Supporting Information: Pt Deposites on TiO₂ for Photocatalytic H₂ Evolution: Pt is not only the Cocatalyst, but also the Defect Repair Agent

Zhan Shu¹, Yandi Cai^{1, 2}, Jiawei Ji¹, Changjin Tang¹, Shuohan Yu^{1,*}, Weixin Zou^{1,*} and Lin Dong¹

- ¹ Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China; <u>shujzh@nju.edu.cn</u> (Z.S.), <u>tom497819226@163.com</u> (J.J.), <u>tangcj@nju.edu.cn</u> (C.T.), <u>donglin@nju.edu.cn</u> (L.D.)
- ² College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China; Cains@nju.edu.cn
- * Correspondence: yu061130159@nju.edu.cn (S.Y.); wxzou2016@nju.edu.cn; Tel: +86-25-83592290 Fax: +86-25-83317761 (W.Z.)

Received: 13 August 2020; Accepted: 4 September 2020; Published: date

Catalysts	Surface area (m²/g)	Pt content (%)	O/Ti atomic concentration ratio (a.u.)	Oc+Ov/OL (%)
TiO ₂	100.9	0	2.84	6.4
TiO ₂ -A	100.6	0	2.54	23.4
TiO ₂ -Pt ⁰ -A	93.8	0.59	2.31	18.4
TiO2- PtCl6 ²⁻ -A	100.9	0.66	2.63	10.6
TiO2-Pt ⁴⁺ - A	100.3	0.62	2.64	15.0

Table S1. Content, surface area, XPS information of samples. .

Figure S1. Hydrogen evolution of TiO₂, TiO₂-Pt⁰, TiO₂-PtCl₆²⁻ and TiO₂-Pt⁴⁺.

Figure S2. XRD patterns of TiO₂ and TiO₂-A.

Figure S3. BJH pore size distribution of catalysts.

Figure S4. N2-sorption isotherm linear plot of the used Pt/TiO2 samples via three different Pt sources.

Figure S5. XRD patterns of the used Pt/TiO₂ samples via three different Pt sources.

Figure S6. Recycle experiments on H2 evolution of ZnO, ZnO-Pt⁰, ZnO-PtCl6²⁻ and ZnO-Pt^{4+.}

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).