
Botryococcus braunii [19,20] were isolated and identified, and more recently, the scientific
community has opted for the production of mutant strains with large lipid storage [22,23,31].

Microalgae can be produced under autotrophic, mixotrophic, or heterotrophic condi-
tions. Different systems for the production of algae are available for their culture under
the three conditions, as mentioned earlier [41]. Autotrophic systems are the most common,
since the algae only require light as an energy source and dissolved CO2 as a source of
carbon. Usually, algae growth under autotrophic systems can be produced in open or
closed photobioreactors. Open ponds are the simplest of all systems for algal production,
and it requires low energy inputs. It has easy maintenance; however, it is severely affected
by seasonal variations and is prone to contamination by other microbes [42]. Mixotrophic
and heterotrophic production of algae requires the addition of organic carbon sources
(glucose, acetate, and others), which can lead to contamination by the presence of bacteria
and fungi; therefore, these systems require closed photobioreactors (PBR). Closed PBR of-
fers several advantages over open systems: (i) aseptic growth conditions, (ii) increased cell
concentration due to better light distribution, (iii) improved pH control, and (iv) reduced
water loss due to evaporation. However, their operation cost, maintenance, and energy
inputs are considerably higher than in open ponds [42].

After biomass production, the cells are harvested from the media. Due to their nature,
microalgal cells have a small size and low specific gravity; therefore, their concentration
and harvesting are energy and time-intensive [43]. Several techniques are available at
industrial scale such as centrifugation, filtration, flocculation, flotation, electroflotation,
and so on [10]. However, the method’s selection and application lie on the technical and
economic analysis since some of them can be extremely expensive and energy-intensive for
the production of algal-based biofuels [44]. Once the biomass is removed from the media,
most of the cell water content must be removed via spray drying, drum drying, freeze-
drying, or solar drying to avoid any interference with the extraction [41]. Following drying
comes the extraction of lipids and carbohydrates, which is considered as the crucial step
that inhibits the industrial-scale production of algae-based biofuels [44]. The microalgal
cell wall is made of polysaccharides and cellulose synthesized from silicic acid [45], and it
must be broken in order to release both lipids and carbohydrates; as a consequence, only a
fraction of the biomass is used in biofuel process production. Therefore, biodiesel and
bioethanol production are still not economically feasible due to the high cost and energy
inputs in almost all stages [46]. Other biofuels such as biogas and biohydrogen have gained
attention as sustainable alternatives for energy production using microalgal biomass.

2.2. Biochemical Conversion for Third-Generation Biofuel

The biochemical conversion of algal biomass into third-generation biofuels are di-
vided into biodiesel, bioethanol, biogas, and biohydrogen. Biodiesel from algae requires
the extraction and conversion of lipidic fraction into low atomic weight compounds,
biodegradable fatty acid methyl esters (FAME), for hands ready usage in engines through
transesterification [47]. In the transesterification reaction in the presence of a chemical
(acid, alkali) or biological (lipase) catalyst [48], methanol or ethanol is used to increase the
reaction rate and maintain a balance change toward the production of fatty acid esters with
glycerol as a by-product [49]. The biodiesel derived from algal biomass has a petrodiesel-
like calorific value (39–41 MJ/kg) [50]; it also has a higher percentage of unsaturated fatty
acid compared to saturated fatty acid, which is a prerequisite for fuel engineering [51].
A higher degree of unsaturation leads to better cold flow; however, insoluble particle
production is simultaneously increased [52].
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Microalgae are an alternative resource for bioethanol production as they showed
higher productivity than certain feedstocks for bioethanol production, such as sugarcane
and corn [53]. Several strains accumulate carbohydrates in excess (mainly as insoluble
starch and cellulose, with the absence of lignin) of up to 50% of their dry weight (DW) [54].
These carbohydrates are not readily fermentable to bioethanol [55]; thus, pretreatment pro-
cesses, including chemical (acid and alkaline) or enzymatic hydrolysis, are crucial [56–58].

There are many pretreatment methods (acid, basic, and enzymatic hydrolysis);
however, their cost can significantly contribute up to 30% of the total cost of bioethanol
production [59]. Acid hydrolysis is quicker and cheaper under high temperatures and
pressures but can decompose sugar into inhibitors [60–62]. Conversely, under mild temper-
atures and pressure, enzymatic hydrolysis can be achieved, but it is slower, more costly,
and still involves physical or chemical pretreatment [63].

Biogas is produced via a sequence of biochemical processes converting the organic
material: hydrolysis, fermentation, acetogenesis, and methanogenesis, also known as
anaerobic digestion (AD) [64]. In this process, the whole biomass is used for the production
of methane (55–75%) and carbon dioxide (25–45%) [65]; therefore, the energy performance
is higher in comparison to biodiesel and bioethanol [66]. Additionally, nutrients such as
organic nitrogen or phosphorus may be mineralized and subsequently recycled for algae
cultivation [67]. Unlike biogas, biohydrogen is produced via their metabolic pathways
along with the cell growth; therefore, it does not require further processing of the biomass
(i.e., harvesting, dewatering, drying, and extraction), and it is considered clean and re-
newable, with higher energy production (142 MJ/Kg) [68]. Biohydrogen can be obtained
by photofermentation, dark fermentation, direct and indirect biophotolysis [69]; however,
hydrogen production cannot be achieved amidst effective photosynthesis, as oxygen in-
activates hydrogenase [70]. The Research and Development on algal-based biofuels is a
field that, in recent years, has been maintained with a considerable number of publications.
Figure 1 shows the number of publications per year in the last 18 years, according to the
Scopus database (Elsevier). It is possible to observe an exponential increase in the number
of publications between 2006 and 2015. Since 2016, the number of documents has remained
almost constant up to a final number of 8022 (including accepted manuscripts for 2021).
The United States, China, India, South Korea, and the United Kingdom dominate the
scientific publication on algal-based biofuels.
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3. Thermochemical Conversion of Algal Biomass

Thermochemical methods can be grouped into four classes (Figure 2): hydrothermal
liquefaction, pyrolysis, gasification, and torrefaction [71]. In the thermochemical process,
the algal biomass is thermally decomposed into usable biofuels such as syngas, bio-oil,
and biochar (Figure 2). Unlike the biochemical production of biofuels, thermochemical
processes do not require the extraction of lipids nor carbohydrates; therefore, the entire
biomass can be used. Finally, the reaction time is short, providing a simpler route for the
biofuel production [10].
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3.1. Microalgal Torrefaction

Torrefaction (usually called mild pyrolysis) is a pretreatment process focused on
altering the physicochemical properties of biomass to improve their fuel characteristics
and applicability in thermal conversion processes [72]. Their application of microalgae is
relatively new (Figure 3a), with the first reported use in 2011. Usually, the reaction temper-
ature of the torrefaction process occurs between 200 and 300 ◦C, under slow heating rates
(<50 ◦C/min), mainly in an inert environment [73,74]. The torrefied biomass poses several
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advantages: higher heating value, lower atomic O/C and H/C ratios, lower moisture
content, higher water-resistivity, and improved reactivity [72]. There are several reports
of torrefaction (both wet and dry) on algal biomass upgrade. The torrefied biomass of
S. platensis (300 ◦C and 30 min) showed an increase in the higher heating value (from 20
to 25.92 MJ/kg) and a lower moisture content (from 7.61 to 1 wt%) in comparison to
untreated biomass [73]. In a different study, C. vulgaris ESP-31 was torrefied in the presence
of water (20 g dried microalga and 100 g of distilled water) using different temperatures
(160, 170, and 180 ◦C) for 10 min. The torrefied biomass showed an increased fixed car-
bon (25.29 and 16.39 wt% respectively) and Higher Heating Value (HHV) in comparison
with raw biomass (24.49 and 22.02 MJ/kg, respectively) [75]. In a complementary study,
the treated biomass of C. vulgaris ESP-31 was further transformed through gasification [76].
As a result, the biomass reached the devolatilization peak at lower temperatures (between
266 and 270 ◦C) compared to raw samples (287.7 ◦C). The efficiency of torrefaction is linked
to temperature and time reaction [77]. According to Chen et al. [78], 300 ◦C and 30 min
increased the final HHV content in Chlamydomonas sp. JSC4 (from 19.27 to 25 MJ/kg).
Another possibility is the application of wet torrefaction for the co-production of biochar
and bioethanol; Yu et al. [79,80] torrefied C. vulgaris ESP-31 biomass addition of 0.2 M
H2SO4 (170 ◦C, 10 min). Their results show a significant increase in the HHV, from 19.23 to
32.35 MJ/kg, while the hydrolysate contained a considerably high content of total reducing
sugar (7.31–98.11 g/L).Catalysts 2021, 11, x FOR PEER REVIEW 8 of 29 
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3.2. Pyrolysis of Microalgae

Pyrolysis is the thermal decomposition of biomass at high temperature (400–600 ◦C),
in an atmospheric-pressure inert environment. Compared to other conversion technologies,
the pyrolysis of algal biomass has achieved reliable and promising outcomes that could lead
to commercial exploitation [81]. Due to the lipid and protein content of algal biomass, the bio-
oils obtained have a higher heating value (10–35 MJ/kg) [82], higher aromatics, and lower
acidity (pH 3.7) compared to lignocellulosic biomass (15.14–30.47 MJ/kg, pH < 3) [83–85].

Pyrolysis can be categorized in five modes: (i) slow, (ii) intermediate (iii) fast, (iv) flash,
and (v) microwave pyrolysis; each one possesses a differential heating rate, the presence,
and/or heating route [9]. Slow pyrolysis is characterized by the heating of biomass
under a “slow” heating rate (0.1–0.8 ◦C/s), with moderate temperature (300–500 ◦C)
and long retention times (5–60 min) [86–88]. Their main product is biochar with by-
products such as bio-oil and syngas [89]. Under slow pyrolysis, different particle sizes
can be processed; therefore, both macro and microalgae can be used without mechanical
pretreatment. Intermediate pyrolysis is carried out using the intermediate conditions
between slow and fast pyrolysis [90]. Normally, intermediate pyrolysis occurs at moderate
temperatures of reaction (up to 500 ◦C), 0.5–25 min residence times for feedstocks, and 2–4 s
moderate residence times for vapor [91]. The main product from intermediate pyrolysis is
bio-oil (40–60%) followed by non-condensable syngas (20–30%) and biochar (15–25%) [92],
the bio-oil obtained has a reduced viscosity with a small concentration of tar [93], and the
syngas is mainly composed of hydrogen (H2), carbon monoxide (CO), carbon dioxide
(CO2) and methane (CH4) [94]. Both bio-oil and syngas can be further refined into fuels
for energy, heat, and transport [95]. One interesting product from intermediate pyrolysis
is hydrogen. Generally, H2 is not expected in conventional pyrolysis gas, as no reduction
process for H2 formation occurs; however, the contact between hot char and water vapor
lead to CO and H2 [96].

Biochar is a carbon-rich charcoal material that can be obtained from any biomass
feedstock by thermal decomposition under minimal oxygen (O2) supply [97] and contains
most of the feedstock mineral components [98]. As mentioned above, slow pyrolysis is the
preferred method for biochar production. Biochar has a high heat value, carbon content,
porosity, and strong capacity reduction [99]. Due to its sustainable nature and its carbon-
neutral properties [100], biochar is mainly focused on carbon reduction, soil amendment,
energy resources, and water treatment [101], More recently, several researchers used biochar
to synthesize metal-supported catalysts due to their unique physical properties and low
price [102]. In a study on the slow pyrolysis of six genera of macroalgae, the authors obtained
high yields of biochar (45.3–62.4 wt%) with moderate HHV values (10.7–17.8 MJ/kg) [84].
On another study, Chlorella sp. produced higher biochar yield (41 wt%) with relatively
high heating value (21.5 MJ/kg) in comparison of the macroalga Sargassum sp. (39 wt%
and 18.5 MJ/kg) [99]. Temperature is an important parameter on biochar production;
when biomass from Laminaria japonica was subjected to higher temperatures under slow
pyrolysis (600 ◦C) the yield of biochar was reduced from 78.34 to 27.05%, while ash content
increased from 22.92 to 64.19% [103]. Finally, unlike most studies, Wang et al. [98] obtained
a higher biochar yield (31 wt%) under fast pyrolysis of C. vulgaris; however, this result can
be due an unusually high ash content on the biomass.

The preferred method for optimizing bio-oil production is fast pyrolysis; this method
is carried out at elevated temperatures (850–1100 ◦C), fast heating rate (>1 ◦C/s), and short
pyrolysis time (0.5–10 s) [104,105]. These conditions reduce secondary reactions (secondary
cracking, condensation, and polymerization of intermediates), which contribute to the
production of high bio-oil yields, making it efficient for biomass conversion [83,106].
Flash pyrolysis uses high temperatures (950–1250 ◦C), high heating rates (>1000 ◦C/s),
and a reduced time (0.5–10 s), with bio-oil as their main product (90 wt%) [89,107].
Finally, Microwave-Assisted Pyrolysis (MAP) employs a heating rate between conventional
pyrolysis and fast pyrolysis [107]. It is considered a more energy-efficient method than other
pyrolysis-related systems [108], since it can use different particle size biomass. Over the last
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years, several studies have been conducted to increase the efficiency of pyrolysis process using
microalgal genera such as Arthrospira sp. [109], Chaetocerous sp. [93], Chlamydomonas sp. [4,110],
Chlorella sp. [83,111–115], Desmodesmus sp. [116], Dunaliella sp. [93], Haematococcus sp. [93,117],
Isochrysis sp. [118–120], Microcystis sp. [105], Nannochloropsis sp. [121–124], Oscillatoria sp. [125],
Pavlova sp. [126,127], Schizochytrium sp. [128], Tetraselmis sp. [118,119], Spirulina sp. [112,129,130],
and Synechococcus [119]. A detailed list of species studied can be found in Table 2.

The application of catalyst on microalgal pyrolysis is an alternative to increase selec-
tivity for certain pyrolytic products (liquid, solid or gas) and improve process parameters
(reduced temperature and processing time) [98]; it can also lead to in situ upgrading of
generated bio-oil with less oxygenic compounds, which prevent polymerization and con-
densation [83,131]. Another advantage is that catalysts used for pyrolysis can be recycled
to the reactor [83]. Various catalysts such as acid type, base type, metal type, zeolite
type, carbon type or a combination of different materials may be used to improve py-
rolysis [98]. The most common catalysts used include Na2CO3, metallic-based catalysts
such as Ni, Mo, and ceria-based catalysts (NieCe/Al2O3 and NieCe/ZrO2) have shown
great catalytic efficiency [126]. On the other hand, other metal catalysts including Ce, Ti,
Co, Mg, and Al did not show obvious catalytic effect [107]. ZSM-5-based zeolites such as
H-ZSM-5, Fe-ZSM-5 Cu-ZSM-5, Ni-ZSM-5, and Ga-HZSM-5 are considered as the most
effective catalyst for the pyrolysis of algal biomass. Ga-ZSM-5 is called a bifunctional
catalyst, where Ga promotes decarbonylation and olefin aromatization reactions, while the
remaining reactions (e.g., oligomerization and cracking) are catalyzed by the ZSM-5 [132].
In the study on the catalytic pyrolysis of C. vulgaris with egg whites, Ga-HZSM-5 and
Cu-ZSM-5 increased the Aromatic production from 16.72% for normal HZSM-5 (30) to
21.16% and 18.03%, respectively [133]. Another study [132] found that Ga/ZSM-5 catalysts
increased the yield of aromatics using Catalytic fast pyrolysis (CFP) by 40% compared to
ZSM-5 catalyst. In the catalytic pyrolysis of Jatropha residues, [134] found that Ga/HZSM-5
yield the highest aromatics (95%) high monocyclic aromatic hydrocarbons (MAHs) and
low polycyclic aromatic hydrocarbons (PAHs) selectivity of 87% and 13%, respectively.
Other zeolites such as ITQ-2 and MCM-22 had a similar but less effective function [135].
In a study on the catalytic pyrolysis of Nannochloropsis sp. [121] were able to significantly
reduce the oxygen content (from 30 to 19 wt%) and a higher calorific value (from 24.6
to 32.5 MJkg). Other studies such as [136–138] proved the ability of catalytic-mediated
pyrolysis to increase the yield of bio-oil.

Du et al. [137] found that an increase in catalyst-to-biomass ratio from 1:1 to 5:1 using
HZSM-5 significantly improved the aromatic yields. On the other hand, Gao et al. [138]
obtained bio-oil with less nitrogenated compounds through the usage of Mg–Al layered
double oxide/ZSM-5 composites on the pyrolysis of cyanobacterial biomass. On another
study, Aysu et al. [118] improved the yield and quality of bio-oil from Tetraselmis sp. and
Isochrysis sp. in a fixed bed reactor with the addition of NieCe/Al2O3 and NieCe/ZrO2.
Campanella et al. [111] investigated the efficiency of five different zeolite-based catalysts
(H-, Fe-, Cu-, and Ni-ZSM-5) in the bio-oil production from Chlorella biomass, and they
found that HZSM-5 increased the yield of the hydrocarbon fraction in the organic phase
from 21 to 43 wt%. Finally, Mo et al. [129] evaluated the efficiency of MgO and ZSM-5 under
environment enriched with N2 and CO2, where maximum bio-oil (46.2 wt%) was obtained
with basic metal MgO. Figure 3 shows the evolution of the number of publications per year
along the last 16-year period. According to the data obtained from the Scopus database
(Elsevier), it is possible to observe an exponential increase in the number of publications
between 2008 and 2017. Finally, the United States, China, India, South Korea, and the
United Kingdom dominate the scientific publication on the application of torrefaction,
pyrolysis, and HTL.
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Table 2. Strains studied on catalytic pyrolysis and their catalyst.

Strain HHV (MJ/kg) Heating Rate
(◦C/min)

Pyrolysis Time
(min)

Pyrolysis
Temperature

(◦C)
Catalyst Bio-oil

(wt%)
Bio-char

(wt%)
Syngas
(wt%) Reference

Arthrospira plantensis 21.45 100 30 400–700
Ni/HMS-ZSM5 32.52 34.04 33.44

[109]Fe/HMS-ZSM5 30.01 31.84 38.15
Ce/HMS-ZSM5 31.80 31.79 36.41

Chlamydomonas reinhardtii 20.47 150 10–34 500 hydrotalcite 54.84 37.59 7.57 [110]

Ch. debaryana 21.9 >200 30 500–800
β-zeolite 23.5 n/a n/a

[4]Activated charcoal 43.8 n/a n/a

Chlorella sp.

21.2 n/a 30 300–450 Na2CO3 41.0 54.4 34.1 [83]

19.5 n/a 10 500
Fe-ZSM-5 43.1 29.7 27.1

[111]Cu-ZSM-5 46.9 27.9 24.6
Ni-ZSM-5 45.1 30.1 25.4

n/a n/a 50 350–650
Magnetite 53.8 27.4 22.8

[112]Activated carbon 49. 4 37.3 13.3

C. vulgaris
16.8 10 30 700 H+ZSM-5 25 24 n/a [113]
n/a 10 30 300–600 Ni-ZSM-5 18.97 n/a n/a [114]
18.6 48 30 500 H+ZSM-5 52.7 25.7 21.6 [115]

Desmodesmus communis n/a n/a 20 460 HZSM-5 8 42 n/a [116]

Haematococcus pluvialis 8.98 10 n/a 600

KCl 12 60 28

[117]

KOH 11 65 76
K2CO3 13 64.8 22.2
MgO 12.5 62 25.5
Al2O3 15 61 24
CaO 13 63 24

Microalgae Residue 15 60 25

Isochrysis sp.
12.38 100 60 500

CeO3 23 30 47

[118]

Ce/Al2O3 25 32 42
NiCe/Al2O3 24 32 43
MgCe/Al2O3 23 31 46

Ce/ZnO2 25 29 54
NiCe/ZnO2 23 27 50
MgCe/ZnO2 23 28 49

15 100 20 500
Li-LSX-zeolite

29 35 36 [119]
15 100 20 500 42.5 33 24.5 [120]
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Table 2. Cont.

Strain HHV (MJ/kg) Heating Rate
(◦C/min)

Pyrolysis Time
(min)

Pyrolysis
Temperature

(◦C)
Catalyst Bio-oil

(wt%)
Bio-char

(wt%)
Syngas
(wt%) Reference

Nannochloropsis sp.
n/a 10 120 300–500 HZSM-5 25 38 n/a [121]

15.17 50 60 400–600 Ni–Ce/Al2O3 23.3 30.9 n/a [122]
n/a n/a 15 500–900 HZSM-5 49 40 10 [123]

N. oculata 18 n/a n/a 400–600 Co-Mo/γ-Al2O3 26 42 n/a [124]
Oscillatoria sp. 14.26 20 120 550 TiO2, ZnO 33.33 43.05 26.25 [125]

Pavlova sp.

12.96 100 60 450–550

CeO3 21.07 47.96 45.92

[126]
TiO3 20.04 48.18 45.10

Ce/TiO3 21.67 47.44 46.26
Ni/TiO3 22.55 47.66 45.39
Co/TiO3 20.4 48.28 44.61

12.96 100 60 450–550

CeO2 21.07 37.86 41.07

[127]
TiO2 20.04 39.49 40.47

Ce/TiO2 21.67 37.46 40.87
Ni/TiO2 22.55 37.16 40.29
Co/TiO2 20.41 38.85 40.74

Schizochytrium limacinum 25.8 n/a n/a 350–800 ZYNa 26 9 n/a [128]

Tetraselmis sp. 12.07 100 60 500

CeO3 23 19 58

[118]

Ce/Al2O3 25 17 58
NiCe/Al2O3 25 17 58
MgCe/Al2O3 23 16 51

Mg/ZnO2 23 18 59
Ce/ZnO2 23 17 58

NiCe/ZnO2 23 16 51
MgCe/ZnO2 23 17 58

Spirulina sp. n/a n/a 50 350–650
Magnetite 49.4 25.4 25.2

[112]Activated carbon 46.4 33.2 20.4

S. platensis 17.6 15 60 350–500
ZSM-5 44.8 21.1 34.1

[129]MgO 46.2 29.5 24.3
18.6 10 n/a 400 Ce(II)/HZSM-5 49.7 20 30.3 [130]
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3.3. Hydrothermal Liquefaction of Algal Biomass

One of the problems with algal biomass is the necessity to remove the high-water
content prior to the production of biofuels. In this case, Hydrothermal Liquefaction (HTL)
stands out as a promising technology for the thermochemical conversion of biomass into
more useful liquid fuels [139]. Unlike pyrolysis, HTL can convert high-moisture biomass
to biocrude in water medium and thus does not require preliminary drying processes [140].
HTL is performed in the presence of water under high pressure (5–25 MPa) and sub-
critical water temperature (280–370 ◦C). Under these conditions, macromolecules found
within algal biomass (including lipid, protein, and carbohydrate) undergoes depolymer-
ization reactions (fragmentation, hydrolysis, dehydration, deoxygenation, aromatization,
and repolymerization) [141] for the production of several products such as bio-oil, gas,
solid residue, and aqueous phase by-products [142]. HTL is considered a more robust ther-
mochemical technology, not only for the usage of wet biomass, but also due to their high
biocrude yield (24–64 wt%) [143]; some essential nutrients (N, P, Mg, and K) can be recycled
for microalgal culture [144]. Additionally, up to 50% of oxygen can be removed, resulting
in a biocrude with a Higher Heating Value (HHV) ranging from 30 to 40 MJ/kg [145,146].
However, the algae-derived biocrude possesses some disadvantages such as a high-water
content, high viscosity, and high heteroatom content, which impede its upgrade into usable
fuels [143]. Several studies underline that the biomass load/ratio, reaction temperature,
residence time, pressure, catalyst (including homogenous and heterogeneous catalyst),
and reaction medium influence the yield, composition, and physicochemical properties
of biocrude obtained under HTL [147]. The application of catalysts on HTL reaction is an
interesting opportunity to improve the process in several aspects such as the yield and
quality of biocrude [148,149], inhibition of side reactions, decrease of reaction temperature,
and pressure reduce its viscosity and the processing time [150]. The catalysts employed
can be separated into homogeneous (water soluble) and heterogeneous (non-water solu-
ble) [139]; Table 3 presents a list of homogeneous and heterogeneous catalysts employed
on the conversion of algal biomass into biofuels.

3.3.1. Homogeneous Catalysis

Homogeneous catalysts are water-soluble at room temperature. During the reaction,
the formation of char/tar is inhibited while enhancing product yield by expediting the
water–gas shift reaction [150]. The most common forms include alkali salts (Na2CO3
and KOH), mineral and organic acids (CH3COOH and HCOOH), and metallic cations
(Zn2+ and Co3+) [149,150]. Over the last years, several studies have been conducted to test
the efficiency of different homogeneous catalyst using micro and macroalgal genera such as
Chlorella sp. [151–154], Cyanidioschyzon sp. [155], Dunaliella sp. [156], Enteromorpha sp. [157],
Isochrysis sp. [158], Laminaria sp. [159], Microcystis sp. [160], Nannochloropsis sp. [151,158,161],
Pavlova sp. [158], Porphyridium sp. [151], Spirulina sp. [152,162,163], Tetraselmis sp. [163],
Ulva sp. [164]; and a unknown mixture of algal species [165]. A detailed list of species and
the catalyst studied can be found in Table 3.
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Na2CO3 is the most common catalyst employed, and they can enhance the production
of BTEX (benzene, toluene, ethylbenzenes, and xylenes) and C5 to C18 aliphatic hydrocar-
bons, which are critical elements of gasoline and diesel fuels [139]. In their work, Ref. [158]
observed that Na2CO3 enhanced the yield of bio-crude from Nannochloropsis sp. at 250 ◦C.
However, at higher temperatures (300–350 ◦C), other species studied such as Pavlova and
Isochrysis sp. have higher bio-oil yields (50–60%). The difference between results can be
explained by the difference on biomass composition, since Pavlova and Isochrysis sp. have
high lipid and carbohydrate contents. These results are consistent with those reported
by [151], who observed that algae with high carbohydrate content were efficiently liquefied.
In other study, [163] found that Na2CO3 increased the bio-oil yield up to 52% (29% higher
than for the uncatalyzed process) on Spirulina platensis, and Ca3(PO4)2 and NiO produced
a negative effect on bio-oil yield. On the other hand, [153] found that Na2CO3 does not
improved the formation of bio-oil on a strain of C. vulgaris. KOH has been reported as
an interesting catalyst; according to [155], in the catalytic HTL of Cyanidioschyzon merolae,
KOH can increase the bio-oil yield in the range of 5–10% of bio-oil (from 16.9 to 22.7%)
than for the non-catalytic process under similar reaction conditions. The performance of
alkali catalyst is significantly affected by the temperature of the process, irrespective of
the species evaluated [153,160]. For example, the formation of aliphatic and cyclics are
directly affected with an increment of temperature (300 ◦C); however, at higher tempera-
tures, their concentrations declined due to subsequent cracking [139]. Apart from alkaline
catalysts, both organic (HCOOH and CH3COOH) and inorganic acid (H2SO4) catalysts
have been used [153,166]. According to Zhuang et al. [167], a concentration of 6% of H2SO4
increased up to 70% the bio-oil production from macroalga Ulva prolifera sp.; however,
the bio-oil contained large quantities of O, S, and N (52.89, 3.23, and 1.43 wt% respectively)
which must be eliminated before it can be used as a fuel. In another research, [166] found
that 2.4% H2SO4 had a positive effect on the bio-crude oil production from Dunaliella
tertiolecta; it can be highlighted that the bio-oil obtained is composed mainly of esters,
carboxylic acids, and ketones. In the application of HCOOH and CH3COOH in a reaction
with C. vulgaris (300–350 ◦C for 1 h), Ross et al. [152] demonstrated that acid catalyst pro-
duced a higher bio-crude oil yield with a better flowability of oil product. Yang et al. [157]
obtained a maximum yield of 28% of bio-oil using H2SO4 and CH3COOH in the catalytic
HTL of Enteromorpha prolifera. There are certain challenges that hinder the prospect of
industrial application of homogeneous catalysts on HTL. Catalysts based on carbonates
(hydroxides or simple carboxylic acids) have a low efficiency on the decarboxylation,
isomeration, and aromatization of fatty acids [140]. Formic acid and acetic acid can in-
duce the formation of gas fractions (30 wt% and 16–22 wt%, respectively) [152], and are
consumed through the reaction stage; therefore, this type of catalyst must be removed
and disposed [150].



Catalysts 2021, 11, 22 14 of 25

3.3.2. Heterogeneous Catalysis

Heterogeneous catalysts, or water-insoluble catalysts, exist in the different phases
with liquefaction medium; therefore, they can be recovered and recycled [147]. Another
major advantage over homogeneous catalysts is their low corrosion rate and high cat-
alytic activity under severe reaction conditions, which often damage the homogeneous
catalysts [139]. Several genera such as Chlorella sp. [154,168–171], Dunaliella sp. [172,173],
Nannochloropsis sp. [168,174–176], Spirulina sp. [177–179], Ulva sp. [180], and a mixture
of microalgal species [181] have been studied using different heterogeneous catalysts of
including supported metal catalysts (such as Pd, Pt, Ni, and Ru), metal oxide catalyst,
and metals supported on Al2O3, SiO2, and zeolites. However, the influence of metal cata-
lysts in the biocrude yield is complex, and not all of the evaluated metals can positively
improve the yield, even some of them can significantly reduce the overall performance
of HTL.

According to the results obtained by Nava Bravo et al. [181], the composition of algal
biomass (carbohydrates, lipids, protein, and ash content) and the catalyst play a crucial role
in bio-oil yield. In this scenario, bio-oil from C. vulgaris was positively affected by Pt/Al2O3
and CoMo/Al2O3 (from 34 to 39 wt%); on the other hand, the bio-oil yield from N. occulata
was reduced by each of the three heterogeneous catalysts. Similar results were reported
by [174], who evaluated different metal catalysts on Nannochloropsis sp. biomass (Pd/C,
Pt/C, Ru/C, Ni/SiO2−Al2O3, CoMo/γ-Al2O3, and zeolite). Their results show that metal-
based catalysts (especially Ni/SiO2–Al2O3) reduce the bio-oil yield. The promotion of gas
formation can explain this process by gasification reactions [182]. However, only Pd/C
effectively increased the bio-oil yield (from 35 to 57 wt%). In another study, Yang et al. [173]
evaluated the efficiency of REHY and Ni/REHY in D. salina conversion. The results showed
an increase of bio-oil yield from 35% up to 52 and 72% for REHY and Ni/REHY, respectively.
The Ni-based catalyst can improve the overall biomass conversion by catalyzing bond
cleavages and the depolymerization process. In another study, Raney-Ni and HZSM-
5 type zeolite (using ethanol as solvent) were evaluated on the catalytic efficiency over
C. pyrenoidosa biomass [182]. The results show that the catalyst does not improve the yield of
bio-oil for the different conditions considered. However, the catalyst employed enhanced
the concentration of other reaction products such as light fuel-range (gasoline range)
hydrocarbons. Other zeolite-based catalysts such as H-ZSM-5 and Ce/H-ZSM-5 have been
reported for the conversion of C. pyrenoidosa biomass [171], and their results highlight
the efficiency of zeolite-based catalysts, due to a raise in the yield of bio-oil from 32% to
38% and 52% for H-ZSM-5 and Ce/H-ZSM-5, respectively. Even after all the different
research highlighted in the present review, there is no clarity on the underlying mechanism
of heterogeneous catalysts in the liquefaction process of algal biomass. According to the
literature, heterogeneous catalysts are considered superior to their counterpart; however,
there are some conditions that hamper their efficiency. Xu et al. [171] found that biomass
impurities such ash and excess of media nutrients can produce catalyst deactivation after a
certain period in a continuous operation. It is found that found that a high concentration of
S, N, and O derivatives can accelerate the deactivation of heterogeneous catalyst [183–185].
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Table 3. Strains evaluated and their catalyst.

Strain HHV Biomass
(MJ/kg) Catalyst Temperature (◦C) Residence Time

(min) Catalyst Type Bio-oil
Yield (wt%)

HHV
Bio-oil (MJ/kg) Reference

Chlorella vulgaris

23.2
HCOOH

320 30

homogeneous
catalysts

28 33.2
[151]

Na2CO3
28 37.1

23.2 300–350 60

27.3 37.2

[152]
KOH 22.4 35.7

CH3COOH 20.4 34.1
HCOOH 19.1 34.7

n/a
HCOOH

275 50
29.39 36.03

[153]Na2CO3 12.5 31.8

C. pyrenoidosa n/a
NaOH

240–280 20–50
41–47.5

n/a [154]Na2CO3 31–45

Cyanidioschyzon merolae 18.11

CH3COOH

300 30

21.23 33.36

[155]
NaOH 21.78 32.89
KOH 22.67 33.6

H2SO4 16.98 33.76
Dunaliella tertiolecta n/a

Na2CO3

340 60 42.0 n/a [156]
Enteromorpha prolifera 13.4 290 20 23.0 29.5 [157]

Isochrysis sp. 22.97 300 60 42.5 35.61 [158]
Laminaria saccharina 14.46 KOH 350 15 63 34.18 [159]

Microcystis viridis n/a Na2CO3
300–340 30–60 33 28–30 [160]

Nannochloropsis sp.

24.02 350 60 48.67 33.71 [158]

17.9
HCOOH

320 30
28 39

[151]

Na2CO3

28 35.5
23.88 250 60 24.2 38.31 [161]

Pavlova sp. 22.69 350 60 47.7 36.93 [158]
Porphyridium cruentum 14.7 320 30 27.1 22.8 [151]

Spirulina sp. 21.2

KOH

300–350 60

15.2 35.7

[152]
Na2CO3 20 37.8

CH3COOH 16.6 34.1
HCOOH 14.2 34.7

S. platensis 20.52
Ca3(PO4)2

350 60
34.5 35.07

[162]NiO 30.2 38.41
Na2CO3 51.6 36.29

n/a
Na2CO3 250–350 30

35 38.65
[163]Tetraselmis sp. 40 35.58
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Table 3. Cont.

Strain HHV Biomass
(MJ/kg) Catalyst Temperature (◦C) Residence Time

(min) Catalyst Type Bio-oil
Yield (wt%)

HHV
Bio-oil (MJ/kg) Reference

Ulva prolifera
KOH

290 30
26.7 33.6

[164]NaOH 25.2 29.8

Na2CO3
19 29.2

Green macroalgal blooms 9.45 270 45
20.1 25.59

[165]CaO 14.6 23.8
TiO2 17.3 25.37

Chlorella sp. n/a CuO/Al-SBA-15 170–350 30

heterogeneous
catalysts

45.1 n/a [168]
17.31 Pt/C 350 30 37.9 33.2 [169]

C. pyrenoidosa

n/a

HZSM-5

250–300 60

73

n/a [170]
NaY 68
USY 66
HY 64

Ce/H-ZSM−5
300 20

49.87 26.09
[171]HZSM-5 34.02 21.77

Pd/Al2O3

240–280 30

27.5–48

n/a [154]
Pd/C 30–42.5

Pt/Al2O3 34–46
Pt/C 33–45

Raney Ni 33–50

C. vulgaris
Pt/Al2O3

350 60
38.9

n/a [168]Ni/Al2O3 30
Co/Mo/Al2O3 38.7

D. tertiolecta 17.81

KtB

360 30

49.09 32.36

[172]ZrO2/SO4
2− 29 33.24

HZSM-5 31.1 33.67
MgO/MCM-41 36 33.17

D. salina 18.47
Ni/REHY

200 60
72 30.11

[173]REHY 51.6 26.88

N. oculata n/a
Pt/Al2O3

350 60
30.2

n/a [168]Ni/Al2O3 18.1
Co/Mo/Al2O3 25.5
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Table 3. Cont.

Strain HHV Biomass
(MJ/kg) Catalyst Temperature (◦C) Residence Time

(min) Catalyst Type Bio-oil
Yield (wt%)

HHV
Bio-oil (MJ/kg) Reference

Nannochloropsis sp.
18.5

Pd/C

350 60

57 38.9

[174]

Pt/C 49 40.1
Ru/C 50 38.4

Ni/SiO2-Al2O3 50 39.4
CoMo/Al2O3 55 38.6

Zeolite 48 38.5

n/a

Pd/C 350 60 48 n/a [175]
Fe/HZSM-5 365 60 38.1 n/a [176]

Spirulina sp.

HZSM-5

380 120

30.63 28.32

[177]
HZSM-5@MS 32.45 29.51
Pd/HZSM-5 34.9 29.43

Pd/HZSM-5@MS 35.62 29.21

S. platensis CeO2 250 30 34 39.21 [178]
Fe3O4 272 37 27.6 30.98 [179]

Ulva prolifera ZSM-5 280 15 29.3 34.8 [180]
Microalgae consortium H-ZSM−5 350 120 16.0 37.7–41.6 [181]
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4. Conclusions

This paper reviews the experimental aspects of conventional and catalytic thermo-
chemical conversion of microalgal biomass and their product distribution, yields, and qual-
ity. The thermochemical conversion of algal biomass is a promising route to obtain al-
ternative fuels for energy generation; however, several challenges must be overcome to
increase the sustainability of algal-based biofuels. Torrefaction proved to be an effective
pretreatment for algal biomass prior to pyrolysis process; so far, the scientific literature on
this pretreatment is still rare, and further research must be done in order to improve its
efficiency. Pyrolysis is a well-established technology that shows the right concentration of
bio-oil, char, and syngas. Macroalgal biomass can be more interesting for this technology
due to the necessity of dried biomass. On the other hand, hydrothermal liquefaction can
convert high-moisture biomass to biocrude in water medium and thus does not require
preliminary drying processes, which makes HTL the most promising process an energetic
point of view for the conversion of algal-based biofuels. The application of catalyst (both ho-
mogeneous and heterogeneous) has increased the overall efficiency of conversion of algal
biomass in bio-oil, bio-char, and syngas. ZSM-5-based zeolites such as H-ZSM-5, Fe-ZSM-5
Cu-ZSM-5, Ni-ZSM-5, and Ga-HZSM-5 have shown exciting results in the conversion
of biomass into bio-oil and bio-char. Therefore, it can be considered the most effective
catalyst for the pyrolytic transformation of algal biomass. In HTL reactions, heterogeneous
catalysts, specially Pd/C, Ni-based catalyst, and zeolite-based catalyst have shown more
consistent data in converting the selected biomass into bio-oil; their recycling ability and
low corrosion rate make them a more suitable option. However, particular challenges
hinder the prospect of industrial application of catalysts, such as possible corrosion on the
reaction equipment, low recycling capacity, and catalyst deactivation after a certain period
in a continuous operation. Therefore, designing novel catalysts for the selective conversion
of microalgae into biofuels is a mandatory step to increase the efficiency of the process.
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