



| 1 | Article |
|---|---------|
| 1 | лисие   |

| 2                    | Reductive dechlorination of chloroacetamides with                                                                                                                                                                                                                                                                 |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                    | NaBH4 catalyzed by zero valent iron, ZVI, nanoparticles                                                                                                                                                                                                                                                           |
| 4                    | in ORMOSIL matrices prepared via the sol-gel route                                                                                                                                                                                                                                                                |
| 5                    | Michael Meistelman <sup>1</sup> , Dan Meyerstein <sup>2,3</sup> *, Amos Bardea <sup>4</sup> , Ariela Burg <sup>5</sup> , Dror Shamir <sup>6,</sup> and Yael Albo <sup>1</sup> *                                                                                                                                   |
| 6                    | <sup>1</sup> Chemical Engineering Dept. and The Centre for Radical Reactions, Ariel University, Ariel, Israel.                                                                                                                                                                                                    |
| 7                    | <sup>2</sup> Department of Chemical Sciences and The Centre for Radical Reactions, Ariel University, Ariel, Israel.                                                                                                                                                                                               |
| 8                    | <sup>3</sup> Chemistry Dept., Ben-Gurion University, Beer-Sheva, Israel                                                                                                                                                                                                                                           |
| 9                    | <sup>4</sup> Department of Electrical and Electronics Engineering, Faculty of Engineering, Holon Institute of Technology (HIT),                                                                                                                                                                                   |
| 10                   | Holon, Israel                                                                                                                                                                                                                                                                                                     |
| 11                   | <sup>5</sup> Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel.                                                                                                                                                                                                         |
| 12<br>13<br>14<br>15 | <sup>6</sup> Department of Chemistry, Nuclear Research Centre Negev, Beer-Sheva, Israel.<br>E-mail addresses:<br>michaelme@ariel.ac.il (M. Meistelman), danm@ariel.ac.il (D. Meyerstein), amos.bardea@hit.ac.il, arielab@ac.sce.ac.il (A.<br>Burg), drorshamir@gmail.com (D. Shamir) yaelyt@ariel.ac.il (Y. Albo) |
| 16<br>17             | Received: date; Accepted: date; Published: date                                                                                                                                                                                                                                                                   |
| 18                   |                                                                                                                                                                                                                                                                                                                   |
| 19<br>20             |                                                                                                                                                                                                                                                                                                                   |
| 21                   |                                                                                                                                                                                                                                                                                                                   |
| 22                   |                                                                                                                                                                                                                                                                                                                   |
| 23                   |                                                                                                                                                                                                                                                                                                                   |
| 24                   |                                                                                                                                                                                                                                                                                                                   |
| 25                   |                                                                                                                                                                                                                                                                                                                   |
| 26<br>27             |                                                                                                                                                                                                                                                                                                                   |
| 21<br>28             |                                                                                                                                                                                                                                                                                                                   |
| 29                   |                                                                                                                                                                                                                                                                                                                   |
| 30                   |                                                                                                                                                                                                                                                                                                                   |

## **5. Supplementary Materials:**



## Figure S1. (a) Raw wet ORMOSIL gel, (b) Crushed ZVI@ORMOSIL gel

- Table S 1 is a summary of survey scan peaks and their integrated areas following the surface

xps analysis of 1% ZVI@ORMOSIL 

Table S 1: XPS surface analysis elemental composition of 1% ZVI@ORMOSIL

| Name  | Peak (BE) | FWHM | Area    | At%  |
|-------|-----------|------|---------|------|
| Fe 2p | 714.40    | 4.53 | 53140   | 0.2  |
| O 1s  | 535.16    | 3.30 | 4168746 | 57.6 |
| C 1s  | 287.34    | 3.56 | 336692  | 11.2 |
| Si 2p | 106.02    | 3.34 | 933002  | 31.0 |

| Formula Fe                                                       |                     |                    | d       | 20      | l fix | h | k | I |
|------------------------------------------------------------------|---------------------|--------------------|---------|---------|-------|---|---|---|
| Name Iron                                                        |                     |                    | 2.02600 | 44.693  | 999   | 1 | 1 | 0 |
| Name (mineral) Iron, syn                                         |                     |                    | 1.43260 | 65.053  | 126   | 2 | 0 | 0 |
| Name (common) ±-Fe                                               |                     |                    | 1.16971 | 82.377  | 206   | 2 | 1 | 1 |
|                                                                  |                     |                    | 1.01300 | 99.001  | 58    | 2 | 2 | 0 |
|                                                                  |                     |                    | 0.90606 | 116.460 | 86    | 3 | 1 | 0 |
|                                                                  |                     |                    | 0.82711 | 137.280 | 25    | 2 | 2 | 2 |
| Lattice: Cubic                                                   | Mol. weight =       | 55.85              |         |         |       |   |   |   |
| S.G.: Im-3m (229)                                                | Volume [CD] =       | 23.52              |         |         |       |   |   |   |
|                                                                  | Dx =                | 7.88               |         |         |       |   |   |   |
|                                                                  | Dm =                |                    |         |         |       |   |   |   |
| a = 2.86520                                                      | l/lcor =            | 11.580             |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
| a/h <b>7</b> = 0                                                 |                     |                    |         |         |       |   |   |   |
| a/b 1.00000 Z = 2                                                |                     |                    |         |         |       |   |   |   |
| c/b 1 00000                                                      |                     |                    |         |         |       |   |   |   |
| = 1.00000                                                        |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
| LPF Collection Code: 1503158<br>Sample Propagation: STARTING MAT |                     | la envetale        |         |         |       |   |   |   |
| grown by chemical transport method.                              | transport agent iod | ie crystais<br>ine |         |         |       |   |   |   |
| Temperature of Data Collection: 297                              | ĸ                   |                    |         |         |       |   |   |   |
| Unit Cell Data Source: Single Crystal                            |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
| Radiation: CuK±1 Fill                                            | ter: Not spe        | cified             |         |         |       |   |   |   |
| Wavelength 1.54060 d-s                                           | spacing:            |                    |         |         |       |   |   |   |
| SS/EOM: 000.0 (0.0001.6)                                         |                     |                    |         |         |       |   |   |   |
| GGH GML 333.3 (0.0001,0)                                         |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |
|                                                                  |                     |                    |         |         |       |   |   |   |

## Pattern: PDF 04-007-9753 Radiation: 1.54060 Quality: Star (\*)

48 Figure S2. Fe<sup>0</sup> phases powder diffraction file

- 4

| Formula Fe3 O4                                                                                           |                                  | d       | 20      | l fix | h  | k | 1 |
|----------------------------------------------------------------------------------------------------------|----------------------------------|---------|---------|-------|----|---|---|
| Name Iron Oxide                                                                                          |                                  | 4.84732 | 18.288  | 84    | 1  | 1 | 1 |
| Name (mineral) Magnetite,                                                                                | syn                              | 2.96836 | 30.081  | 286   | 2  | 2 | 0 |
| Name (common) iron diiron(                                                                               | III) oxide                       | 2.53143 | 35.431  | 1000  | 3  | 1 | 1 |
|                                                                                                          |                                  | 2.42366 | 37.063  | 78    | 2  | 2 | 2 |
|                                                                                                          |                                  | 2.09895 | 43.061  | 206   | 4  | 0 | 0 |
|                                                                                                          |                                  | 1.92613 | 47.146  | 6     | 3  | 3 | 1 |
| Lattice: Cubic                                                                                           | Mol. weight = 231.53             | 1.71379 | 53.419  | 88    | 4  | 2 | 2 |
| S.G.: Fd-3m (227)                                                                                        | Volume [CD] = 591.82             | 1.61577 | 56.945  | 282   | 5  | 1 | 1 |
|                                                                                                          | Dx = 5.2                         | 1.48418 | 62.531  | 377   | 4  | 4 | 0 |
|                                                                                                          |                                  | 1.41915 | 65.747  | 8     | 5  | 3 | 1 |
| a = 8.39580                                                                                              | 5.100                            | 1.39930 | 66.801  | 1     | 4  | 4 | 2 |
|                                                                                                          |                                  | 1.32749 | 70.939  | 29    | 6  | 2 | 0 |
| a/b                                                                                                      |                                  | 1.28035 | 73.974  | 72    | 5  | 3 | 3 |
| = 1.00000                                                                                                |                                  | 1.26571 | 74.975  | 31    | 6  | 2 | 2 |
| c/b 1.00000                                                                                              |                                  | 1.21183 | 78.936  | 22    | 4  | 4 | 4 |
| -                                                                                                        |                                  | 1.17565 | 81.871  | 4     | 7  | 1 | 1 |
|                                                                                                          |                                  | 1.12194 | 86.720  | 30    | 6  | 4 | 2 |
| ANY: A2Y4                                                                                                |                                  | 1.09304 | 89.616  | 105   | 7  | 3 | 1 |
| LPF Collection Code: 541353                                                                              |                                  | 1.04947 | 94.444  | 39    | 8  | 0 | 0 |
| Sample Preparation: STARTING MA                                                                          | TERIALS:Fe2O3,Fe                 | 1.02571 | 97.353  | 1     | 7  | 3 | 3 |
| silica tube. Sample annealed at 107                                                                      | 3 K for 95 d                     | 1.01814 | 98.326  | 1     | 6  | 4 | 4 |
| Unit Cell Data Source: Powder Diffra                                                                     | action                           | 0.98945 | 102.248 | 14    | 8  | 2 | 2 |
|                                                                                                          |                                  | 0.96946 | 105.228 | 57    | 7  | 5 | 1 |
|                                                                                                          |                                  | 0.96306 | 106.230 | 12    | 6  | 6 | 2 |
|                                                                                                          |                                  | 0.93868 | 110.294 | 23    | 8  | 4 | 0 |
|                                                                                                          |                                  | 0.92156 | 113.412 | 2     | 9  | 1 | 1 |
|                                                                                                          |                                  | 0.91606 | 114.467 | 1     | 8  | 4 | 2 |
|                                                                                                          |                                  | 0.89499 | 118.785 | 7     | 6  | 6 | 4 |
|                                                                                                          |                                  | 0.88012 | 122.142 | 42    | 9  | 3 | 1 |
|                                                                                                          |                                  | 0.85689 | 128.039 | 89    | 8  | 4 | 4 |
|                                                                                                          |                                  | 0.84381 | 131.813 | 1     | 9  | 3 | 3 |
|                                                                                                          |                                  | 0.82328 | 138.667 | 19    | 10 | 2 | 0 |
|                                                                                                          |                                  | 0.81165 | 143.263 | 56    | 9  | 5 | 1 |
|                                                                                                          |                                  | 0.80789 | 144.908 | 13    | 10 | 2 | 2 |
| Radiation:     CuK±1     F       Wavelength     1.54060     d-       :     SS/FOM:     999.9 (0.0001,30) | ilter: Not specified<br>spacing: |         |         |       |    |   |   |
|                                                                                                          |                                  |         |         |       |    |   |   |

Pattern: PDF 04-005-4319 Radiation: 1.54060 Quality: Star (\*)

57 Figure S3. Fe<sub>3</sub>O<sub>4</sub> phases powder diffraction file

58



(a)

**(b)** 

Figure S4.Y-axis dV/dD (cm<sup>3</sup>g<sup>-1</sup>nm<sup>-1</sup>), X-axis Diameter (nm) (a) pore size distribution for Blank@Ormosil, (b) pore size
distribution for 1% ZVI@ORMOSIL



© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).