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Abstract: The reaction mechanism and origin of asymmetric induction for conjugate addition
of cyanide to the C=C bond of olefin were investigated at the B3LYP-D3(BJ)/6-31+G**//B3LYP-
D3(BJ)/6-31G**(SMD, toluene) theoretical level. The release of HCN from the reaction of ethyl
cyanoformate (CNCOOEt) and isopropanol (HOiPr) was catalyzed by cinchona alkaloid catalyst.
The cyanation reaction of olefin proceeded through a two-step mechanism, in which the C-C bond
construction was followed by H-transfer to generate a cyanide adduct. For non-catalytic reaction,
the activation barrier for the rate-determining C-H bond construction step was 34.2 kcal mol−1,
via a four-membered transition state. The self-assembly Ti(IV)-catalyst from tetraisopropyl titanate,
(R)-3,3′-disubstituted biphenol, and cinchonidine accelerated the addition of cyanide to the C=C
double bond by a dual activation process, in which titanium cation acted as a Lewis acid to activate the
olefin and HNC was orientated by hydrogen bonding. The steric repulsion between the 9-phenanthryl
at the 3,3′-position in the biphenol ligand and the Ph group in olefin raised the Pauli energy (∆E,Pauli)
of reacting fragments at the re-face attack transition state, leading to the predominant R-product.

Keywords: asymmetric conjugate addition; cinchona alkaloid catalysis; cyanation reaction of olefin;
self-assembly Ti(IV)-catalysis; density functional theory calculation

1. Introduction

The asymmetric catalytic cyanation of C=X bond (X = O, N or C) provides an outstanding method
to obtain various optically active nitriles [1–6]. Compared to the intensively studied cyanation of
aldehydes [1,2,5], ketones [1,2,5] and imine (Strecker reaction) [3], reports on the conjugate addition of
cyanide to the C=C bond are limited [4,6]. Since the products from cyanide addition to C=C double
bonds in the α,β-unsaturated carbonyl compounds could conveniently convert to the enantioenriched
intermediates with great synthesizing value and pharmaceutical importance (e.g.,γ-aminobutyric acids),
developing straightforward synthetic procedures and exploring the relevant reaction mechanisms are
in high demand.

Jacobsen’s group reported the first catalytic asymmetric cyanation of α,β-unsaturated imides,
using Al(III) complex with chiral salen ligand as a catalyst. Based on the kinetic analyses,
they proposed that the reaction involved a bimetallic, dual activation process. The salen–Al(III)
complex-activated cyanide was delivered to the electrophile bound as an imidate complex for
highly enantioenriched cyanide adducts [7]. In a heterobimetallic system with (salen)Al and
(pybox)Er complexes (pybox = 2,6-bis(2-oxazolinyl) pyridine), two catalysts operated cooperatively
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in the rate-determining step, promoting the conjugate addition in a highly enantioselective
manner [8]. The poly(norbornene)-supported (salen)AlCl catalyst could also realize this transformation.
The proximity of catalytic sites in polymeric Al-catalyst facilitated the reaction to occur via a bimetallic
pathway [9]. Shibasaki et al. developed chiral gadolinium complex catalysts for the cyanation
of α,β-unsaturated N-acylpyrroles [10,11] and enones [12]. Mechanistic studies suggested that the
reaction is carried out through an intramolecular cyanide transfer from the gadolinium cyanide
to the activated N-acylpyrrole substrate. The protic additive (e.g., HCN) efficiently facilitated both
catalyst activity and enantioselectivity. Other metal complexes containing Sr(II) [13], Ru(II)/Li(I) [14,15],
Mg(II) [16,17] and Li(I) [18] were also active catalysts for this kind of reaction. The bifunctional catalysis
model was proposed to interpret the activation mode as well as the stereochemical outcome [15,16].
Besides, the reaction could be realized by organocatalysis [19,20] or a phase-transfer process [21,22].
The spectroscopic studies by Khan et al. verified that the N-oxide additive participated in the
cyanation of nitroalkenes as a ligand and activator of trimethylsilylcyanide (TMSCN) [23]. Experiments
and density functional theory (DFT) calculations by Minakata and co-workers revealed that the
cyanation of the boron enolates generated from α,β-unsaturated ketones with p-toluenesulfonyl
cyanide (TsCN) proceeded through a six-membered ring transition state (TS) [24]. Based on the NMR
spectroscopy results, they proposed that imidazolium cations interacted with the substrate, facilitating
the attack of cyanide ions generated by the activation of acetone cyanohydrin by the acetate counter
ion in 1-butyl-3-methylimidazolium (BMIM)-based ionic-liquid-catalyzed conjugate cyanation of
CF3-substituted alkylidenemalonates [25].

In 2010, Feng’s group developed a modular catalyst generated in situ from cinchona alkaloid,
tetraisopropyl titanate (Ti(OiPr)4) and achiral 3,3′-disubstituted biphenol, achieving the efficient
asymmetric cyanation of N-p-toluenesulfonyl aldimines and ketimines, as well as ketones and
aldehydes [26,27]. Interestingly, this self-assembled catalyst system also exhibited excellent performance
in the asymmetric cyanation of C=C bonds, using ethyl cyanoformate (CNCOOEt) as a cyanide
source [28]. The enantioenriched cyanide adducts could be obtained with high yield (97%) and
enantiomeric excess (ee) (up to 94%). In the reaction, the axial chirality of the biphenol ligand was
induced in the formation of the complex to achieve asymmetric activation [29]. Based on previous work,
they proposed that the catalytic species was (R)-biphenol, and chiral cinchonidine ligand coordinated
to the Ti(IV) center simultaneously.

In this work, we employed DFT calculations to understand the mechanism for the asymmetric
cyanation of activated olefin in detail (Scheme 1). The key factors controlling the enantioselectivity
could be revealed to expedite the rational design of new Ti(IV)-complex catalysts.
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2. Computational Details

DFT calculations were performed using the Gaussian 09 package [30] at the
B3LYP-D3(BJ)/6-31G**(SMD, toluene) theoretical level. Geometries were optimized in toluene solvent
and characterized by calculating the harmonic vibrational frequencies. The self-consistent reaction
field (SCRF) method and SMD solvation model [31] were adopted to evaluate the effect of the
solvent. The transition states were verified by the intrinsic reaction coordinate (IRC) calculation [32].
The optimized structures are summarized in the Supporting Information. Activation strain analysis
(ASA) [33–35], also known as distortion–interaction model calculation [36–39], was used to analyze
the factors affecting the enantioselectivity of the catalytic reaction, in which the potential energy (∆E)
was decomposed into the distortion (∆Estrain) and interaction (∆Eint) energies using the Gaussian 09
program. Besides, four energy contributors (i.e., electrostatic interaction (∆Velstat), Pauli repulsion
(∆EPauli), dispersion effect (∆Edisp) and orbital interaction (∆Eoi)) in ∆Eint were partitioned by energy
decomposition analysis (EDA) [40] using the Amsterdam Density Functional (ADF) program [41] at
the B3LYP-D3(BJ)/TZ2P level. The energy of the optimized structure was re-evaluated by single-point
calculations at the B3LYP-D3(BJ)/6-31+G**(SMD, toluene) level, in which dispersion correction was also
included using Grimme’s D3(BJ) method [42,43]. Unless specified, the Gibbs free energies obtained at
the B3LYP-D3(BJ)/6-31+G**//B3LYP-D3(BJ)/6-31G**(SMD, toluene) level at 273 K were used.

3. Results and Discussion

3.1. Release of HCN or HNC Species from CNCOOEt

The previous experimental and theoretical investigations suggested that HCN was the real
cyanation reagent in the cyanation of imines with TMSCN catalyzed by Ti(IV)-complex [29]. Moreover,
isopropyl alcohol (HOiPr) had a positive effect on the release of HCN from TMSCN, consequently
accelerating the reaction [26,27,29,44]. Based on these results, we first studied the formation of HCN or
HNC species from the reaction between HOiPr and the cyanide source, ethyl cyanoformate (CNCOOEt).
Four possible pathways were considered, in which HCN was formed along paths 1 and 3, while its
isomer HNC was afforded along paths 2 and 4. As shown in Scheme 2, when CNCOOEt approached
HOiPr, the H atom of HOiPr transferred to the C and N atoms of CNCOOEt, yielding HCN and
HNC species, respectively. The potential energy surfaces for these pathways are shown in Figure 1.
The activation energies were 54.9 and 56.5 kcal mol−1 via 1-TS1 and 2-TS1, respectively. Besides,
the reaction could also occur via other stepwise mechanisms along paths 3 and 4, in which the H atom
transferred initially to the O atom of the carbonyl group in CNCOOEt having a more negative charge
(−0.548 at the O atom vs. −0.501 at the CN moiety) via a four-membered ring transition state TS1.
Then, this H atom transferred to the C and N atoms of the CN group through transition states 3-TS2
and 4-TS2, producing HCN (path 3) and HNC (path 4), respectively. The calculations indicated that
the ∆G, associated with the generation of HCN along path 3 and HNC along path 4 were 39.6 and
40.1 kcal mol−1, respectively, which were lower than those along paths 1 and 2.
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Figure 1. Potential energy profiles for the formation of HCN or HNC by the reaction between HOiPr
and CNCOOEt (R1) without a catalyst and in the presence of cinchona alkaloid (L1).

For comparison, the formation of HNC assisted by cinchona alkaloid (L1) was studied (Figures 1
and 2). In the initial complex (C-I-COM), the cinchona alkaloid activated HOiPr by the N atom of the
tertiary amine ring and OH group simultaneously with (O)H···O and N···H distances of 1.858 and
1.834 Å, respectively. These hydrogen bonds could be verified by atoms-in-molecules (AIM) analysis,
with the positive Laplacian (∇2ρ) on (3, −1) bond critical points (BCPs) (Figure S1). In the next step,
the O atom of HOiPr approached the C atom of CNCOOEt, accompanied with H transfer from the O
atom to N atom via C-I-TS1. Then, HCN was formed by breaking the C-C bond via C-I-TS2, with a ∆G
of 20.0 kcal mol−1. From the viewpoint of energy, cinchona alkaloid could promote the transformation
of CNCOOEt to HNC by organocatalysis.
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Figure 2. Optimized geometries of reactants (R1 and HOiPr), cinchona alkaloid (L1), molecular complex
(C-I-COM), transition states (TSs) (C-I-TS1 and C-I-TS2) and intermediates (C-I-IM1–C-I-IM3) for the
HNC formation catalyzed by cinchona alkaloid (some H atoms in cinchona alkaloid are omitted for
clarity) and their relative Gibbs free energies. The intermolecular distance is in Angstroms (Å). The color
definitions of atoms are red = oxygen, blue = nitrogen, gray = carbon and white = hydrogen.

3.2. Reaction Mechanism

3.2.1. Noncatalytic Reaction

The isomerization between HCN and HNC can occur quickly in the presence of cinchona
alkaloid [29], establishing rapid HCN–HNC equilibrium. Then, HNC can act as an active cyanide
species to construct a C-C bond by interacting with an olefin in the cyanation reaction. Based on
these results, we first studied the mechanism of the noncatalytic cyanation of olefins with HNC
(Figure 3). The reaction occurred through a two-step process: C-C bond formation followed by C-H
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bond construction. In the initial step, HNC interacted with the COOEt moiety through hydrogen
bonding, forming a molecular complex b-IM1. Then, the CN group attacked the olefin to form a C-C
bond via a seven-membered ring transition state b-TS1. In the final step, the product P-S was formed
by shifting an H atom to a C atom (tautomerization of enol to keto), with a ∆G, of 34.2 kcal mol−1.
This H-transfer step was predicted to be the rate-determining step (RDS) in the background reaction.
We also located the TS involving HCN as a proton donor (b-TS1-1, Figure S2). The relative Gibbs energy
of b-TS1-1 was higher than that of b-TS2 (the highest point in the energy profile) by 8.4 kcal mol−1.
These results indicated that the noncatalytic reaction was difficult to achieve owing to a higher barrier.
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3.2.2. Catalytic Reaction

A previous study indicated that aldimine and HOiPr could coordinate to the Ti(IV), forming a
reactive hexacoordinated Ti(IV)-complex in the Strecker reaction catalyzed by Ti(IV)-complex catalyst
with cinchona alkaloid and achiral 3,3′-disubstituted 2,2′-biphenol ligands [29]. Based on experimental
observation [28], a cinchonidine(L1)/Ti(IV)/(R)-biphenol (L2a) catalyst was employed as an active
species in the reaction. Considering that there were two O-donors in the olefin substrate, a bidentate
model was first studied in the present work, in which two carbonyl groups of olefin coordinated to
the Ti(IV) center simultaneously, forming three possible hexacoordinated Ti(IV)-complexes (d-I–d-III).
For comparison, the monocoordinated models (m-I–m-VI) were also investigated (Scheme 3). Nine
low-energy Ti(IV)-complexes in mono- and bidentate models were located to allow the favorable si-face
attack pathway observed in the experiment (see Table 1 and Figure S3). Table 1 shows that a bidentate
Ti(IV)-complex (d-I-COM-si) had the lowest Gibbs free energy among nine models. In other words,
this complex was the only starting species available in the reaction mixture.
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Table 1. Relative Gibbs free energy for the formation of hexacoordinated Ti(IV)-complexes.

Model Species ∆G (kcal mol−1) 1

Monodentate

m-I
m-I-COM-si 12.2
m-I-COM-re 7.5

m-II
m-II-COM-si 12.6
m-II-COM-re 6.9

m-III
m-III-COM-si 12.6
m-III-COM-re 16.0

m-IV
m-IV-COM-si 14.4
m-IV-COM-re 13.5

m-V
m-V-COM-si 16.1
m-V-COM-re 20.0

m-VI
m-VI-COM-si 16.2
m-VI-COM-re 11.0

Bidentate

d-I
d-I-COM-si 0.0
d-I-COM-re −2.5

d-II
d-II-COM-si 5.5
d-II-COM-re −0.6

d-III
d-III-COM-si 2.7
d-III-COM-re 7.4

1 The energy of d-I-COM-si was set to zero.

The reaction mechanisms of the cyanation of olefins in the presence of Ti(IV)-complex catalyst
could be very similar for the nine coordination models, although the reaction might begin with
different hexacoordinated Ti(IV)-complexes: C-C bond construction followed by H-shift. The potential
energy surfaces for the si-face and re-face attack to produce R- and S-configuration enantiomers from
d-I-COM-si and d-I-COM-re are shown in Figure 4.
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along si- and re-face attack pathways and schematic catalytic cycle along si-face attack pathway as
a representative.

Like the noncatalytic reaction, the catalytic process occurred via a stepwise mechanism. Firstly,
HNC was coordinated to the tertiary amine of cinchona alkaloid through hydrogen bonding, with
an H···N distance of 1.612 Å. Then, the C-C bond was constructed by the attack of the CN group to
olefin, with ∆G, of 5.1 kcal mol−1 via the TS d-I-TS1-si. Finally, the catalytic cycle was finished when
the H atom was transferred from the N to C atom, via the TS d-I-TS2-si. A protonic reagent (e.g.,
HOiPr) could accelerate proton shift by hydrogen-bonding [29], and the H-shift barrier for HOiPr
via the TS d-I-TS2-si-HOiPr was decreased by 3.4 kcal mol−1 (Figure S4). The activation barrier in
the chiral-controlling step (C-C bond formation step) in the catalysis was lower than that for the
noncatalytic process by 14.2 kcal mol−1. We also optimized the TSs in the chiral-controlling C-C bond
construction along with the si-face attack in the d-II and d-III models (Figure S5). As expected, the
activation free energies via d-II-TS1-si (∆G, = 10.4 kcal mol−1) and d-III-TS1-si (∆G, = 7.9 kcal mol−1)
were higher than that via d-I-TS1-si (∆G, = 5.1 kcal mol−1) in the d-I model. As shown in Figure 5, the
∆G of d-I-TS1-si was lower than that of d-I-TS1-re in a chiral-controlling step by 2.3 kcal mol−1 at 273 K,
indicating the product with R-configuration was predominant. The theoretical enantioselectivity (ee
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%) was 96% using the Curtin–Hammett principle, which was close to that obtained experimentally
(93% ee) [28].
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We also studied the catalytic mechanism starting from the monodentate Ti(IV)-complex m-I-COM-si
for comparison, and the corresponding C-C bond construction TS (m-I-TS1-si) in the chiral-controlling
step was located (Figure 5). Compared with d-I-COM-si, the olefin substrate in m-I-COM-si was slightly
weakened, with a large Wiberg bond index of 1.664 for the C1=C2 bond. Accordingly, m-I-TS1-si
was less stable than d-I-TS1-si by 11.6 kcal mol−1. Thus, olefin tended to participate in the cyanation
reaction in a bidentate fashion.

3.3. Origin of Stereoselectivity

The hexacoordinated Ti(IV)-complexes d-I-COM-si and d-I-COM-re had a pocket-like chiral
cavity, with the dihedral angles formed by the 9-phenanthryl groups at the 3,3′-position in L2a of
93.7◦ and 87.3◦, respectively. The topographic steric maps [45–47] of d-I-COM-si and d-I-COM-re are
shown in Scheme 4, which characterizes the surface that the ligand L2a offers to the olefin substrate.
The percentage of buried volume (%VBur) quantified the first coordination sphere around the Ti center
occupied by L2a ligand. For d-I-COM-re, %VBur was 39.7, which was larger than that of d-I-COM-si
(35.8). Importantly, the 9-phenanthryl groups provided stronger hindrance in the north-western and
south-eastern quadrants (yellow colored area). Consequently, the unfavorable steric repulsion between
the Ph group of olefin and 9-phenanthryl group of ligand L2a (in the south-eastern quadrant) became
more significant in d-I-COM-re as well as in the corresponding C-C bond formation TS.

Then, we further analyzed the structures of d-I-TS1-si and d-I-TS1-re (Figure 6). The Ph group of
the olefin moiety in d-I-TS1-re was in proximity to the neighboring 3-substituted group in the biphenol
ligand, with a Ph···Ph distance of about 2.5 Å. Accordingly, the steric repulsion raised the Pauli energy
(∆E,Pauli) of the reacting fragments at d-I-TS1-re (139.0 vs. 130.4 kcal mol−1) (Table 2). Consequently,
the ∆G of d-I-TS1-re was higher than that of d-I-TS1-si (7.4 vs. 5.1 kcal mol−1). This steric repulsion
was also visualized by noncovalent interaction analysis using Multiwfn software [48], in which the
larger yellow area between the Ph of olefin and phenanthryl group of L2a (Figure S6) in d-I-TS1-re
was observed. In contrast, this unfavorable steric interaction was avoided efficiently in d-I-TS1-si
because the Ph groups were located far away. Consequently, two reacting fragments could interact
easily, with a more stabilizing ∆E,int (−5.6 kcal mol−1) and low reaction barrier of 5.1 kcal mol−1 in the
C-C bond formation step.
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Figure 6. Optimized geometries of TSs in the C-C bond formation step (d-I-TS1-si and d-I-TS1-re) and
H-transfer step (d-I-TS2-si and d-I-TS2-re) in the cyanation reaction of olefins catalyzed by Ti(IV)-complex
along two competing pathways for R- and S-configuration products, respectively, associated with the
relative Gibbs free energies (kcal mol−1). The intermolecular distance is in Angstroms (Å). The color
definitions of atoms are red = oxygen, blue = nitrogen, gray = carbon and white = hydrogen.
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Table 2. Activation strain model (ASM) 1 analysis and energy decomposition analysis (EDA)2 for the
catalytic cyanation reaction of olefins via d-I-TS1-si and d-I-TS1-re. The energies are given in kcal mol−1.

TS ∆E,strain ∆E,int ∆E,Pauli ∆E,oi ∆V,elstat ∆E,disp

d-I-TS1-si 8.8 −5.6 130.4 −77.9 −99.9 −28.7
d-I-TS1-re 8.6 −4.9 139.0 −82.6 −104.0 −29.4

1 ASM calculations were done at the B3LYP-D3(BJ)/6-31+G**(SMD, toluene) level of theory; 2 EDA calculations were
done at the B3LYP-D3(BJ)/TZ2P level of theory.

The influence of the 3,3′-substitute of biphenol on the stereoselectivity was further studied.
When the 9-phenanthryl group in L2a was replaced by a 3,5-dimethyl phenyl group (L2b), an opening
chiral pocket in d-I-COM-si-L2b was observed, with the dihedral angle of the two substituent groups
at the 3,3′-position of 109.6◦. The relative energy of the two competing TSs (d-I-TS1-si-L2b and
d-I-TS1-re-L2b) in the chiral-controlling step (i.e., C-C bond construction step) was comparable (7.3
vs. 7.2 kcal mol−1), affording racemic products (Figure 7). These results indicated that the bulky
substituent at the 3,3′-position of the biphenol ligand was essential for asymmetric induction in the
Ti(IV)-complex-catalyzed cyanation of activated olefins.
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Figure 7. Optimized geometries of TSs in the C-C bond formation step (d-I-TS1-si-L2b and
d-I-TS1-re-L2b) in the cyanation reaction of olefins catalyzed by Ti(IV)-complex with L2b along
two competing pathways for R- and S-configuration products, respectively, associated with the relative
Gibbs free energies. The intermolecular distance is in Angstroms (Å). The color definitions of atoms are
red = oxygen, blue = nitrogen, gray = carbon and white = hydrogen.

4. Conclusions

DFT calculations on the reaction mechanism of asymmetric cyanation of activated olefin-catalyzed
Ti(IV)-complexes revealed the following results:

(i). Cinchona alkaloid facilitated the reaction between HOiPr and ethyl cyanoformate (CNCOOEt) to
release the reacting species HCN (or HNC) by organocatalysis with ∆G, of 26.0 kcal mol−1.

(ii). The cyanation reaction of olefin proceeded via a two-step mechanism, in which the C-C bond
construction was followed by H-transfer to generate a cyanide adduct. For noncatalytic reaction,
the ∆G, for the rate-determining C-H bond construction step was up to 34.2 kcal mol−1, through
a four-membered TS. In the catalytic reaction, the olefin coordinated to the self-assembly
cinchonidine/Ti(IV)/(R)-3,3′-disubstituted biphenol catalyst in the bidentate model, forming a
highly reactive hexacoordinated Ti(IV)-complex. The HNC activated by the quinuclidine tertiary
amine moiety of cinchonidine ligand performed a nucleophilic attack towards the activated C=C
bond of olefin, generating a cyanide adduct. The catalytic reaction required about 19.9 kcal mol−1

lower energy barrier compared to the noncatalytic reaction.
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(iii). EDA showed that the steric repulsion between the bulky group (e.g., 9-phenanthryl substituent)
at the 3-position in the biphenol ligand and the phenyl group in olefin raised the Pauli energy
(∆E,Pauli) of the reacting fragments at the re-face attack TS, leading to the predominant R-product
through the si-face attack, as observed in the experiment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/9/1079/s1,
Figure S1: Laplacian (∇2ρ) and electronic density (ρ, in parentheses) of selected bond critical points (BCPs) for
molecular complex C-I-COM were obtained by atoms-in-molecules (AIM) analysis, using Multiwfn software.
Figure S2: Optimized geometries of low-energy hexacoordinated Ti(IV)-complexes formed by coordinating olefin
to the metal center in (a) bidentate or (b) monodentate fashion. Figure S3: Optimized geometries of two competing
transition states in C-C bond formation step in d-II and d-III models as well as their relative Gibbs free energies (in
kcal mol−1). Figure S4: Visualization of the main noncovalent interaction described by contour plots of the reduced
density gradient isosurfaces (density cutoff of 0.7 au) for transition states d-I-TS1-si and d-I-TS1-re. The surface
color code is blue for strongly attractive, green for weakly attractive and red for strongly repulsive interactions.
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