

1 Supplementary Materials:

2

Hydrodechlorination of different chloroaromatic 3 compounds at room temperature and ambient 4 pressure — differences in reactivity of Cu- and Ni-5 based Al alloys in an alkaline aqueous solution 6 7 Tomáš Weidlich 1*, Barbora Kamenická 1, Klára Melánová2, Veronika Čičmancová3, Alena 8 Komersová⁴, Jiří Čermák⁵ 9 ¹ Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical 10 Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic. 11 Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, 12 Studentská 84, 532 10 Pardubice, Czech Republic. klara.melanova@upce.cz 13 ³ Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, 14 Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic. E-mail: veronika.cicmancova@upce.cz 15 ⁴ Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 16 573, 532 10 Pardubice, Czech Republic. 17 ⁵ VUOS, a.s. – Research Institute for Organic Syntheses, č.p. 296, 533 54 Rybitví, Czech Republic. 18 jiri.cermak@vuos.com 19 * Correspondence: tomas.weidlich@upce.cz; Tel.: +420-46-603-8049 20 21 No. of pages: 25 22 No. of Tables: 3

23 No. of Figures: 6

Table S1: Composition of the reaction mixtures obtained by overnight action of 1.5 g the Dev. alloy and 2 g NaOH in 200 mL of aqueous (or 1:1 CH₃OH : H₂O) solution containing 10 μmol of appropriate Ar-Cl.

26

24

25

HDC treated	Ar-Cls distribution after HDC reaction (mol. %)										
Ar-Cl	HCB	penta CB	Tetra CB	1,2,3-triCB	1,2,4-triCB	1,3,5-triCB	1,2-DCB	1,3-DCB	1,4-DCB	СВ	В
НСВ	0	0	22.90	0	0	0	29.40	18.70	18.70	10.30	0
HCB*	78.20	0	20.40	0.30	1.10	0.02	0	0	0	0	0
Penta CB	-	1.27	69.40	0	8.64	0	4.90	3.35	2.67	6.27	3.50
Tetra CBs	-	-	45.40	2.00	22.10	8.10	3.30	2.50	2.40	10.30	3.90
triCB	-	-	-	29.86	40.06	22.48	1.57	2.71	0.72	0.25	2.36
DCB	-	-	-	-	-	-	30.33	35.31	28.24	4.14	1.98
DCB	-	-	-	-	-	-	90.6	0.27	0.35	3.40	5.40

27 * 0.3 g of the Devardas alloy and 1.2 g NaOH was used

28

Observed	HDC of hexachlorbenzene			HDC of mixture of tetrachlorbenzenes			HDC of 1,2,4-trichlorbenzene			
products after HDC	CuSO ₄ /NaBH ₄	NiSO4/NaBH4	NaBH ₄	CuSO ₄ /NaBH ₄	NiSO4/NaBH4	NaBH ₄	CuSO ₄ /NaBH ₄	NiSO4/NaBH4	NaBH ₄	Al
HCB	0.06	0	0	-	-	-	-	-	-	-
pentaCB	0.46	0.055	41	-	-	-	-	-	-	-
tetraCB	34.81	0	38.32	94.72	0	98.3	-	-	-	-
1,2,3-triCB	0	0	0.974	0.48	0	0.19	-	-	-	-
1,2,4-triCB	11.84	0.065	6.03	4.58	0.21	0.33	89.15	9.33	93.25	100
1,3,5-triCB	0	0	7.06	0.22	0	0	-	-	-	-
1,2-DB	51.47	0	2.63	0	0	0.4	3.56	13.55	1.69	0
1,3-DB	0.63	0	0.526	0	0	0.22	2.59	3.83	1.07	0
1,4-DB	0.68	0	3.46	0	0	0.527	0	2.72	1.74	0
СВ	0.04	0	0	4	0	0	1.6	1.16	0.4	0
В	0	99.88	0	0	99.79	0	3.09	69.41	1.85	0

33 * 0.4 g of Al foil and 50 mmol NaOH was used in 200 mL solution of CH₃OH : H₂O=1:1 (Al was completely dissolved at the end of HDC reaction).

34

Table S3: Composition of the reaction mixtures obtained by overnight action of 5 mmol NaBH₄ and eventually 2 mmol of CuSO₄ or NiSO₄ on 100 µmol of chlorobenzene (CB) in 200 mL aqueous solution.

38

Products of				
HDC	CuSO ₄ /NaBH ₄	NiSO4/NaBH4	NaBH ₄	Al foil [*]
СВ	100	0.11	95.4	100
В	0	99.89	4.6	0

³⁹ * 0.4 g of Al foil and 50 mmol NaOH was used in 200 mL aqueous solution (Al was completely dissolved at the end of HDC reaction).

40

42 SEM of Devardas and Raney Al-Ni alloys used in HDC process

- 43 The images of samples were obtained using a scanning electron microscope JEOL JSM-7500F Field
- 44 Scanning Electron Microscope. Fig. S1 shows the morphology of the fresh and used Devardas alloy
- 45 particles applied in this study.
- 46
- 47 **Figures S1**. SEM images of Devardas Al-Cu-Zn used in HDC process at 2000x magnification for:
- 48 a) Starting Devardas alloy (Fluka)

49 50 51

b) used Devardas alloy after 25 min. of the reaction with 1% NaOH in 1:1 H₂O:CH₃OH:

c) Devardas alloy after 40 min. of the reaction with 1% NaOH in 1:1 H₂O : CH₃OH:

55 56

d) Devardas alloy after 60 min. of the reaction with 1% NaOH in 1:1 H₂O : CH₃OH (at 5000x
magnification):

62 e) used Devardas alloy at the end of HDC reaction (after 16 h of the reaction with 1% NaOH in 1:1

63 H₂O : CH₃OH:

64 65

66 f) used Devardas alloy at the end of HDC reaction (after 16 h of the reaction with 1% NaOH in 1:1

67 H_2O : CH₃OH (at 10,000x magnification) :

- a) Starting Raney Al-Ni alloy

b) Raney Al-Ni alloy after 30 min. of the reaction with 1% NaOH in 1:1 H₂O : CH₃OH (at 10,000x magnification):

- c) Raney Al-Ni alloy after 60 min. of the reaction with 1% NaOH in 1:1 H2O : CH3OH (at 10,000x
- magnification):

d) used Raney Al-Ni alloy at the end of HDC reaction (after 16 h of the reaction with 1% NaOH in 1:1 H₂O : CH₃OH (at 10,000x magnification) :

 5 of 25

92 Figure S3. Time dependences for HDC of Cl-ANs using the Raney Al-Ni alloy with and without

93 addition of glucose, see Ref. [22] for experimental details.

99 Note: When the evolution of hydrogen gas ceases during the HDC, benzene levels slowly began to

100 fall due to its volatile nature.

104 Note: We observed that when the evolution of hydrogen gas ceases during the HDC, benzene levels

105 slowly began to fall due to its volatile nature.

- 107 **Figure S6. a)** GC/MS analysis of DCM extract of **sample 811OVVUOS** (technological water
- 108 produced at the azo pigments production site)– upper trace and sample 1112TW (after HDC
- 109 treatment) bottom trace.110
 - Andræ

117 azo pigments production site)

118	RT (min)	MW	Structure	
119	3.04	92	toluene	
120	5.70	146	<i>m</i> -+ <i>p</i> -dichlorobenzene	
121	5.96	146	o-dichlorobenzene	
122	7.39	162 dichlorophenol		
123	7.56	136 <i>i.s.</i>		
124	8.98	98 161 2,5-dichloraniline		
125	13.83	290	tetrachlorobiphenyl	
126	14.52	272	trichloro-hydroxy-biphenyl	
127	14.82	14.82 306 tetrachloro-hydroxy-biphenyl		
128	14.86	36 288 i.s.		
129	15.03	306	tetrachloro-hydroxy-biphenyl	
130	15.41, 16.19	305	tetrachloro-amino-biphenyl	
131	,		I I I I I I I I I I I I I I I I I I I	
132	16.85	318	,CI	
133				
134				
135				
130			CI	
137	17 76	334		
139	17.70	554	CI	
140				
141				
142			ci	
143			Ċ	
144	01 E1	450		
145	21.51	430	сі сі он	
147				
148				
149			CI CI CI	
150				
151				
152	Note 1 i.s. int	ternal standard	antal insure annual annual antiple and find the state of	
155	Note 2 Struct	tures of the dete rd compounds	cted isomer compounds were not possible confirm due to a lack of	
155	corresponding standa	ra compounds		
156				
157				
158				
159				

161		RT (min)	MW	Structure			
162		3.05	92	toluene			
163		3.99	99	H ₂ N			
164		4.24	100	но			
165 166		5.31	93	aniline			
167		6.35	107	CH ₃			
168		6.56	121	CH ₃			
169		7.56	136	i.s.			
170		10.41	176	HO			
171 172		10.60	176	ОН			
173 174		10.94	176				
175 176		10.98	175	NH			
177		11.51	176	ОН			
178		11.71	175	cyclohexylaniline			
179	Note 1	i.s. internal standard					
180	Note 2	Structures of the detected isomer compounds were not possible confirm due to a lack of corresponding					
181 182		standard compou	nds				

- d) MS spectra of chlorinated aromatic compounds identified in the sample 8110VVUOS
 (technological water produced at the azo pigments production site):
- 185
- 186

Mass spectrum (EI, 70 eV) of m+p-dichlorobenzene (RT=5.70 min):

Ahmhme


```
194
```

Mass spectrum (EI, 70 eV) of dichlorophenol (RT=7.39 min):

220

Mass spectrum (EI, 70 eV) of tetrachlorobiphenyl (RT=13.83 min):

Mass spectrum (EI, 70 eV) of tetrachloro-hydroxy-biphenyl (RT=14.82 min):

 m∕z→

ЩЦ

3O

Mass spectrum (EI, 70 eV) of tetrachloro-azobenzene (RT=16.85 min):

Mass spectrum (EI, 70 eV) of phenylcyclohexanol (RT=10.60 min):

m

2000

- 288
- 289

98.

801

Mass spectrum (EI, 70 eV) of cyclohexylphenol (RT=11.51 min):

