

Article

Investigation of Sulfated Iron-Based Catalysts with Different Sulfate Position for Selective Catalytic Reduction of NO_x with NH₃

Baiyu Fan¹, Ziyin Zhang², Caixia Liu^{1,*} and Qingling Liu¹

- ¹ School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; fanbaiyu@tju.edu.cn (B.F.); liuql@tju.edu.cn (Q.L.)
- ² Langfang City Beichen Entrepreneurship Resin Materials Incorporated Company, Langfang 065000, China; laowuzhangziyin@163.com
- * Correspondence: liucx@tju.edu.cn; Tel.: +86-13426103078

Received: 19 August 2020; Accepted: 5 September 2020; Published: 9 September 2020

Abstract: The Fe/(SZr) and S(Fe/Zr) sulfated iron-based catalysts, prepared by impregnation methods through changing the loading order of Fe₂O₃ and SO₄^{2–} on ZrO₂, were investigated on selective catalytic reduction (SCR) of NO_x by ammonia. It was studied that the existent forms of Fe₂O₃ and SO₄^{2–} on the surface of catalysts were affected by the loading order. The Fe/(SZr) catalyst surface had isolated Fe₂O₃ and SO₄^{2–} species and followed both the L-H mechanism and the E-R mechanism, whereas the S(Fe/Zr) catalyst contained SO₄^{2–} specie and sulfate only and mainly followed the E-R pathway. These factors affected the redox ability and NH₃ adsorption, which might be key to the SCR reaction.

Keywords: iron-based catalysts; sulfated; selective catalytic reduction; NOx abatement

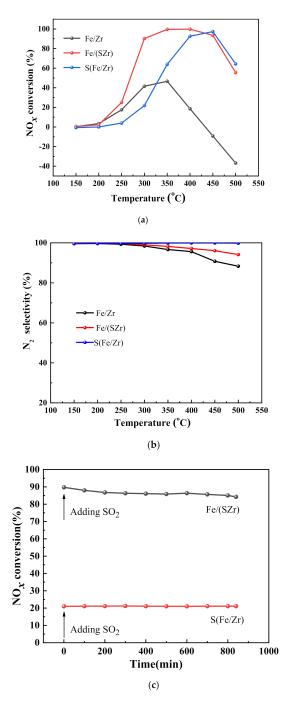
1. Introduction

Nitrogen oxides usually come from stationary sources, such as coal-fired power plants, industrial boilers, and mobile sources, like diesel engines and marine engines. They have caused lots of harmful problems to the ecosystem health. For example, the acid rain would dissolve toxic metals into the water, resulting in reducing species. The photochemical smog could harm plants and reduce atmospheric visibility. Besides, nitrogen oxides made people face existential threats. The resulting photochemical fumes could irritate the eyes, invade the lungs, and even cause death. Therefore, it is important to remove nitrogen oxides. Currently, selective catalytic reduction of NO_x by ammonia (NH₃-SCR) is an efficient technology to abate NO_x in the flue gas from stationary sources [1]. The core of this method is catalysts. Typically, the V₂O₅-WO₃/TiO₂ is the most commonly used catalysts [2]. However, there are still some shortcomings of vanadium-based catalysts that need to be addressed, including the narrow temperature window, the low N_2 selectivity at high temperatures, losing SCR activity by SO_2 poisoned, and the secondary pollution to the environment. Due to these disadvantages, the development of other metals for vanadium and the modification of the support have been investigated over the past several decades. Iron-based catalysts have received considerable attention for its well NH₃-SCR activity and N₂ selectivity, such as α -Fe₂O₃ [3], γ -Fe₂O₃ [3], MgFe₂O₄ [4], Fe₂O₃/SiO₂ [5], Fe₂O₃/TiO₂ [6], Fe₂O₃/TiO₂-pillared clays [1], Fe-ZSM5 [7], and Fe-MOR [8]. Besides iron-based catalysts, other sulfated catalysts were reported to be active for SCR reaction. Grange et al. [9,10] reported that V₂O₅-WO₃ catalyst supported on TiO₂-SO₄²⁻ extended high activity up to 450 °C, and for sulfate, increased the acid sites and improved the interaction between V₂O₅ and WO₃. Ke et al. [11] reported that cobalt sulfate exhibited high NO_x conversion and well resistance to H_2O and SO_2 poisoning, because the existence of sulfate reduced the number of bulk Co₃O₄ and cooperated with cobalt oxides to improve

2 of 15

the activity of SCR reaction. Gu et al. [12] reported that sulfated CeO₂ possessed high NO_x conversion and N₂ selectivity in the temperature range of 200–570 °C, and suggested that sulfate enhanced the active oxygen species and NH₃ adsorption on surface, which were responsible for the higher reactivity of sulfated CeO₂.

The iron-based oxide and sulfate catalysts for SCR of NO_x by NH_3 have been investigated in recent years. However, few studies have been performed on the preparation process about sulfating. In this study, a series of sulfated iron-based catalysts were prepared through different sulfate-loaded order and characterized by XRD, BET, XPS, Raman, and NH_3 -TPD. The high activities of sulfated iron-base catalysts were also explained on the basis of the characterization results.


2. Results

2.1. SCR Catalytic Activity and Influence of SO₂

The activity curves of the sulfated iron-based catalysts are shown in Figure 1a. The Fe/Zr catalyst exhibited the lowest activity in the temperature range of 150–500 °C, and its NO_x conversion reached the highest 46.6% at 350 °C and the NO_x conversion decreased sharply to negative value in the temperature range of 400–500 °C, which was attributed to the NH₃ oxidation to NO_x at the high temperature. Notably, the activities of sulfated iron-based catalysts improved remarkably in the temperature range of 250–500 °C compared with Fe/Zr catalyst. The NO_x conversion of Fe/(SZr) catalyst reached above 90% in 300–450 °C, amazingly, the NO_x conversions increased to 98%, but which decreased to 50% at 500 °C. The temperature window of NO_x conversion of Fe/(SZr) catalysts became narrow and moved to high temperature. The NO_x conversion of Fe/(SZr) catalyst was reached 90% at 400–450 °C. The SCR reaction of the catalysts mainly follows the Eley–Rideal (E-R) mechanism and/or Langmuir–Hinshelwood mechanism (L-H) [13,14]. It is the critical reaction step to adsorb NH₃ to form activated ammonia species on the catalyst and then react with NO or adsorbed oxynitride species to generate N₂ and H₂O. Therefore, the acidic sites are key for the SCR reaction. The sulfated iron-based catalysts were prepared by adding SO₄²⁻, which could remarkably increase the acidic sites. Therefore, the activity improves obviously with the sulfated iron-based catalyst.

The N₂ selectivity is one of the important indicators for the activities of NO_x selective catalytic reduction by NH₃. The N₂ selectivity of Fe/Zr, Fe/(SZr), and S(Fe/Zr) is showed in Figure 1b. S(Fe/Zr) showed excellent N₂ selectivity in 150–500 °C. The N₂ selectivity of Fe/Zr catalyst decreased from 250 °C, and the N₂ selectivity of Fe/Zr catalyst dropped greatly at 500 °C to 88%. The slight decrease in N₂ selectivity in the high temperature range might be due to the higher ability of oxidization of NH₃ to NO [15], which resulted in less production of N₂. Besides, according to He et al. [16], the intermediate specie -HNO would combine with -NH to produce N₂O after the oxidization of NH₃, which led to less N₂ selectivity.

As shown in Figure 1c, this work investigated the effect of SO_2 on the activity of Fe/(SZr) and S(Fe/Zr) catalysts. In the figure, the activity of the S(Fe/Zr) catalyst remained stable for 840 min in the presence of SO_2 , but the NO_x conversion rate was relatively low. For the Fe/(SZr) catalyst, the de- NO_x reactivity slightly decreased and the NO_x conversion rate kept stable between 770 and 840 min when there was SO_2 . This demonstrated that the Fe/(SZr) catalyst had superior SO_2 tolerance and exhibited higher activity. Typically, it was recognized that the Langmuir–Hinshelwood (L-H) mechanism or/and Eley–Rideal (E-R) mechanism were followed by catalysts during the reaction [17]. Meanwhile, it could be assumed that there was competitive adsorption between SO_2 and NO, in which SO_2 was easier to adsorb than the other. Therefore, the Langmuir–Hinshelwood (L-H) mechanism was suppressed, but the Eley–Rideal (E-R) mechanism still existed on the Fe/(SZr) catalyst. It was the reason that Fe/(SZr) had stronger SO_2 resistance. These would be analyzed in more detail in Discussion section.

Figure 1. (a)NH₃-selective catalytic reduction (SCR) activity, (b) N_2 selectivity, and (c) influence of SO₂ on NO_x conversion of Fe/Zr, Fe/(SZr), and S(Fe/Zr) for the NO_x reduction with NH₃.

2.2. XRD

XRD patterns of the ZrO₂, α -Fe₂O₃, Fe/Zr, Fe/(SZr), and S(Fe/Zr) catalysts are shown in the Figure 2. Both the ZrO₂ and α -Fe₂O₃ showed obvious characteristic peaks. However, the patterns of Fe/Zr, Fe/(SZr), and S(Fe/Zr) exhibited only one phase, which corresponded to the cubic crystal structure of ZrO₂. In other words, the X-ray diffraction peaks of α -Fe₂O₃ or Fe₂(SO₄)₃ did not appear in the patterns, which demonstrated that Fe₂O₃ and SO₄²⁻ dispersed well on the surface of ZrO₂. According to references [15,18], the shape of peaks would be changed or new peak would appear if Fe₂O₃ or/and SO₄²⁻ entered into the crystal ZrO₂. These proved that the sulfating process did not affect the crystal form of Fe/Zr, Fe/(SZr), and S(Fe/Zr) catalysts. In fact, the change of crystal structure

and high dispersion had significant influences on the catalytic performance [15], which might affect the existent forms of active species and pathways followed on catalysts.

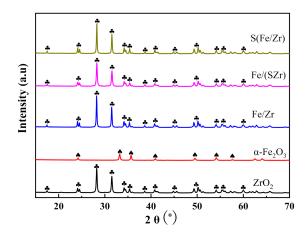


Figure 2. XRD patterns of different iron-based catalysts.

2.3. BET and ICP

It is well known that the surface area is crucial to catalytic activity because large surface area could facilitate to well dispersion. However, the surface areas of sulfated iron-based catalysts were so low (Table 1) that the distinction among them could be neglected. Meanwhile, integra mass concentrations of Fe, S, and Zr measured by the ICP equipment are also summarized in Table 1. The integra mass concentrations of Fe, S, and Zr were close to their calculated values.

Table 1. Brunauer-Emmett-Teller (BET) surface area and integral mass concentration of various catalysts by Inductive Coupled Plasma (ICP) results.

Sample	Integral Mass Concentration (wt.%)			C(
	Fe	S	Zr	Surface Area(m ² /g)
Fe/(SZr)	2.0	1.4	64.5	1.1
S (Fe/Zr)	2.1	1.3	63.4	1.2

2.4. Raman

To investigate the species on the surface of sulfated iron-based catalysts, the Raman spectra were collected at room temperature. Figure 3 showed the Raman spectra of different sulfated iron-based catalysts and pure Fe₂O₃. The Fe/(SZr), S(Fe/Zr), and ZrO₂ catalysts all showed similar peak shapes, but the strength was different in the wavenumber range of 0–650 cm⁻¹, which meant that the sulfate and Fe₂O₃ species on catalyst surfaces did not have effects on ZrO₂. Besides, several bands in the range of 800–1500 cm⁻¹ were detected, in which the peak centered at 1278 cm⁻¹ on Fe/(SZr) was assigned the fingerprint peak of Fe₂O₃ [19]. There was no characteristic peak in the range of 800–1500 cm⁻¹ on ZrO₂. Only one peak appeared at 992 cm⁻¹ on the surface of S(Fe/Zr) catalyst, which was assigned to the S=O bands of isolated sulfate. For Fe/(SZr) catalyst, three peaks located at 992, 1082, and 1278 cm⁻¹ could be detected, respectively. Among them, the band at 1082 cm⁻¹ was induced by the S=O bond of the polynuclear sulfate type [10]. These demonstrated that species such as Fe₂O₃, isolated SO₄²⁻, and sulfate existed on Fe/(SZr) catalyst. In short, it could be concluded that the S(Fe/Zr) catalyst surface had isolated SO₄²⁻ and sulfate because of the different sulfation preparation processes, which led to different species on the surface of catalysts. These affected the mechanisms followed by catalysts.

Figure 3. Raman patterns of different iron-based catalysts.

2.5. XPS

X-ray photoelectron spectroscopy (XPS) was used to characterize chemical states and surface atomic concentrations of Fe, O, S, and Zr elements on Fe/(SZr) and S(Fe/Zr) catalysts. Peaks were fitted by Gaussian–Lorentz curves [20]. These results are shown in Figure 4. Meanwhile, the surface atomic concentrations of Fe, S, and Zr are summarized in Table 2.

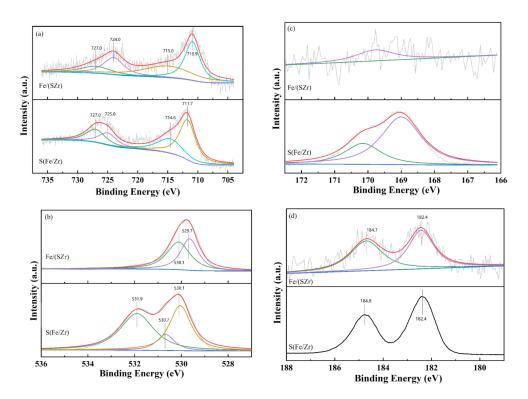


Figure 4. XPS results of (a) Fe 2p, (b) O 1s, (c) S 2p, and (d) Zr 3d in Fe/(SZr) and S (Fe/Zr) catalysts.

Table 2. Surface atomic concentration of various catalysts by XPS results.

Sampla	Surface Atomic Concentration (%)				
Sample	Fe	0	S	Zr	
Fe/(SZr)	1.7	77.1	0.3	0.3	
S(Fe/Zr)	3.2	60.9	4.8	15.9	

The curves of Fe2p are displayed in the Figure 4a. The peak located at 727.0 eV was corresponded to the Fe2p_{1/2} of Fe³⁺, and peaks referred to the Fe2p_{3/2} of Fe³⁺ were at the banding energy of 710.9 and 711.7 eV. Besides, the banding energy at 724.0 and 725.0 eV were corresponded to the Fe2p_{1/2} of Fe²⁺. According to the previous studies [18], the peaks at 715.0 and 714.6 eV were identified as the fingerprint peak influenced by SO_4^{2-} . The ratio of Fe³⁺/(Fe²⁺ + Fe³⁺) on Fe/(SZr) was 69.6%, which was larger than that of S(Fe/Zr) (58.1%). It was known that the catalyst surface containing more Fe³⁺ species would exhibit better performances during the redox reaction because the transformation between Fe²⁺ and Fe³⁺ could irritate the redox circle, which agreed with the results of SCR catalytic activity. Besides, these results also indicated that the main specie on the surface of Fe/(SZr) was Fe₂O₃, corresponding to the Raman results.

Additionally, Figure 4b showed the XPS results of O 1s. The profiles of O 1s exhibited large differences between Fe/(SZr) and S(Fe/Zr) catalysts. For the Fe/(SZr) catalyst, the two peaks appeared at 530.1 and 529.7 eV. The banding energy at 530.1 eV was attributed to the surface-chemisorbed labile oxygen (denoted as O_{α}), and the 529.7 eV peak was corresponded to the lattice oxygen (denoted as O_{β}) [21]. However, three peaks located at 531.9, 530.7, and 530.1 eV could be observed on the S(Fe/Zr) catalyst, which demonstrated that there were three forms of oxygen on this catalyst. In addition to the surface-chemisorbed oxygen and the lattice oxygen, the O_2^{2-} contained in the SO₄²⁻ species led to the appearance of the peak located at 531.9 eV, which was in accordance with our previous research [2]. Typically, the surface-chemisorbed labile oxygen played important roles in the SCR reaction. More the content of O_{α} , the higher catalytic activity of catalysts because the surface oxygen (O α) could promote the activation of NH₂⁻ formed by NH₃ due to the more efficient mobility of electrons than lattice oxygen [21]. Therefore, the Fe/(SZr) catalyst had superior redox activity. For Fe/(SZr) catalyst, the content of $O_{\alpha}/(O_{\alpha} + O_{\beta})$ was 53.5%, which was higher than that of S(Fe/Zr) (22.7%). This meant that Fe/(SZr) had better redox ability in the SCR reaction, which was in accordance with the results of SCR catalytic activity and H₂–TPR.

The XPS results of S 2p are shown in Figure 4c. For Fe/(SZr), the peak representing S was unconspicuous. However, two obvious peaks could be detected on S(Fe/Zr) catalyst. The banding energy at 170.1 and 169.0 eV was referred to the S⁶⁺ in SO₄²⁻ [22]. These results manifested that the main species on the surface of Fe/(SZr) was Fe₂O₃. Although the isolated SO₄²⁻ species existed on the Fe/(SZr) catalyst, the surface atomic concentration was extremely low (only 0.3%) (Table 1). It was because XPS detected the surface atomic concentration and only a small amount of SO₄²⁻ existed on the surface, although SO₄²⁻ was the main species on the surface of S(Fe/Zr). These results corresponded with the O 1s results.

The XPS spectra of Zr 3d are presented in Figure 4d. Each catalyst was fitted with two characteristic peaks. For the Fe/(SZr) catalyst, the banding energy located at 184.8 eV was corresponded with the Zr $3d_{3/2}$. Another peak at 182.4 eV was referred to the Zr⁴⁺ species. The positions of peaks were similar, which certified that the existence of Zr species was stable and not affected by the sulfating process.

The ICP results demonstrated that the integral mass concentrations of Fe, S, and Zr were all extremely similar for sulfated iron-based catalysts. Combined with the XPS results of concentrations of virous elements, it could be concluded that the preparation method of Fe/(SZr) and S(Fe/Zr) merely affected the surface atomic concentrations, rather than the integral atomic concentrations.

2.6. *H*₂–*TPR*

 H_2 -TPR technique was used to investigate the interaction between Fe₂O₃ and SO₄^{2–}. The H₂-TPR curves of all the catalysts are shown in Figure 5. The profile of Fe/Zr showed three peaks centered at 329, 417, and 540 °C. The peaks at 329 and 522 °C could be attributed to the reduction of the surface Fe₂O₃ (Fe₂O₃-Fe₃O₄-Fe) [23], and another peak at 417 °C could be assigned to the peak produced by the machine. However, for the other three catalysts, the intensity of this peak was too slight too be observed. The pattern of SZr showed only one peak centered at 585 °C, which corresponded to the reduction of SO₄^{2–} [24]. The H₂-TPR curves of Fe/(SZr) and S(Fe/Zr) showed only one peak,

which centered at 403 and 486 °C, respectively. Their reduction peak temperature (T_{red}) were all higher than that of Fe/Zr catalyst and lower than that of SZr catalyst, which were referred to the overlapping of the stepwise reduction peaks of Fe₂O₃ and SO₄²⁻. According to reference [25], lower the T_{red} is, the stronger is the redox ability of the catalyst. Among Fe/(SZr) and S(Fe/Zr) catalysts, the redox abilities were as following: Fe/(SZr) > S(Fe/Zr). By combining the Raman results, it was concluded that the surface species were different because of the different sulfated order. In other words, the existent forms of Fe₂O₃ and SO₄²⁻ on the surface of ZrO₂ resulted in the different interaction of Fe₂O₃ and SO₄²⁻, which impacted the redox ability.

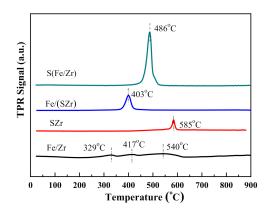
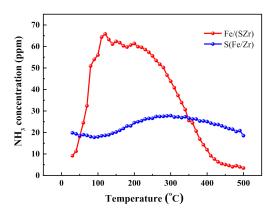



Figure 5. H₂-temperature-programmed reduction (H₂-TPR) patterns of different iron-based catalysts.

2.7. NH₃-TPD

The NH₃–TPD patterns of Fe/(SZr) and S(Fe/Zr) catalysts are shown in Figure 6. One wide NH₃ desorption peak of these three catalysts was displayed in the temperature range of 30–500 °C in the figure. The amounts of NH₃ desorption were different greatly among these two catalysts, and the sequence was following: Fe/(SZr) (38.1 μ mol·g⁻¹) > S(Fe/Zr)(6.3 μ mol·g⁻¹). The NH₃ species desorbed in high temperature range on Fe/(SZr) catalyst reduced a little, but the NH₃ species desorbed in low and medium temperature range increased more greatly than that on the surface of S(Fe/Zr) catalyst, which might be one of the important reason for that Fe/(SZr) catalyst exhibited the higher SCR activity in low and medium temperature range than other catalysts.

Figure 6. NH_3 -TPD profiles of sulfated iron-based catalysts. Reaction conditions: 0.05% NH_3 , N_2 balanced, 300 mL/min, and 0.5 g.

2.8. In Situ DRIFTS Studying of the NH₃-Adsorption on Different Catalysts

The in situ DRIFTS spectra of Fe/(SZr) and S(Fe/Zr) catalysts, which were adsorbed and saturated with NH₃ at 30 $^{\circ}$ C and then purged with N₂, is displayed in Figure 7. Several absorbing vibration peaks

at 3202, 3043, 2840, 1820, 1685, 1600, 1440, and 1257 cm⁻¹ appeared over both Fe/(SZr) and S(Fe/Zr) catalysts. Among them, the absorbing vibration peaks at 3202, 3043, and 2840 cm⁻¹ were assigned to the N-H bond. For Fe/(SZr) catalyst, the absorbing vibration peaks at 1820 and 1257 cm⁻¹ were detected. The absorbing vibration peaks at 1440 and 1257 cm⁻¹ of S(Fe/Zr) catalysts were observed. The peaks at 1685 and 1440 cm⁻¹ were attributed to the symmetric and asymmetric absorbing vibration adsorbed to Brønsted acid sites [26], while the peaks at 1600 and 1257 cm⁻¹ were ascribed to absorbing vibration adsorbed on Lewis acid sites [27,28]. Compared with S(Fe/Zr) catalyst, the peak intensities of absorbed NH₃ species bounded to both Brønsted and Lewis acidic sites on the Fe/(SZr) catalyst, such as isolated Fe₂O₃, SO₄^{2–}, and sulfate species. Fe₂O₃ could provide Lewis acid sites, whereas SO₄^{2–} supplied Brønsted acid sites, which could adsorb more NH₃ species and were in accordance with the results of NH₃–TPD.

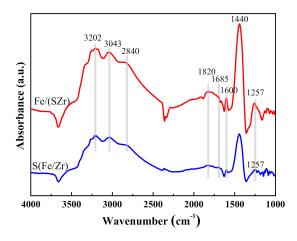
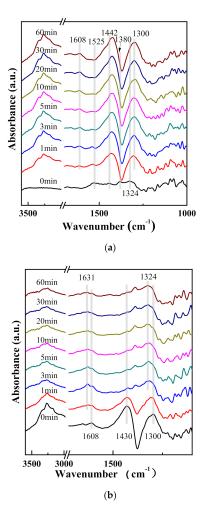



Figure 7. In situ diffuse reflectance infrared Fourier transform spectra (DRIFTS) of Fe/(SZr) and S(Fe/Zr).

2.9. Transient Reaction Studies over Different Catalysts

2.9.1. Transient Reaction Studies over the Fe/(SZr) Catalyst

In Figure 8a, after the sample exposed to NO + O_2 reached saturation and was purged with N2 at 250 °C, the nitrate species were stabilized on the surface of Fe/(SZr) catalyst (1525, 1442, 1380, and 1324 cm⁻¹) [29,30]. After NH₃ was introduced into the reaction cell, the absorbed NH₃ species bounded to different acid sites on catalysts surface were observed (such as the peak at 1608 and 1300 cm⁻¹, which could be attributed to the symmetric and asymmetric stretching vibrational mode of NH₃ species on Lewis surface acid sites [31-33]). The peak at 1442 cm⁻¹ could be assigned to the symmetric stretching vibration of NH_4^+ species bound to Brønsted acid sites [14].) After NH_3 was introduced sustainably for 60 min, the adsorbed peaks did not change on the surface of catalysts. These suggested that the nitrate species adsorbed on catalyst surface were active in the SCR reaction, which could react with NH₃ existed in air quickly for the redox reaction. As shown in Figure 8b, the stable absorbing peaks attributed to NH₃ species were formed over Fe/(SZr) catalyst after introduction of NH₃ and purging at 250 °C. (The peaks located at 1608 and 1300 cm⁻¹ can be assigned to the symmetric and asymmetric stretching vibrational peaks of NH₃ species on Lewis surface acid sites [21,31,33]. The peak at 1430 cm⁻¹ can be attributed to the symmetric stretching vibration of NH₄⁺ species bounded to Brønsted acid sites [34,35].) With the introduction of NO + O₂ for 1 min, the NH₃ species on catalyst surface became weaker, and the peak at 1631 cm⁻¹ related to stretching vibration of NO₂ appeared [36,37]. That was to say that the NH₃ and oxynitride species can coexist on the surface of catalysts. After introducing NO + O₂ for approximately 3 min, the NH₃ species almost disappeared and the peaks of stretching vibration of NO_2 enhanced. Meanwhile, some steady nitrate species (1324 cm⁻¹) formed on catalyst surface, indicating that NH₃ species adsorbed on the surface of catalysts

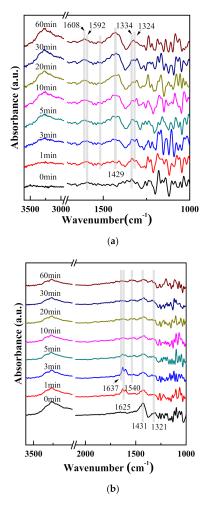


Figure 8. In situ DRIFT spectra of (**a**) NH_3 reacted with preadsorbed $NO + O_2$ and (**b**) $NO + O_2$ reacted with preadsorbed NH_3 on Fe/(SZr).

2.9.2. Transient Reaction Studies over the S (Fe/Zr) Catalyst

When the S (Fe/Zr) catalyst was saturated with NO + O₂ and purged with N₂ at 250 °C, a small amount of nitrate species was formed on the surface (1592 and 1334 cm⁻¹). Several absorbing peaks, which were assigned to weakly adsorbed NH₃ species, appeared immediately on catalyst surface after introducing NH₃. (The peaks at 1608 and 1324 cm⁻¹ were ascribed to the symmetric and asymmetric stretching vibrational peaks of NH₃ species bounded to Lewis surface acid sites [38]. The absorbing peak at 1429 cm⁻¹ was due to the symmetric stretching vibration of NH₄⁺ species on Brønsted acid sites [39].) As shown in Figure 9b, steady peaks representing absorbed NH_4^+ species located at 1431 and 1321 cm⁻¹ appeared after saturation with NH₃ and purging at 250 °C, which could be attributed to symmetric stretching vibration of NH4⁺ species bounded to Brønsted acid sites [40]. The amount of NH_4^+ species decreased on the catalyst surface after introduction of NO + O₂ for 1 min, and then the stretching vibration of H_2O species appeared (1625 cm⁻¹) [41]. The stretching vibration peaks of H_2O enhanced, and the NH_4^+ species still existed at 3 min. After the introduction of $NO + O_2$ for 5 min, the stretching vibration of H_2O species became weaker. Meanwhile, the NO_2 (1637 cm⁻¹) and nitrate species (1540 cm⁻¹) appeared [42–44]. After introducing NO + O₂ for 10 min, the NO₂ stretching vibration peaks almost disappeared, but NH₄⁺ species remained adsorbed on Brønsted acid sites (1431 and 1321 cm^{-1}) [44]. The NH₄⁺ stretching vibration peaks still existed at 60 min, suggesting

that NH_4^+ species adsorbed on the catalyst surface were extremely stable and only a fraction of them participated in the reaction. Therefore, although the NH_3 species on the surface of catalysts could participate in the reaction, the steady NH_4^+ species affected the catalytic activity of SCR reaction. It could be deduced that the SCR reaction on S(Fe/Zr) catalyst surface also followed the E-R pathway: First, NH_3 adsorbed on SO_4^{2-} existed on the catalyst surface to form the NH_4^+ species, which could react with NO_x conducting the oxidation reaction, and further generated N_2 and H_2O .

Figure 9. In situ DRIFT spectra of (**a**) NH_3 reacted with preadsorbed $NO + O_2$ and (**b**) $NO + O_2$ reacted with preadsorbed NH_3 on S (Fe/Zr).

In conclusion, considering the reaction mechanisms of Fe/(SZr) and S(Fe/Zr) catalysts, it could be inferred that Fe^{3+} and SO_4^{2-} afforded crucial active sites of sulfated iron-based catalysts, and the active species on sulfated iron-based catalyst surface were Fe₂O₃, SO₄²⁻, and Fe₂(SO₄)₃.

3. Discussion

It could be concluded from the results of transient studies that the NH₃-SCR reaction on Fe/(SZr) catalyst followed Langmuir–Hinshelwood (L-H) and Eley–Rideal (E-R) mechanisms. It was not only that the NH₃ species adsorbed on the surface could react with gaseous NO + O₂ but also, at the same time, NO_x on the catalyst surface could form large amount of highly active NO₂ species, which could react with adsorbed NH₃ for SCR reaction. The E-R mechanism was executed on S(Fe/Zr) surface in the reaction, which meant that the gaseous NH₃ absorbed first on the surface of catalysts, and then reacted with NO_x in air for redox reaction. Besides, the adsorbed NH₄⁺ on catalyst surface was very stabilized and only partly activated to participate in the reaction over the S(Fe/Zr) catalyst.

Combined results of Raman and XPS spectra showed that there were different forms of species on Fe/(SZr) and S(Fe/Zr) catalysts. The existent forms of Fe_2O_3 and SO_4^{2-} on catalysts influenced the mutually coordinated impact on these two catalysts, which determined large differences in the redox ability and adsorption performance of catalysts, and also affected the nitrogen oxide and NH₃ adsorption species participating in the reaction on the catalyst surface. There were more Fe³⁺ and surface-chemisorbed labile oxygen on the surface of Fe/(SZr) catalyst, which facilitated the redox cycle and led to better performance during the reaction. The differences caused the SCR reaction on the surface of Fe/(SZr) and S(Fe/Zr) catalysts to follow different mechanisms, which resulted in the different SCR reaction path on the catalyst surface, and the SCR reaction activity of the catalyst were influenced. Not only the sulfate species but also isolated Fe_2O_3 and SO_4^{2-} ions existed on the Fe/(SZr) catalyst. The isolated Fe_2O_3 on the catalyst was beneficial to the adsorption of sulfate and more NH₃ species on the surface, which promoted the operation of L-H mechanism and the NO_x removal efficiency over Fe/(SZr) catalyst at middle-low temperature. This might be the main reason for the higher catalytic activity of Fe/(SZr) catalyst. For S(Fe/Zr) catalyst, only the SO_4^{2-} and sulfate were existed on the surface. The Fe³⁺ was covered by isolated SO₄²⁻ due to the different orders of loading on S(Fe/Zr) catalyst. The Fe^{3+} ion of the catalyst could not participate well in the redox reaction, so the activity of the catalyst was affected, which explained the reason that the low-temperature activity of the S(Fe/Zr) catalyst was lower than that of the (FeS)/Zr catalyst. In addition, according to the catalytic activity results of the effect of SO₂ on the activity of catalysts at different sulfated positions, the Fe/(SZr) catalyst had poor stability against SO₂ poisoning. The Fe/(SZr) catalyst had Fe₂O₃ species that could promote the activity at medium and low temperature. Meanwhile, Fe₂O₃ easily combined with SO₂ to generate ferrous sulfate or ferric sulfate, occupying the active center, thus leading to the SO₂ poisoning of the Fe/(SZr) catalyst. Therefore, it could be concluded that the different forms of Fe₂O₃ and SO₄²⁻ affected the catalytic activity and caused different mechanisms followed on catalysts. Besides, different species on the surface of catalysts influenced the property of resistance to SO_2 poisoning.

4. Experimental

4.1. Catalyst Preparation

All the catalysts were synthesized through the method of impregnation. The specific experimental steps were as follows: First, the weighed ZrO_2 power was dissolved in distilled water, and some quantities of Fe(NO₃)₃·9H₂O and (NH₄)₂SO₄ were added subsequently. Then, the solution was heated to 70 °C. Meanwhile, it was kept stirring till the paste was formed. After that, the paste was dried overnight at 120 °C and calcined under air at 500 °C for 4 h. Finally, several iron-based catalysts with different molar ratios were obtained, signed as Fe_xS_yZr (x = 3, y = 0; x = 0, y = 5; x is the wt.% of Fe₂O₃ and y is the wt.% of SO₄²⁻). In this paper, Fe3Zr and S5Zr were abbreviated as FeZr and SZr, respectively.

Some SZr power was dissolved and a certain amount of $Fe(NO_3)_3 \cdot 9H_2O$ was added. Meanwhile, some FeZr catalyst was dissolved and some quantities of $(NH_4)_2SO_4$ were added. These two solutions were heated to 70 °C. Similarly, these solutions were kept stirred until they formed paste and then were dried overnight at 120 °C. Afterwards, they were calcined under air at 500 °C for 4 h. Finally, Fe/(SZr) and S/(FeZr) catalysts were obtained.

4.2. Catalytic Activity Measurement

Measurements of catalytic activity were performed in a fixed-bed quartz reactor with an inner diameter of 9 mm. Precisely, 0.5 g of 40–60 mesh catalysts were used in the reactor. Specific experimental mixture gas conditions were as follows: 500 ppm NO, 500 ppm NH₃, 3 vol.% O₂, and N₂ were used as the balance gas. The total flow rate was 300 mL/min, whereas corresponding small space-time velocity of the gas was approximately 47,000 h⁻¹. The Fourier-transform infrared spectrometer (FT-IR) gas analyzer (Gasmet Dx-4000) was used to measure NO_x, N₂O, and NH₃ concentrations in both the inlet

and outlet. When the catalytic reaction reached a stable state of half an hour at each temperature, the activity data were collected.

4.3. Catalyst Characterization

X-ray diffraction (XRD) was carried out on a D/MAX-RB system with Cu Ka radiation. The diffraction patterns were recorded in the range of 2u from 10° to 90° in steps of 0.018 and 1 s/step.

The Quantachrome Autosorb AS-1 System was used to measure the BET specific surface area, pore size, and pore volume through N_2 adsorption at 77 K.

X-ray photoelectron spectroscopy (XPS) was used to observe chemical valences of catalysts, atomic concentration, and surface species. These experiments were conducted on ESCALab 220i-XL electron spectrometer with radiations of 300 W Mg Ka.

The results of Raman spectra were obtained by using the Raman microscope (InVia reflection, Renishaw), which was equipped with a deep depletion thermoelectric cooled charge-coupled device (CCD) array detector and an advanced Leica microscope (long working distance objective lens 50×).

H₂-temperature-programmed reduction (TPR) curves were recorded through the chemisorption analyzer (Micromeritics ChemiSorb 2720, Micromeritics Norcross, America) using 40 mg of samples. First, samples were pretreated in N₂ at 300 °C for 1 h and then cooled down to the room temperature. Subsequently, using 10% H₂/Ar reducing gas with a flow rate of 50 mL/min, the catalyst was reduced from room temperature to 1000 °C with a temperature gradient of 10 °C/min. The consumed H₂ was calculated by integrating the corresponding TCD signal strength.

 NH_3 temperature-programmed desorption (TPD) was performed in a fixed-bed quartz reactor. First, each sample was degassed under the atmosphere of N_2 at 500 °C for 1 h. Second, 500 ppm NH_3 was adsorbed for 1 h after cooling to room temperature. Third, the desorption was carried out in N_2 at the temperature of the last-step response experiment until no NH_3 was detected. Finally, temperature-programmed desorption (TPD stage) was performed at 10 °C/min up to 500 °C. During these experiments, typically, the sample mass of 0.5 g and a gas flow rate of 300 mL/min were needed.

The Nicolet NEXUS 870 FT-IR (Nicolet Madison, America) spectrometer was used to characterize the in situ DRIFTS spectra. Before the experiments, each sample was pretreated at 300 °C for 1 h in N_2 with the flow rate of 100 cm³/min.

5. Conclusions

The Fe/(SZr) and S(Fe/Zr) sulfated iron-based catalysts synthesized by impregnation methods were investigated in this research. The activities of sulfated iron-based catalysts improved remarkably compared with Fe/Zr catalyst in the temperature range of 250–500 °C. The NO_x conversion and N₂ selectivity exhibited large distinction between Fe/(SZr) and S(Fe/Zr) sulfated iron-based catalysts. The study results revealed that the existence of sulfate, isolated Fe₂O₃, and SO₄²⁻ species on Fe/(SZr) catalyst supplied more acid sites, which could adsorb more NH₃ species and reacted with gaseous NO + O₂. Besides, the reaction between highly active NO₂ species and NO_x on the catalyst surface was beneficial to the catalytic activity. Thus, the SCR reaction on Fe/(SZr) catalyst surface followed both the L-H mechanism and the E-R mechanism. For S(Fe/Zr) catalyst, the SO₄²⁻ and sulfate were existed on the surface. The Fe³⁺ was covered by the independent SO₄²⁻, so the Fe³⁺ of the catalyst could not participate in the redox reaction well, which affected the progress of the SCR reaction on the catalyst. The absorbed NH₄⁺ reacted with NO_x in air and made the S(Fe/Zr) catalyst mainly follow the E-R pathway. In other words, different loading positions of sulfate caused distinctive active components on Fe/(SZr) and S(Fe/Zr) surface, leading to the difference of reaction mechanisms and affected the redox ability and NH₃ adsorption. Therefore, the catalytic activity was affected.

Author Contributions: Writing—original draft preparation, B.F.; writing—review and editing, Z.Z. and Q.L.; supervision, C.L. All authors have read and agree to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (2016YFC0205302 and 2016YFC0205300), the National Youth Natural Science Foundation of China (No. 21507100), and the Science and Technology Project of Hebei Province (NO.206Z3702G).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Long, R.Q.; Yang, R.T. The promoting role of rare earth oxides on Fe-exchanged TiO₂-pillared clay for selective catalytic reduction of nitric oxide by ammonia. *Appl. Catal. B* **2000**, *27*, 87–95. [CrossRef]
- 2. Guo, M.; Liu, Q.; Zhao, P.; Han, J.; Li, X.; Ha, Y.; Fu, Z.; Song, C.; Ji, N.; Liu, C.; et al. Promotional effect of SO₂ on Cr₂O₃ catalysts for the marine NH₃-SCR reaction. *Chem. Eng. J.* **2019**, *361*, 830–838. [CrossRef]
- Liu, C.; Yang, S.; Ma, L.; Peng, Y.; Hamidreza, A.; Chang, H.; Li, J. Comparison on the performance of α-Fe₂O₃ and γ-Fe₂O₃ for selective catalytic reduction of nitrogen oxides with ammonia. *Catal. Lett.* 2013, 143, 697–704. [CrossRef]
- 4. Ramis, G.; Yi, L.; Busca, G.; Turco, M.; Kotur, E.; Willey, R.J. Adsorption, activation, and oxidation of ammonia over SCR catalysts. *J. Catal.* **1995**, *157*, 523–535. [CrossRef]
- 5. Fabrizioli, P.; Bürgi, T.; Baiker, A. Environmental catalysis on iron oxide–Silica Aerogels: Selective oxidation of NH₃ and reduction of NO by NH₃. *J. Catal.* **2002**, *206*, 143–154. [CrossRef]
- 6. Long, R.Q.; Yang, R.T. Selective catalytic oxidation of ammonia to nitrogen over Fe₂O₃-TiO₂ prepared with a sol-gel method. *J. Catal.* **2002**, 207, 158–165. [CrossRef]
- 7. Long, R.Q.; Yang, R.T. Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. *J. Catal.* **2000**, *194*, 80–90. [CrossRef]
- 8. Long, R.Q.; Yang, R.T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites. *J. Catal.* **2001**, 201, 145–152. [CrossRef]
- 9. Jung, S.M.; Grange, P. Investigation of the promotional effect of V₂O₅ on the SCR reaction and its mechanism on hybrid catalyst with V₂O₅ and TiO₂-SO₄²⁻ catalysts. *Appl. Catal. B* **2002**, *36*, 207–215. [CrossRef]
- 10. Jung, S.M.; Grange, P. Characterization and reactivity of V₂O₅-WO₃ supported on TiO₂-SO₄²⁻ catalyst for the SCR reaction. *Appl. Catal. B* **2001**, *32*, 123–131. [CrossRef]
- 11. Ke, R.; Li, J.; Liang, X.; Hao, J. Novel promoting effect of SO₂ on the selective catalytic reduction of NO_x by ammonia over Co₃O₄ catalyst. *Catal. Commun.* **2007**, *8*, 2096–2099. [CrossRef]
- 12. Gu, T.; Liu, Y.; Weng, X.; Wang, H.; Wu, Z. The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH₃. *Catal. Commun.* **2010**, *12*, 310–313. [CrossRef]
- 13. Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. *Appl. Catal. B* **1998**, *18*, 1–36. [CrossRef]
- Wang, H.; Ning, P.; Zhang, Y.; Ma, Y.; Wang, J.; Wang, L.; Zhang, Q. Highly efficient WO₃-FeO_x catalysts synthesized using a novel solvent-free method for NH₃-SCR. *J. Hazard. Mater.* 2020, *388*, 121812. [CrossRef] [PubMed]
- 15. Liu, F.; Asakura, K.; He, H.; Shan, W.; Shi, X.; Zhang, C. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NO_x with NH₃. *Appl. Catal. B* **2011**, *103*, 369–377. [CrossRef]
- Zhang, L.; He, H. Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al₂O₃. *J. Catal.* 2009, 268, 18–25. [CrossRef]
- 17. Forzatti, P. Present status and perspectives in de-NOx SCR catalysis. *Appl. Catal. A* **2001**, 222, 221–236. [CrossRef]
- 18. Liu, C.; Bi, Y.; Li, J. Activity enhancement of sulphated Fe₂O₃ supported on TiO₂–ZrO₂ for the selective catalytic reduction of NO by NH₃. *Appl. Surf. Sci.* **2020**, *528*, 146695. [CrossRef]
- Zhu, N.; Shan, W.; Lian, Z.; Zhang, Y.; Liu, K.; He, H. A superior Fe-V-Ti catalyst with high activity and SO₂ resistance for the selective catalytic reduction of NO_x with NH₃. *J. Hazard. Mater.* 2020, 382, 120970. [CrossRef]
- Tan, W.; Wang, J.; Li, L.; Liu, A.; Song, G.; Guo, K.; Luo, Y.; Liu, F.; Gao, F.; Dong, L. Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO₂ resistant NH₃-SCR catalysts for NO removal. *J. Hazard. Mater.* 2020, 388, 121729. [CrossRef]

- Ma, S.; Zhao, X.; Li, Y.; Zhang, T.; Yuan, F.; Niu, X.; Zhu, Y. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a = 0.01, 0.02, 0.03) catalysts for NH₃-SCR of NO. *Appl. Catal. B* 2019, 248, 226–238. [CrossRef]
- 22. Chen, J.P.; Yang, R.T. Selective Catalytic Reduction of NO with NH₃ on SO–24/TiO₂ Superacid Catalyst. *J. Catal.* **1993**, *139*, 277–288. [CrossRef]
- 23. Apostolescu, N.; Geiger, B.; Hizbullah, K.; Jan, M.T.; Kureti, S.; Reichert, D.; Schott, F.; Weisweiler, W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. *Appl. Catal. B* **2006**, *62*, 104–114. [CrossRef]
- 24. Ma, L.; Li, J.; Ke, R.; Fu, L. Catalytic performance, characterization, and mechanism study of Fe₂(SO₄)₃/TiO₂ catalyst for selective catalytic reduction of NO_x by Ammonia. *J. Phys. Chem. C* **2011**, *115*, 7603–7612. [CrossRef]
- 25. Liu, J.; Zhao, Z.; Wang, J.; Xu, C.; Duan, A.; Jiang, G.; Yang, Q. The highly active catalysts of nanometric CeO₂-supported cobalt oxides for soot combustion. *Appl. Catal. B* **2008**, *84*, 185–195. [CrossRef]
- Yang, J.; Ren, S.; Zhou, Y.; Su, Z.; Yao, L.; Cao, J.; Jiang, L.; Hu, G.; Kong, M.; Yang, J.; et al. In situ IR comparative study on N₂O formation pathways over different valence states manganese oxides catalysts during NH₃–SCR of NO. *Chem. Eng. J.* 2020, 397, 125446. [CrossRef]
- 27. Zhan, S.; Zhang, H.; Zhang, Y.; Shi, Q.; Li, Y.; Li, X. Efficient NH₃-SCR removal of NO_x with highly ordered mesoporous WO₃(χ)-CeO₂ at low temperatures. *Appl. Catal. B* **2017**, *203*, 199–209. [CrossRef]
- 28. Wang, S.; Fan, C.; Zhao, Z.; Liu, Q.; Xu, G.; Wu, M.; Chen, J.; Li, J. A facile and controllable in situ sulfation strategy for CuCeZr catalyst for NH₃-SCR. *Appl. Catal. A* **2020**, *597*, 117554. [CrossRef]
- Zhang, Q.; Fan, J.; Ning, P.; Song, Z.; Liu, X.; Wang, L.; Wang, J.; Wang, H.; Long, K. In situ DRIFTS investigation of NH₃-SCR reaction over CeO₂/zirconium phosphate catalyst. *Appl. Surf. Sci.* 2018, 435, 1037–1045. [CrossRef]
- 30. Wang, J.; Yan, Z.; Liu, L.; Chen, Y.; Zhang, Z.; Wang, X. In situ DRIFTS investigation on the SCR of NO with NH₃ over V₂O₅ catalyst supported by activated semi-coke. *Appl. Surf. Sci.* **2014**, *313*, 660–669. [CrossRef]
- 31. Liu, J.; Li, X.; Zhao, Q.; Ke, J.; Xiao, H.; Lv, X.; Liu, S.; Tadé, M.; Wang, S. Mechanistic investigation of the enhanced NH₃-SCR on cobalt-decorated Ce-Ti mixed oxide: In Situ FTIR analysis for structure-activity correlation. *Appl. Catal. B* **2017**, *200*, 297–308. [CrossRef]
- 32. Chen, C.; Cao, Y.; Liu, S.; Jia, W. The effect of SO₂ on NH₃-SCO and SCR properties over Cu/SCR catalyst. *Appl. Surf. Sci.* **2020**, 507, 145153. [CrossRef]
- Song, L.; Yue, H.R.; Ma, K.; Tian, W.; Liu, W.Z.; Liu, C.J.; Tang, S.Y.; Liang, B. Mechanistic aspects of highly efficient Fe_aSbTiO_x catalysts for the NH₃-SCR reaction: Insight into the synergistic effect of Fe and S species. *Ind. Eng. Chem. Res.* 2020, *59*, 8164–8173. [CrossRef]
- 34. Shu, Y.; Aikebaier, T.; Quan, X.; Chen, S.; Yu, H. Selective catalytic reaction of NOx with NH₃ over Ce–Fe/TiO₂-loaded wire-mesh honeycomb: Resistance to SO₂ poisoning. *Appl. Catal. B* **2014**, 150–151, 630–635. [CrossRef]
- 35. Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R.W.; Fu, L.; Li, J. In situ DRIFTS and temperature-programmed technology study on NH₃-SCR of NO_x over Cu-SSZ-13 and Cu-SAPO-34 catalysts. *Appl. Catal. B* **2014**, 156–157, 428–437. [CrossRef]
- 36. Long, R.Q.; Yang, R.T. Reaction mechanism of selective catalytic reduction of NO with NH₃ over Fe-ZSM-5 catalyst. *J. Catal.* **2002**, 207, 224–231. [CrossRef]
- 37. Liu, Z.; Liu, Y.; Li, Y.; Su, H.; Ma, L. WO₃ promoted Mn–Zr mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃. *Chem. Eng. J.* **2016**, *283*, 1044–1050. [CrossRef]
- 38. Yan, Q.; Gao, Y.; Li, Y.; Vasiliades, M.A.; Chen, S.; Zhang, C.; Gui, R.; Wang, Q.; Zhu, T.; Efstathiou, A.M. Promotional effect of Ce doping in Cu₄Al₁O_x–LDO catalyst for low-T practical NH₃-SCR: Steady-state and transient kinetics studies. *Appl. Catal. B* 2019, 255, 117749. [CrossRef]
- France, L.J.; Yang, Q.; Li, W.; Chen, Z.; Guang, J.; Guo, D.; Wang, L.; Li, X. Ceria modified FeMnO_x—Enhanced performance and sulphur resistance for low-temperature SCR of NO_x. *Appl. Catal. B* 2017, 206, 203–215. [CrossRef]
- 40. Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃. *Appl. Catal. B* **2012**, *115–116*, 100–106. [CrossRef]

- Wang, Z.-Y.; Guo, R.-T.; Guan, Z.-Z.; Shi, X.; Pan, W.-G.; Fu, Z.-G.; Qin, H.; Liu, X.-Y. The promotion effect of Cr additive on CeZr₂O_x catalyst for the low-temperature selective catalytic reduction of NO_x with NH₃. *Appl. Surf. Sci.* 2019, 485, 133–140. [CrossRef]
- 42. Wang, A.; Guo, Y.; Gao, F.; Peden, C.H.F. Ambient-Temperature NO oxidation over amorphous CrO_x-ZrO₂ mixed oxide catalysts: Significant promoting effect of ZrO₂. *Appl. Catal. B* **2017**, *202*, 706–714. [CrossRef]
- 43. Liu, H.; Fan, Z.; Sun, C.; Yu, S.; Feng, S.; Chen, W.; Chen, D.; Tang, C.; Gao, F.; Dong, L. Improved activity and significant SO₂ tolerance of samarium modified CeO₂-TiO₂ catalyst for NO selective catalytic reduction with NH₃. *Appl. Catal. B* **2019**, *244*, 671–683. [CrossRef]
- 44. Gong, P.; Xie, J.; Fang, D.; He, F.; Li, F.; Qi, K. Enhancement of the NH₃-SCR property of Ce-Zr-Ti by surface and structure modification with P. *Appl. Surf. Sci.* **2020**, *505*, 144641. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).