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Abstract: Lipases are one of the most used enzymes in the pharmaceutical industry due to their
efficiency in organic syntheses, mainly in the production of enantiopure drugs. From an industrial
viewpoint, the selection of an efficient expression system and host for recombinant lipase production
is highly important. The most used hosts are Escherichia coli and Komagataella phaffii (previously
known as Pichia pastoris) and less often reported Bacillus and Aspergillus strains. The use of efficient
expression systems to overproduce homologous or heterologous lipases often require the use of strong
promoters and the co-expression of chaperones. Protein engineering techniques, including rational
design and directed evolution, are the most reported strategies for improving lipase characteristics.
Additionally, lipases can be immobilized in different supports that enable improved properties and
enzyme reuse. Here, we review approaches for strain and protein engineering, immobilization and
the application of lipases in the pharmaceutical industry.

Keywords: biocatalysis; industrial applications; sustainable chemistry

1. Introduction

Lipases have a myriad of industrial and biotechnological applications that rely on the variety of
reactions that they catalyze. Based on hydrolytic reactions these biocatalysts can be applied: in the food
industry for lipid modification through complete or partial triacylglycerol degradation, resulting in food
with improved sensorial properties [1,2]; as a digestive auxiliary [3]; being incorporated in detergents,
facilitating the removal of fat stains from fabrics. Through synthetic reactions, lipases can be applied to
biodiesel production since they catalyze the transesterification of vegetable oils and simple alcohols [4].
On the other hand, one of the most relevant lipase applications is in the pharmaceutical industry
where, through hydrolytic or esterification reactions, lipases can discriminate enantiomers from
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racemic substrates and produce specific enantiopure drugs, as in the case of profens and atenolol [5].
Additionally, in several of these applications, lipases can be immobilized in inert supports to improve
their properties, including stability and selectivity, and enable reuse [6].

Lipases (EC 3.1.1.3, triacylglycerol lipase) are triacylglycerol hydrolases produced by various
organisms with the natural function of hydrolyzing fats and lipids [7]. Although they hydrolyze
triacylglycerol molecules into mono- and diacylglycerols, fatty acids and glycerol in aqueous
solutions [8], lipolytic enzymes are the most used hydrolases in organic chemistry due to their
capacity for catalyzing synthetic reactions in micro-aqueous conditions [9]. Among the different
reactions they catalyze are hydrolysis, esterification, interesterification, aminolysis, transesterification,
acidolysis and alcoholysis [10].

Lipases are ubiquitous enzymes produced by animals [11], plants [12] and microorganisms [13–15],
with microorganisms being the most representative source of commercial lipases. Each lipase producing
species has its own set of lipases with different levels of activity, stability and substrate selectivity,
fitting its physiological and metabolic requirements. The challenge is to identify variants within the
almost endless pool of natural lipases, which has the best potential as a catalyst in a desirable reaction.
Elaborate and effective screening programs dedicated to searching for new lipases are constantly
ongoing using microorganisms that can be cultured in the laboratory [16] or metagenomics libraries
as a starting point [17]. Since new hits may be found in microorganisms that do not perform well in
a production setup or just via a DNA sequence, heterologous production is key to exploiting lipase
diversity. The predominant hosts used for recombinant lipase production are Escherichia coli and
Komagataella phaffii (previously known as Pichia pastoris) [18–21], but other species with a more powerful
secretory capacity are increasingly used. In this context, known potent natural secretor organisms,
such as filamentous fungi, can serve as excellent high-yielding hosts for heterologous production [22].
For example, Aspergillus spp. and Trichoderma reesei are eukaryotic hosts that have highly efficient
secretory pathways, achieving more than 30 g of protein per liter of media [23–25]. In addition, different
Bacillus species are great alternatives for the recombinant production of prokaryotic enzymes, achieving
levels of 20 g of protein per liter of media [26]. However, although some studies on the homologous or
heterologous overproduction of lipases have been reported by these industrial workhorses [27–29],
their ability to produce recombinant lipases is still a field that needs to be further explored.

Unlike esterases that preferentially hydrolyze "simple" esters and triglycerides composed by short
chain fatty acids (shorter than C6), lipases are mostly active against water-insoluble substrates, such as
triglycerides composed by long-chain fatty acids [30,31]. Consequently, lipases have specific kinetic
properties, which are related to their catalytic site conformation conferred by a flexible subdomain lid
or flap located over the active site. In the presence of insoluble substrates, this structure undergoes a
structural change-called interfacial activation [32]-conferring an open conformation to the catalytic site
and increasing the lipase activity. In a more aqueous condition, the lid assumes a closed structure,
making the lipase inactive [33]. Lipases, in general, act in a wide range of pH conditions. Typically,
bacterial lipolytic enzymes tend to act in alkaline pH conditions, while fungal lipases prefer acidic
conditions [34]. Apart from those aspects, lipases can be investigated based on their substrate selectivity,
including regio- and enantioselectivity, which makes these enzymes excellent choices for the production
of enantiopure compounds with high added value [35].

Although lipases have tremendous potential industrial use, they often need to have their properties
improved due to the biocatalytic bioprocess requirements. Therefore, using techniques, such as site
directed mutagenesis based on rational design, different mutants can be constructed showing improved
thermal stability, tolerance against organic solvents and optimized selectivity [36,37]. This is due to
the necessity to achieve optimal performance in different industrial fields, and to effectively catalyze
synthetic reactions in micro-aqueous conditions where organic solvents are required. In addition,
directed evolution techniques can be applied to improve lipase properties [38,39].

In this review, we will focus on different aspects of recombinant lipases, addressing bottlenecks
in enzyme production, engineering, immobilization and application in the pharmaceutical industry.
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There is major focus on the limitations and strategies used to overcome drawbacks found in lipase use
reported in recent investigations.

2. Production of Lipases

2.1. Microbial Sources of Lipases

Lipases are found in microorganisms, including bacteria, yeasts and filamentous fungi. Compared
to animal sources, including pancreatic lipases, and plant lipases, for instance from Carica papaya and
seeds, microbial lipases have been more exploited due to the necessity of simple and inexpensive
culture media, practical handling, possibility of scale-up cultivations, and availability of various tools
for genetic and protein engineering. The existence of profound knowledge regarding their genetics
and physiology (especially for model organisms such as E. coli, K. phaffii and Saccharomyces cerevisiae)
makes them important candidates for lipase production [40,41].

Most lipases investigated are from bacterial sources, such as enzymes from the genera Bacillus,
Geobacillus, Pseudomonas, Streptomyces, Burkholderia, Chromobacterium, Achromobacter, Arthobacter and
Alcaligenes [41,42]. Among them, Bacillus lipases are the most explored enzymes, having stable activity
at high temperatures in a broad range of pH conditions, besides their tolerance to organic solvents [41].

From an industrial perspective, however, lipases produced by yeasts and filamentous fungi are
more attractive as they can be obtained in high concentrations and have unique properties regarding
thermal stability and substrate specificity [34,40]. Lipases from Candida, Geotrichum, Trichosporon,
Yarrowia, Aspergillus, Penicillium, Rhizopus, Rhizomucor and Thermomyces stand out as the most important
enzymes of fungal origin [42,43]. Some of them have been optimized for better industrial properties
and are available commercially, such as the lipase B (CALB) from Candida antarctica (Novozym® 435
and NS 88011), Lipozyme® TL IM from Thermomyces lanuginosus (Novozymes, Copenhagen, Denmark),
Novozym® 40,086 from Rhizomucor miehei, and Lipase FE-01 from A. oryzae (ASA Spezialenzyme
GmbH, Wolfenbüttel, Germany) [44].

Microorganisms that grow in environments with extreme pH, salinity and temperature conditions
are also important sources of lipases with industrial potential. Unfortunately, they may not be easy to
propagate at laboratory conditions and their lipases may therefore be more difficult to recruit for human
use. Extremophile bacteria, such as thermophiles and psychrophiles, found in hot springs, deep sea
sediments and extremely cold spots, such as Antarctica, can survive in those hostile environments
and produce diverse lipases with unique tolerance properties. The lipases from extremophiles have
been the subject of many studies [44–46], and, according to the Genomes OnLine Database, there are
currently 1364 metagenomics studies of environmental samples covering more than 10,000 strains
(https://gold.jgi.doe.gov/). Those data bring evidence of the great potential of the uncultured microbial
communities as sources for prospecting new lipases with catalytic activity for a broad array of substrates,
as well as being pH and temperature tolerant. We envision that codon optimized lipase genes from these
sources will be systematically screened in heterologous hosts to deliver novel industrially important
lipases in the future.

2.2. Production of Recombinant Lipases

When the natural lipase producer can be efficiently propagated in a bioreactor, homologous
expression is an option. In this case, the process is often more straight forward as the production of the
lipase may already be naturally optimized. Higher lipase yields are often desirable, and this can be
achieved by using stronger promoters to drive the lipase gene. Moreover, the host can be equipped
with additional lipase gene copies via plasmids containing the lipase gene or by inserting lipase genes
into the genome. To this end, there are a few studies on the production of recombinant lipases via
homologous expression in the bacteria Serratia marcescens [47] and Burkholderia cepacia [48,49], and in
the filamentous fungus A. niger [27].

https://gold.jgi.doe.gov/
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However, native lipases may not be suitable for industrial applications, as they might not meet the
technical requirements of the scale-up process, including fast growth, high levels of protein production,
or optimal physiological properties required in bioreactors. Hence, heterologous expression is an
alternative by using known efficient hosts. Technically heterologous expression systems comprise
basically three steps: (i) cloning of the gene of interest in a vector having a selection marker,
(ii) transformation of the host strain with the constructed plasmid, and (iii) expression of the gene
of interest under the control of an inducible or constitutive promoter and a known terminator.
The biological systems used for gene expression include prokaryotic and eukaryotic hosts, such as
E. coli and K. phaffi, respectively [41,43,44]. Heterologous expression has also been the choice of many
studies of recombinant lipases produced by uncultured microorganisms from extreme environmental
conditions. Their lipases encoding genes can be isolated and expressed in heterologous expression
systems by the construction of functional metagenomics libraries [50–52]. Functional metagenomics
has the advantage of not requiring either individual genome sequencing or the cultivation of unknown
producer microorganisms. For more metagenomics studies of lipases with biotechnological potential,
Almeida and collaborators [52] provide an interesting review.

Regarding regulatory mechanisms of lipase biosynthesis, it has been observed that they broadly
vary in different microorganisms. In the case of Calvatia [53], Rhizopus [54], Aspergillus [55],
and Rhodotorula [56], apparently, lipase production is constitutive and independent of the addition
of lipids, despite the fact that their presence enhanced the levels of lipase produced. Conversely,
the literature suggests that long-chain fatty acids - for instance oleic acid - participate in lipase expression
in Geotrichum candidum, by controlling induction in the transcription level [57]. Concerning carbon
sources, in Fusarium sp., carbohydrates have been described as repressors of lipase production [58].
Interestingly, in terms of comparison, the expression levels of lipase genes in some organisms, including
K. phaffii and Aspergillus, can be hundreds of times higher than that in the native host, resulting in levels
even greater than grams per liter [59–61].

In addition to the construction of strains for overproduction of recombinant lipases,
the fermentation conditions should be optimized in order to reach cost effective yields of productivity.
The most relevant parameters are pH, temperature, nutrients (carbon and nitrogen sources and salts),
oxygen and agitation. In recent decades, the use of multivariate analytic tools—i.e., response surface
methodology (RSM), has allowed for the optimization of lipase production by investigating different
parameters simultaneously, which allows higher yield levels compared to univariable studies [35].
A lipase from Bacillus sp. was heterologously produced in E. coli and the authors screened different
media and observed that, when E. coli was cultivated in Nutrient Broth, maximum extracellular lipase
was achieved. The influence of lipase was also improved by the addition of surfactants that might help
the lipase to stay in soluble form even at high concentration. The combination of optimized host, vector,
surfactant and media resulted in an 18 fold increase in lipase production (214 units/mL) [62]. Another
study investigated the optimal conditions for an Acinetobacter haemolyticus lipase production in E. coli.
The authors observed a 70% improvement using the following optimal conditions: OD600 equal to 0.6
(before induction), IPTG (Isopropyl β-d-1-thiogalactopyranoside) equal to 0.5 mmol/L, post-induction
temperature equal to 40 ◦C, and post induction time equal to 16 h [63].

The use of low-cost components, mainly agro-industrial wastes, for recombinant lipase production
could be a good alternative to decrease lipase production costs. Nooh et al. [64] optimized the
production of a lipase from Geobacillus sp. in E. coli after cultivation in low cost substrates using RSM.
A maximum activity of 164.37 U/mL was achieved using 1.0 g/L of molasses, 2.29 g/L of fish waste,
3.46 g/L of NaCl, and 0.03 mM of IPTG.

Besides the nutrient composition of the cultivation media, the fermentation modes are also
extremely important for scaling up recombinant lipase production. They include batch, fed-batch,
and continuous cultivation systems. Robert et al. [65] assessed fed-batch operational modes for
producing the recombinant lipase B from Candida antarctica under the constitutive promoter PGK in
K. phaffii. More specifically, the continuous mode was proven to be more effective in the long run.



Catalysts 2020, 10, 1032 5 of 33

It was estimated that using continuous mode, CALB production was almost six times greater than with
the fed-batch after six weeks of cultivation. Figure 1 illustrates sequential approaches for recombinant
lipase production.
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2.2.1. Prokaryotic Expression Systems

E. coli is by far the most used prokaryotic microorganism for recombinant production of lipases,
followed by the Gram-positive soil bacterium B. subtilis. Hence, according to Borrelli and Trono [42],
E. coli represents 50% of the total heterologous production of lipases by eukaryotic and prokaryotic
hosts. This dominant position in the production hierarchy has been earned by the more than 40 years
of intensive use as production host and the even longer record of serving as one of the most important
biological model organisms. As a result, E. coli is likely the best understood organism on the planet
with a superior genetic toolbox and profound insights into its genetics and physiology. Together,
these advantages have been used to construct highly efficient E. coli based cell factories for heterologous
protein production, and there are examples where the new protein constitutes 30% of the total
intracellular content of proteins. Moreover, E. coli based processes are typically easy to manipulate and
scale-up due to consolidated methodologies of fermentation, cloning and expression with different
strains, protocols and studies available. Many strategies are available to optimize a production process.
For example, in the context of recombinant lipases, purification can be simplified by fusing the lipase
gene to sequences encoding signal peptides (PelB and OmpA) as they will direct the proteins to
the periplasmic space. Moreover, yields of soluble protein may be increased by co-expression with
chaperones (GroES, GroEL and ClpB). In the first case, the enzyme could be recovered by ultrasonication
or other cell lysis processes. The co-expression with chaperones enables the correct folding of the
lipase, increases its solubility and decreases protein aggregation. Molecular chaperones are included
in a family of unrelated classes of protein that mediate the correct assembly of other polypeptides—i.e.,
correct folding [66].

The major limitations of using E. coli as an expression host include its inability to secrete large
amounts of proteins or to perform post-translational modifications (PTMs)—i.e., protein glycosylation.
However, E. coli is a suitable host organism for bacterial lipases, such as from the genera Pseudomonas,
Bacillus, Staphylococcus, Serratia, Burkholderia, and from metagenomic libraries. Furthermore, E. coli has
been explored in studies of the biochemical characterization of lipases produced by previously identified
microorganisms [63,67] or uncultured strains discovered by metagenomics [68,69]. Table 1 shows
different lipase sources, prokaryotic expression systems and lipase properties.
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Commercial lipases are mostly obtained from mesophilic organisms that grow at temperatures
between 20 and 45 ◦C. However, extremophile microorganisms—psychrophiles (<20 ◦C) and
thermophiles (>40 ◦C)—have drawn attention as natural lipase sources due to the outstanding
properties of their enzymes, especially related to thermal stability, pH and tolerance to high salt
concentrations [44,70]. These lipases might be identified and characterized through the construction
of metagenomics libraries, and heterologous expression, followed by screening. Activity assays are
also conducted in the presence of detergents, organic solvents and enzyme inhibitors to evaluate their
industrial potential as biocatalysts. Sahoo and collaborators [68], for example, have investigated the
metagenomics of samples harvested from hot springs (Table 1). After the selection of the best clones,
the lipase RK-lip479 was cloned and expressed in the strains E. coli DH5α and E. coli BL21 (DE3),
respectively. The lipase was expressed intracellularly, had maximum activity at 65 ◦C and pH 8.0, and
maintained 89, 92 and 60% of its activity after 6 h at 55, 65 and 75 ◦C [68]. Similarly, the thermostable
lipase BaG7Lip from B. amyloliquefaciens G7 was isolated from hot spring samples, cloned and expressed
in E. coli BL21-Star (DE3) (Table 1) [71]. In that study, the lipase gene without its signal peptide sequence
was fused to a His-tag, purified from the intracellular environment, and showed optimal temperature
at 50 ◦C and pH 8.0. An activity improvement of 15% was observed with 30% acetone and glycerol [71].

Salwoom and collaborators [72] conducted a study of expression and biochemical characterization
of a recombinant lipase from a previously isolated Pseudomonas sp. strain from Antarctica (Table 1).
The lipase LSK25 was cloned and expressed in E. coli BL21 (DE3). The enzyme was stable in a range
of 5–30 ◦C and pH 6–8. Among the several metal ions evaluated, only Ca2+ ions increased the
lipase activity. Supplementation of 1 and 3–5 mM Ca2+ enhanced the lipase activity in 50 and 150%,
respectively, confirming the activation of this lipase by Ca2+ ions, as happens with other cold-adapted
lipases as well [72]. The lipase LSK25 activity was further boosted up to three times in organic solvents,
namely toluene, xylene, n-hexane, n-heptane and n-hexadecane. Higher activities were shown for
long chain fatty acids contained in coconut oil and rice bran oil, and also for pNP-C12 synthetic ester.
The authors proposed the application of the lipase LSK25 in the food, agrochemical and pharmaceutical
industries [72].

The co-expression of the lipase gene with chaperones could be a reliable tool for obtaining the
overproduction of recombinant lipases. Alnoch and collaborators [73], for example, co-expressed the
lipase LipBC and its foldase LifBC genes from the Gram-negative bacterium Burkholderia contaminans
LTEB11 (Table 1). E. coli BL21 (DE3) strain was used as expression host and the best lipolytic activity
was verified with the co-expression of the N-terminal truncated lipase gene with the full-length foldase
gene. This combination resulted in an activity of 127 U/mL against olive oil. Interestingly, no lipolytic
activity was found when the lifBC gene was not expressed, showing that this foldase plays a key
role in lipase conformation and function [73]. Although only the lipBC gene was fused to a His-tag,
both proteins were purified in a single affinity chromatography step, which could be attractive from
an industrial perspective. The foldase LifBC must have formed a complex with the lipase LipBC,
which was bound to the column, through a hydrophobic interaction between them. The complex
formed, rLipBC, had maximum specific activity of 1426 U/mg towards tributyrin, and maintained a
high conversion rate (>80%) of ethyl-oleate in n-hexane over five reaction cycles of 6 h at 45 ◦C, when it
was immobilized on a hydrophobic support (Sepabeads™ FP-BU) [73].
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Table 1. Prokaryotic systems used for heterologous and homologous production of lipases. The main characteristics of recombinant lipases are also depicted.

Enzyme Enzyme Source Expression Vector
(Expression Host)

Cloning Vector
(Recipient Strain) Expression Vector Molecular Mass

(kDa)

Optimal
Temperature

and pH
Thermal Stability Additional Remarks Ref.

Lipase KV1 Acinetobacter haemolyticus E. coli BL21 (DE3) pGEM-T Easy
(E. coli JM109) pET-30a (+) 39 40 ◦C, 8.0 T1/2 −40 ◦C, 24 h

Optimization of production conditions
using response surface

methodology (RSM)
[63]

Lipase BaG7Lip Bacillus amyloliquefaciens G7 E. coli
BL21-Star (DE3)

p15TV-L (E. coli
BL21-Star (DE3)) p15TV-L 26 50 ◦C, 8.0

Remaining activity of
~85% at 50 ◦C for

250 min

Construction of metagenomics
libraries + prediction of the best

producing conditions using a Boolean
network analysis. Activity

enhancement with acetone, glycerol
and K+ ions.

[71]

Lipase LipBC (LipA)
+ foldase LifBC (LipB)

Burkholderia contaminans
LTEB11 E. coli BL21 (DE3) -

pET28a(+) and pT7-7
for LipA and LipB,

respectively

36 (LipA), 37 (LipB)
and 66 (complex

LipA–LipB)

25–45 ◦C,
6.5–10.0 T1/2 −50 ◦C, 1.5 h

Co-expression of lipase and chaperone
genes. Specific activity of 1426 U/mg

(tributyrin); > 80% conversion of
ethyl-oleate in n-hexane over five

reaction cycles of 6 h at 45 ◦C.

[73]

Cholesterol esterase +
foldase

Burkholderia stabilis
FERMP-21014

E. coli BL21 (DE3),
E. coli Rosetta (DE3)

and B. stabilis

E. coli DH5α and
JM109

pET26b(+),
pET39b(+),

pET40b(+), pBBR122
- - -

Promoters screening by RNA-Seq +
co-expression of lipase and foldase +

heterologous and homologous
expression. Recombinant activity was
243 fold higher than the WT without
oleic acid; B. stabilis system was more

efficient to produce esterase.

[67]

Lipase LipBT and
foldase LifBT Burkholderia territorii GP3

E. coli DH5α, E. coli
DH10β, E. coli BL21
(DE3) pLysS, E. coli
Origami B, E. coli

Shuffle B, and E. coli
SHuffle K

pGEM-T Easy (E. coli
DH5α), pET15b
(E. coli DH10β)

pGEM-T Easy and
pET15b 30 80 ◦C, 11.0 T1/2 −70 ◦C, 30 min,

pH 8.0

Metagenomics for screening and
identification of lipolytic strains +
evaluation of the best expression
systems. Higher lipase activity in
E. coli BL21 (DE3) pLysS (pET15b)

(6.73 ± 0.24 U/mg); optimum substrate
pNP-C10; activity enhancement in

n-hexane, Triton X100, and Ca2+ and
Mg2+ ions.

[74]

Lipase Ca-Est Clostridium acetobutylicum
(ATCC 824) E. coli BL21 (DE3) pMCSG7

(E. coli DH5α) pMCSG7 29 60 ◦C, 7.0
Remaining activity of

~70% at 30 ◦C for
300 min

Rational design + docking analysis +
site-directed mutagensis. Activity

enhancement with methanol; residues
Ser89 and His224 are crucial

for catalysis.

[75]

Lipase Lip3 Drosophila melanogaster E. coli BL21 (DE3) - pETMCSIII 43 -
T1/2 −37.3 ◦C (WT)

and 52.9 ◦C (R7_47D)
after 45 min

Directed evolution + error-prone PCR
+ construction of variant libraries.

R7_59A mutant activity was higher
than the WT towards tributyrin,

glyceryl trioctanoate, coconut oil,
glyceryl trioleate and pNP (pNP-C3,

pNP-C8, pNP-C16, pNP-C18)
substrates; 57_59A activity

enhancement of 228 fold compared to
the WT using pNP-C8 substrate.

[76]



Catalysts 2020, 10, 1032 8 of 33

Table 1. Cont.

Enzyme Enzyme Source Expression Vector
(Expression Host)

Cloning Vector
(Recipient Strain) Expression Vector Molecular Mass

(kDa)

Optimal
Temperature

and pH
Thermal Stability Additional Remarks Ref.

Lipase HT1-5M Geobacillus zalihae E. coli BL21
(DE3)pLysS

pUC57 and pGEX-4T1
(E. coli TOP10) pLysS 44 70 ◦C, 9.0 Stable at 30–60 ◦C for

30 min

Rational design + molecular dynamics
(MD) + site-directed mutagenesis.

Activity enhancement with Ca2+ ions;
more stable in DMSO, n-hexane, and

n-heptane with Ca2+ ions.

[77]

Lipase GnMgl Glaciecola nitratireducens
FR1064T E. coli BL21 (DE3) - pET22b 39 30 ◦C, 9.0

T1/2 −35 ◦C, 30 min;
lipase retained 30%

activity at 0 ◦C

Site-directed mutagenesis. Higher
activity towards monoacylglycerols

C12:0 and C14:0, pNP-C6 and pNP-C8,
and tributyrin; tolerance to 3.5 M

NaCl; improved activity with
detergents and organic solvents;

mutation of residues Ser156, Asp290,
or His318 fully disrupted the

lipase activity.

[78]

Lipase LipPN1 Proteus sp. NH 2-2 E. coli BL21 (DE3) - pET-28a(+) 31 40 ◦C, 9.0

Remaining activity of
61.75% (40 ◦C),

58.30% (50 ◦C) and
19.63% (60 ◦C) after

30 min

Site-directed mutagenesis. Highest
activity towards pNP-butyrate (pH 9.0,

40 ◦C); activity enhancement with
acetone and ions Ca2+, Mn2+ and

Mg2+; rLipPN1 and rLipPN1_C85S
reached 1662 U/L and 1436 U/L,

respectively; 91.5% of soybean oil was
converted into biodiesel.

[79]

G55Y, T52Y and
AMS8 recombinant

lipases

Pseudomonas fluorescens
AMS8 E. coli BL21 (DE3) - pET32b - -

T1/2 −25 ◦C, 5 h +
37 ◦C, 5 h (AMS8);

25 ◦C, > 10 h + 37 ◦C,
> 9 h (T52Y); 25 ◦C,
2.5 h + 37 ◦C, 1.5 h

(G55Y)

Rational design + site-directed
mutagenesis. G55Y and T52Y lipases
had lower affinity by pNP-palmitate,

laurate and caprylate substrates
compared to WT AMS8 lipase;

efficiency of G55Y lipase was higher
than T52Y for pNPL and

pNPP substrates.

[80]

Lipase LSK25 Pseudomonas sp. LSK25 E. coli BL21 (DE3) pGEMT Easy (-) pET32b(+) 65 30 ◦C, 6.0 Stable at 5–30 ◦C and
at pH 6–8

Activity enhancement with Ca2+ ions;
activity boosted in toluene, xylene,

n-hexane, n-heptane and
n-hexadecane; higher activities
towards long chain fatty acids

contained in coconut oil and rice brain
oil, and pNP-C12.

[72]

Lipase RK-lip479
Uncultured

microorganism isolated
from hot springs

E. coli BL21 (DE3) pUC19 (E. coli DH5α) pETite C-His Kan 42 65 ◦C, 8.0

Remaining activity of
89, 92 and 60% after

6 h at 55, 65 and
75 ◦C, respectively

Construction of metagenomics
libraries. Remaining activity of 50%

after 72 h in 25% (v/v) methanol;
maximum activity towards pNP-C12;
activity enhancement with DMSO and

DMF; yield of biodiesel production
was 40–76%.

[68]
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Table 1. Cont.

Enzyme Enzyme Source Expression Vector
(Expression Host)

Cloning Vector
(Recipient Strain) Expression Vector Molecular Mass

(kDa)

Optimal
Temperature

and pH
Thermal Stability Additional Remarks Ref.

Lipase RPK01
Uncultured

microorganism isolated
from hot springs

E. coli BL21 (DE3) pGEM-T Easy (E. coli
DH5α) pET23(+) 24 40 ◦C, 8.0

Stable at 30 ◦C after
3h; remaining activity

of ~50% at 50 and
60 ◦C up to 3 h

MD simulations. Preference for
pNP-decanoate substrate, specific
activity 6.2 ± 0.065 U/mg, activity

improvement with Ca2+ ions, Tween
20 and Triton X-100; tolerance to 1%

methanol and n-hexane.

[69]

Lipase CALB Candida antarctica Corynebacterium
glutamicum MB001

pEC-CALB and
pEC-H36-CALB
(E. coli DH5α)

pEC-CALB and
pEC-H36-CALB 33 40 ◦C, 9.0

Stable at 30–50; lipase
activity was reduced

to 60% at ≥ 60 ◦C

Activity inhibited by 31% with
10 mM MgSO4. [81]



Catalysts 2020, 10, 1032 10 of 33

2.2.2. Eukaryotic Expression Systems

The main studied and used eukaryotic expression systems are the yeasts K. phaffii, S. cerevisiae,
Y. lipolytica, and the species of filamentous fungus Aspergillus that represent nearly 35, 8, 1 and 3% of
all heterologously produced lipases, respectively [42]. These microorganisms are not only efficient
producers, but some have the status of being generally recognized as safe (GRAS) (S. cerevisiae,
Y. lipolytica, A. niger and A. oryzae). Proteins produced in eukaryotic cells can undergo a series of PTMs
that can affect their chemical and physical properties [82]. Such modifications can increase protein
solubility, stability and secretion rate. In industry, fungal lipases have gained attention because of
their stability under different conditions and substrate specificity. Moreover, extraction procedures are
simpler in comparison to bacterial lipases due to their extracellular character [34]. Table 2 summarizes
different eukaryotic sources of lipases, expression systems and properties.
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Table 2. Eukaryote systems used for heterologous production of lipases. The main characteristics of recombinant lipases are also depicted.

Enzyme Enzyme Source Expression Vector
(Expression Host)

Cloning Vector
(Recipient Strain)

Expression
Vector

Molecular
Mass (kDa)

Optimal
Temperature

and pH

Thermal
Stability Additional Remarks Ref.

Lipase
MAS1

Marine
Streptomyces sp.

strain W007
K. phaffii X-33 pPICZαA

(E. coli DH5α) pPICZαA 30 25 ◦C, 8.0 -

PDI co-expression gives 1.7 fold
increase in lipase expression.

The highest lipase production
was achieved at pH 6.0 and at 24
◦C with an activity of 440 U/mL.

[83]

r27RCL Rhizopus chinensis K. phaffii GS115 pPIC9K pPIC9K 37 37 ◦C, 8.0 -

PDI co-expression gives 1 fold
increase. The highest lipase

activity reached 355 U/mL with
one copy of PDI and five copies

of r27RCL gene.

[84]

CALB Candida antarctica K. phaffii GS115 pPICZαB (E. coli
TOP10F’) pPICZαB 33 40 ◦C, 7.0 -

Combinatorial overexpression of
Ydj1p-Ssa1p resulted in the

highest fold increase, 2.5.
Individual overexpression of

Ydj1p, Ssa1p and Sec63p
increased CALB expression level

by 1.6, 1.4 and 1.4 fold,
respectively. Co-expression of

Ydjlp-Sec63p Kar2p-Ssalp,
Kar2p-Sec63p, resulted in 1.5, 1.5

and 1.5 fold increase,
respectively. Kar2p-Ydj1p
combination resulted in

decreased CALB secretion.

[85]

CALB Candida antarctica K. phaffii X-33 and
M12 (leu2)

E. coli Stellar™ and
XL10-Gold®

pBluescript II SK
pPGK∆3PRO_LIPB 33 40 ◦C, 7.0

Remaining
activity of 15%
at 70 ◦C after

20 min

Strain with three copies achieved
48.760 U/L enzyme yield, 2.3 fold
higher than the one-copy strain.

[65]

ROL Rhizopus oryzae K. phaffii GS115 pPICZα and pAO815
(E.coli Top10 cells) pPICZα-ROL 35 35 ◦C, 8.0 -

Strain with five copies resulted
in 8 fold increase in ROL

expression. Co-expression of
both genes Ubc1 and Hrd1

resulted in.54.2% higher ROL
activity, 4750 U/mL.

[86]

ROL Rhizopus oryzae K. phaffii X-33 pPICZFLDαROL 35 30 ◦C, 7.25 -

pFLD gave a 1.9 fold increase
compared to pAOX1. The best
ROL production strategy with

the PFLD-based system is a
fed-batch induction phase with a

constant sorbitol excess.

[87]
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Table 2. Cont.

Enzyme Enzyme Source Expression Vector
(Expression Host)

Cloning Vector
(Recipient Strain)

Expression
Vector

Molecular
Mass (kDa)

Optimal
Temperature

and pH

Thermal
Stability Additional Remarks Ref.

FSL Fusarium solani K. phaffii X-33
pPICZαA and

pGAPZαA (E. coli
DH5α)

pPICZαA-FSL
and

pGAPZαA-FSL
30 35 ◦C, 7.0

Remaining
activity of 96%
at 20 ◦C and
81% at 25 ◦C
after 30 min

Strain expressing pGAPZαA-FSL
produced the highest specific

lipase activity, 18.81 ± 1.98 U/mg,
in 3 days of cultivation time.

Lipase activity was enhanced by
Mn2+, Ba2+, Li+, Ca2+, Ni2+,

CHAPS and Triton X-100 but was
inhibited by Hg2+, Ag+ and SDS.

[88]

CALB Candida antarctica K. phaffi GS115 and Y.
lipolytica RIY368 E. coli

K. phaffii (pIB4,
promoter pAOX1,
HIS4 marker) and

Y. lipolytica
(JMP4266,
promoter

pEYK1-A3B,
URA3 marker)

33 40 ◦C, 7.0 -

The lipase activity after 72 h
cultivation was for Y. lipolytica
strain RIY368 5540 U/mg dcw
and for K. phaffii strain RIY311

1066 U/mg dcw. For Y. lipolytica,
the lipase activity increased

during the growth phase,
whereas for P. pastoris it

increased both during growth
and stationary phase.

[89]

Lipase
with

accession
no.

AF054513

Thermomyces
lanuginosus A. niger NW297 - pBOEL960-24 30 30 ◦C, 7.5 -

During chemostat cultivations,
the maximal lipase production

was observed during sporulation.
The heterologous TAKA amylase
promoter from Aspergillus oryzae

was demonstrated to express
high levels of lipase in A. niger.

[90]

Lipase
lip A. niger T. reesei Tu6 strain

pBluescript II SK(+)
and pMD18-T Simple

(E. coli DH5α)

pSKpyr4 and
pSK-lip 30 45 ◦C, 7.5 -

All cph1 gene silencing
transformants expressed higher

levels of lipase and less cbh 1
transcript than the reference

strain, approximately lower than
2%. The RNAi mediated gene

silencing of cbh 1 did not
negatively affect the lipase

transcript abundance.

[91]

TDL Thermomyces
dupontii K. phaffii X33 pPICZαA (E. coli Top

10) PICZαA–tdl-opt 30 and 38
(N-glycosylation) 60 ◦C, 9.5 -

Of 15 methanol-inducible
promoters, the highest TDL
activity was achieved with

pFLD1 (27.076 U/mL), whereas
of nine constitutive promoters,

pGCW14 gave the highest
activity (17.353 U/mL).

[92]
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K. phaffii is a methylotrophic yeast, which is able to express and produce lipases under the control
of methanol-responsive alcohol oxidase promoters. It naturally secretes low amounts of proteins
in the extracellular medium, but high levels of secreted recombinant lipase can be achieved using
methanol as an inducer. This special characteristic makes the lipase purification step easier and
cost-effective. In addition, K. phaffii has a number of advantages in comparison to higher eukaryotes.
It is a single-celled microorganism, which is easy to genome engineer and it only requires simple culture
conditions. It performs many PTM modifications typical for higher eukaryotes, such as disulfide
bond formation, glycosylation, proteolytic processing and appropriate folding. Consequently, it can
result in a higher degree of biological active lipases in comparison to bacteria [93]. Compared to
S. cerevisiae, by using K. phaffii as the production host, the enzyme can be produced in the intracellular
space, secreted to the extracellular broth or displayed at cell surface with a reduced hyperglycosylation
level [42,43,50]. Moreover, in comparison to S. cerevisiae, K. phaffii can be produced in higher cell
densities than S. cerevisiae, resulting in a higher protein productivity. K. phaffii also has low nutritional
requirements because it is adapted to catabolize raw carbon and nitrogen sources. Those properties
can potentially reduce production costs since these nutrient sources can be found in many industrial
by-products. There are several reported strategies to increase the production and secretion of different
lipases in K. phaffii. Examples and descriptions of some of the most applied strategies are presented in
the paragraphs below.

Promoters play an important role in the first step of setting up a cell factory for effective production
of a desired protein. Different types of promoters, such as inducible and constitutively active ones,
are available for heterologous gene expression in K. phaffi [94]. One of the most commonly used
promoters is the inducible alcohol oxidase 1 gene promoter (pAOX1). The enzyme expressed by the
pAOX1 is responsible for the conversion of methanol to formaldehyde, which is the first reaction
in the metabolism of methanol. The promoter is tightly regulated by the presence of repressing
carbon sources, such as glucose, glycerol and ethanol. To become fully activated, it requires the
presence of methanol [95]. The pAOX1-based protein expression system can be easily applied to
control bioreactor cultivations. The tight regulation by the repressing carbon source can enable cell
growth to high densities prior to heterologous protein production. However, on an industrial scale
this system is hazardous because methanol is a flammable chemical. For that reason, there have
been attempts to identify or create promoters that achieve equal or even better protein yields [94,96].
Another inducible promoter that has shown promising results is the formaldehyde dehydrogenase
1 gene promoter (pFLD). The formaldehyde dehydrogenase 1 enzyme is involved in both methanol
metabolism and in the assimilation of some amines (ex. methylamine) as a nitrogen source. pFLD can
be activated by methanol or methylamine and, similar to pAOX1, be repressed by some carbon sources.
Cultivations using sorbitol as carbon source and methylamine as nitrogen source demonstrated that
sorbitol did not repress the expression of enzymes involved in methanol metabolism, as formaldehyde
dehydrogenase 1 [87].

It should be considered that inducible promoters require longer fermentation runs due to the
induction step. Therefore, constitutive promoters may serve as a tool to create more cost-effective
fermentation cultivations. One promoter that has been applied successfully to lipase production is
the glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP). Since it is a strong constitutive
promoter, no induction step is required, resulting in simpler and shorter fermentation cultivations.
The expression of Fusarium solani NAN103 lipase (FSL) under pGAP or pAOX1 showed that pGAP-FSL
produced the highest specific lipase activity and, in addition, there was a two-day reduction in
the cultivation time [88]. Many promoters with different strengths and properties are available for
expression in K. phaffii. Testing different types of promoters for constructing a specific protein cell
factory is a good starting point for the further development and optimization of the heterologous
expression system. With respect to lipase production, a promoter that gives good yields for one enzyme
will not necessarily give the best results for another [92].
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In most cases, increasing the copy number of a desired gene enhances the expression of the
recombinant protein. In K. phaffi, the production of the lipase CALB was improved 2.3 fold by increasing
the copy number to three. In this experiment, a defective marker approach was applied based on the
leucine marker leu2-d, in which multiple copies were necessary to reach a state of prototrophy [65].
However, in some cases a high gene dosage can negatively affect the production because the secretory
pathway may become overwhelmed by the effects of high levels of recombinant protein that need to be
correctly folded [97]. When R. oryzae ROL was expressed in up to eight copies, the best results were
achieved with the strain harboring five copies, with a fold increase of eight. Since strains harboring
more copies produced lower levels of ROL, these strains may have potentially produced unfolded
proteins that lead to ER stress and the activation of the unfolded protein response (UPR) [86]. Therefore,
it is important to adjust the copy number by taking into account the protein folding capacity of the host.

Even though K. phaffii has the potential to fold lipases properly, the native system’s secretory
pathway may reach its full capacity. This might result in the accumulation of unfolded proteins in the
endoplasmic reticulum (ER) that will trigger the activation of UPR. In this case, the UPR functions
by reducing the translation of proteins, degrading misfolded proteins and increasing the production
of molecular chaperones involved in protein folding. There are many different types of chaperones
with various refolding and/or stabilization properties [98]. As an example, protein disulfide isomerase
(PDI) catalyzes the formation and breakage of disulfide bonds between cysteine residues, permitting
proteins to achieve their correct folding. Other chaperones, such as Kar2p, also known as binding
immunoglobulin protein (BIP) in mammals, play key roles in protein translocation through the ER.
BIP/Kar2p stabilizes immature proteins by binding to their hydrophobic amino acids, allowing the
protein to achieve its correct folding. Moreover, BIP/Kar2p prevents unfolded protein aggregation by
assisting in ER-associated degradation (ERAD).

The overexpression and co-overexpression of chaperones in K. phaffii have been demonstrated to
improve protein secretion and production yield [99]. The co-expression of PDI increased the production
of the MAS1 lipase from marine Streptomyces 1.7 fold. MAS1 was expected to have two pairs of
disulfide bonds and the higher levels of PDI were predicted to assist their formation [83]. Interestingly,
increasing the copy number of PDI does not always automatically increase the protein production
and secretion. Rhizopus chinensis lipase r27RCL was co-expressed with different copy numbers of PDI
in K. phaffii. PDI was expected to ease bottlenecks in the ER, since the crystal structure of the lipase
r27RCL revealed that it contains three disulfide bonds. One copy number of PDI resulted in a one fold
increase in enzyme activity, whereas two, three and four copies resulted in lower activity. The higher
copy number of PDI may reduce the availability of transcription and translation machinery for the
expression of the lipase gene [84].

The overexpression of different combinations of chaperones has also resulted in an increase in
lipase production. The production of the lipase CALB from C. antarctica was tested with the individual
overexpression of different chaperones (Ydj1p, Ssa1p, Sec63p, and Kar2) and with a combination of
them. The chaperones Ssa1p and Ydj1p stabilize the nascent peptide chain and help its translocation
into the ER. Sec63p binds to the translocation peptide and prevents it from moving backwards through
the ER channel. The best results were achieved with the combination of Ydj1p-Ssa1p, increasing the
production by 2.5 fold. This suggests that these chaperones interact synergistically by enhancing
protein folding, secretion and preventing protein aggregation. In contrast, a decrease in CALB was
observed with the expression of Kar2p. This could indicate that the excessive presence of Kar2p shifted
the ER balance towards the ERAD pathway, resulting in decreased CALB secretion [85].

Alternative Eukaryotic Hosts

Different hosts can provide a range of diverse properties, which may be better suited to a specific
cell factory design. For that reason, a lot of effort has been made in recent years to find other eukaryotic
hosts for lipase production. The yeast Y. lipolytica is considered a suitable production host because of
its expanding genetic tools for heterologous expression, and its ability to metabolize raw substrate and
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secrete protein in large amounts [100]. The comparison of CALB production by Y. lipolytica and K.
phaffii was performed by using well-characterized integration targets for both strains - the leu2 locus
in Y. lipolytica and the his4 locus in K. phaffii. CALB was expressed in Y. lipolytica under the control
of erythritol inducible promoter pEYK3AB and in K. phaffii under the methanol inducible pAOX1.
The results showed that, in Y. lipolytica, growth rate and detected CALB activity were higher than those
achieved in K. phaffii. The difference in growth rate has been suggested to be due to the loss of some of
the carbon source methanol, which can be converted directly to CO2 instead of biomass production in
K. phaffii. Interestingly, even though enzyme activity was higher in Y. lipolytica, the mRNA expression
levels of CALB encoding gene in K. phaffii were higher than in Y. lipolytica. Higher CALB stability with
suitable secretion levels may explain the better performance of Y. lipolytica [89].

The filamentous fungus A. niger represents an interesting alternative host because of its high
production yield of extracellular enzymes, non-toxicity, robustness and GRAS status [101]. However,
there are indications that lipase might not be secreted properly by A. niger. As an example, the production
of a lipase from T. lanuginosus (accession no. AF054513) resulted in only 1% of A. niger total cellular
protein because most of the lipase produced was attached to the mycelium [90].

Another promising fungal host for lipase production is Trichoderma reesei, with potential for
high protein secretion and a well-established fermentation platform. It also has a well-characterized
genetic toolbox and transformation can be achieved using selection markers and by stable integration
into the genome [102]. A drawback encountered with T. reesei as a lipase production host is that it
produces a high level of cellobiohydrolase I (CBHI) that represents approximately 50% of all proteins
secreted. The reduction in the unnecessary production of CBHI could result in improved levels of
heterologous expression. The RNAi mediated gene silencing of cbhI improved the production of the
lipase lip from A. niger in T. reesei, with an increase up to 3.2 fold. The reduction in CBHI enhanced
the availability of the protein folding and secretion machinery. Moreover, this strategy allowed the
host to still have CBHI present, thereby keeping the strain in a more natural state [91].

3. Lipase Characteristics and Engineering

3.1. Structural Characteristics of Lipases

Knowing and understanding the structure of an enzyme is of key importance not only to improve
enzyme production, but also mainly to provide information for protein engineering through site
directed mutagenesis. Regarding lipase structural features, they consist of a catalytically active core
domain (the α/β-hydrolase fold), similar to other hydrolases, containing the catalytic triad and the
oxyanion hole. They might also contain additional structural modules, such as a lid or flap-like
structure. Most of the lipases possess an active core domain predominantly composed of eight parallel
β strands forming a super-helically twisted central β sheet surrounded by a varying number of α
helices [103,104]. However, the number, as well as the organization of β strands, may still diversify.
For instance, Bacillus subtilis lipase lacked the β1 and β2 strands in the canonical fold [105]. In addition,
the first X-ray structure of a triglyceride lipase (Mucor miehei) was reported by Brady et al. [106].
Figure 2 illustrates the three-dimensional structure of two microbial lipases with the lid in open and
closed conformation.
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conformation (PDB access number 1CRL) and its α/β-hydrolase in a wheat tint exemplifies the lid in 
its closed conformation (PDB access number 1TRH). (B) Crystallographic structure of Rhizomucor 
miehei lipase with its α/β-hydrolase fold in gray exemplifies the lid in its open conformation (PDB 
access number 4TGL) and its α/β-hydrolase fold in cyan exemplifies the lid in its closed conformation 
(PDB access number 3TGL). The lids in both structures are in red. All figures were prepared using 
molecular visualization software, PYMOL. 
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catalytic triad of a G. candidum lipase is Ser-His-Giu, with glutamic acid replacing the common 
aspartate [107]. The central nucleophile residue is located within a conserved Glu-X-Ser-X-Glu motif 
[108]. The oxyanion hole is another important component involved in the catalytic efficiency of this 
enzyme, since it helps in stabilizing the transition state in the catalysis. During the catalytic process, 
a negatively charged tetrahedral intermediate is generated, and the oxygen ion thus formed is 
stabilized by the oxyanion hole amino acids. The oxyanion hole residues play an essential role in 
stabilizing this oxygen by hydrogen bonding. The catalytic region of lipases has one of the oxyanion 
hole’s residues positioned adjacent to the nucleophile amino acid serine, while the second residue is 
located between the β3 strand and α helix [104]. Lipases also possess a lid or flap-like structure, which 
is composed of one or more α helices of variable length. The binding pocket of lipases is present on 
the central β sheet, which can be a hydrophobic, crevice-like binding site located near the protein 
surface or funnel-like or tunnel-like binding sites. The lid domain involves specific interactions with 
the substrate and controls the inactive/active-form enzyme equilibrium [33]. 

3.2. Lipase Engineering 

Protein engineering is the process of customizing new enzymes with improved features by 
altering their primary amino acid sequences. Given the considerable diversity of possible alterations, 
this procedure has already produced remarkable results in the design of optimized lipases used in 
important industrial areas. Protein engineering strategies, such as rational design and directed 
evolution have led to interesting results in the improvement of different lipases. 

Engineering a protein by rational design uses prior knowledge of protein structure and in-depth 
computational modeling approaches to deliberately design new biocatalysts [109]. In part, the 
number of lipase structures deposited in the Protein Data Bank (PDB, https://www.rcsb.org/) and 
lipase sequences information in various databases has substantially facilitated the rational design of 
these proteins. Furthermore, many different types of modeling software have been created, which 
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Figure 2. Overview of the three-dimensional structure of two microbial lipases. (A) Crystallographic
structure of Candida rugosa lipase with its α/β-hydrolase fold in gray exemplifies the lid in its open
conformation (PDB access number 1CRL) and its α/β-hydrolase in a wheat tint exemplifies the lid in its
closed conformation (PDB access number 1TRH). (B) Crystallographic structure of Rhizomucor miehei
lipase with its α/β-hydrolase fold in gray exemplifies the lid in its open conformation (PDB access
number 4TGL) and its α/β-hydrolase fold in cyan exemplifies the lid in its closed conformation (PDB
access number 3TGL). The lids in both structures are in red. All figures were prepared using molecular
visualization software, PYMOL.

The catalytic mechanism of lipases is based on a catalytic triad made up of a nucleophile
amino acid (Ser), an acid (Asp or Glu), and a His. The catalytic triad containing Asp is known
in enzymes, such as proteases. Interestingly, however, different from the other lipases and serine
proteases, the catalytic triad of a G. candidum lipase is Ser-His-Giu, with glutamic acid replacing the
common aspartate [107]. The central nucleophile residue is located within a conserved Glu-X-Ser-X-Glu
motif [108]. The oxyanion hole is another important component involved in the catalytic efficiency
of this enzyme, since it helps in stabilizing the transition state in the catalysis. During the catalytic
process, a negatively charged tetrahedral intermediate is generated, and the oxygen ion thus formed
is stabilized by the oxyanion hole amino acids. The oxyanion hole residues play an essential role in
stabilizing this oxygen by hydrogen bonding. The catalytic region of lipases has one of the oxyanion
hole’s residues positioned adjacent to the nucleophile amino acid serine, while the second residue
is located between the β3 strand and α helix [104]. Lipases also possess a lid or flap-like structure,
which is composed of one or more α helices of variable length. The binding pocket of lipases is present
on the central β sheet, which can be a hydrophobic, crevice-like binding site located near the protein
surface or funnel-like or tunnel-like binding sites. The lid domain involves specific interactions with
the substrate and controls the inactive/active-form enzyme equilibrium [33].

3.2. Lipase Engineering

Protein engineering is the process of customizing new enzymes with improved features by
altering their primary amino acid sequences. Given the considerable diversity of possible alterations,
this procedure has already produced remarkable results in the design of optimized lipases used
in important industrial areas. Protein engineering strategies, such as rational design and directed
evolution have led to interesting results in the improvement of different lipases.

Engineering a protein by rational design uses prior knowledge of protein structure and
in-depth computational modeling approaches to deliberately design new biocatalysts [109]. In
part, the number of lipase structures deposited in the Protein Data Bank (PDB, https://www.rcsb.org/)
and lipase sequences information in various databases has substantially facilitated the rational design

https://www.rcsb.org/
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of these proteins. Furthermore, many different types of modeling software have been created,
which makes this methodology easier to use and enhances the success rate of modeling predictions.
Usually, the information derived from computer modeling identifies certain amino acids (hot-spots)
that should be altered to lead to a change in the lipases’ properties. By using computational
predictions, Mohammadi et al. [110] constructed four mutants of S. marcescens lipase. The MutG2P
and MutG59P mutants showed higher catalytic efficiency and thermal stability than the wild-type
(WT) enzyme. Furthermore, other computational approaches have been developed to predict the
effects of mutations on lipases. Li et al. [37] used a strategy denoted as RIF that consists of three
computational methods—i.e., Rosetta ddg monomer, I Mutant 3.0, and FoldX—to rationally design
and optimize the thermal stability of R. miehei lipase. The most stable mutant, harboring the mutations
T18K/T22I/E230I/S56C-N63C/V189C-D238C, exhibited a 14.3 ◦C higher melting temperature and a
12.5 fold increase in half-life at 70 ◦C. Kim et al. [111] selected different mutants of CALB based on the
B-factor value of amino acid residues and computational modeling by RosettaDesign. The melting
temperature of the mutant R249L was increased by 2.3 ◦C compared to that of WT CALB. Moreover,
the rational strategy was applied to block the primary acyl-binding tunnel of CALA lipase to create
variants with high specificity for medium-chain-length fatty acids [112]. Likewise, rational design was
used to engineer CALA, aiming to develop a highly selective variant for trans-fatty acids [113,114].

The dynamic behavior of lipases in different conditions has also been investigated using
computational approaches, such as molecular dynamics (MD) simulations. The MD simulations have
made progress in this direction since they provide atomistic information about the dynamic molecular
interactions, which determine the protein stability and function [115]. Haque and Prabhu [116] carried
out MD simulations of a mutant porcine pancreatic lipase in open and closed conformations using
different solvents to explain the dynamics of lid opening. At higher temperatures, it was possible to
observe the lid opening by the mutants Asp250Val and Glu254Leu, suggesting the important role of
these residues in holding the lid in closed conformation, which can affect the activity of this enzyme.
A computational design scheme based on MD simulations was also applied to improve the thermal
stability of the lipase LIP2 from Y. lipolytica [117]. Based on the four structural parameters RMSD, Rg,
SASA and the number of internal hydrogen bonds, it was found that the V213P mutant would have
higher thermal stability than its WT parent. V213P also has an optimal temperature of 42 ◦C, which is
5.0 ◦C higher than that of the wild type.

Directed evolution (also called molecular evolution) does not require that the amino acid sequence
and three-dimensional structure should be previously available, as random mutagenesis generates
libraries with random mutations in the gene of interest. Those random mutations can be induced by
error-prone PCR, chemicals, irradiation, DNA shuffling or staggered extension process (StEP). Owing to
the high number of possible clones and enzyme variants, it is necessary to conduct high-throughput and
time-consuming screening for the selection of the best enzyme variants created. Besides rational design
and directed evolution, there is a third approach for engineering an enzyme to acquire better properties.
Semi rational design is the combination of the former two approaches. It can be summarized as the
generation of libraries of mutant genes via the saturation mutagenesis method. In this technique, one
or a few amino acid residues are replaced by the other 19 amino acid possibilities through degenerate
codons. Semi rational design has been proven to be a rapid laboratory method for engineering proteins,
once a relatively smaller size of libraries are generated, facilitating the further screening and selection
step [50,118,119].

Curiously, Alfaro-Chávez and collaborators [76] scrutinized how many changes are necessary
to transform a non-attractive lipase into an enzyme with better properties and potential for use in
industrial applications. Lip3-encoding gene from Drosophila melanogaster was cloned into the vector
pETMCSIII and expressed in the E. coli BL21 (DE3) system. Concomitantly, error-prone PCR was used
to generate libraries of mutant variants harboring random mutations along the lipase gene. After seven
rounds of directed evolution, screening and selection, only five mutant lipases stood out from tens
of hundreds of lipase variants. The best variant, R7_59A, had eight substitutions in its sequence
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compared to the WT lipase. The lipase R7_59A showed an activity 4, 5, 6 and 12 fold higher than WT
towards coconut oil, tributyrin, glyceryl trioctanoate, and glyceryl trioleate substrates, respectively.
Using crude lysate, there was an improvement of 228 times in the 57_59A activity against pNP-C8
compared to the WT. Furthermore, the 57_59A mutant had a 6.3, 1.5, 7.8 and 2.6 fold increment in the
activity against pNP-C3, pNP-C8, pNP-C16 and pNP-C18 substrates compared to WT. The induced
mutations in the best five variants were present in amino acid residues related to the cap domain
stability, residues near to the catalytic triad and in residues of the hinge points of the cap domain.
According to the study, those lipase variants could be targeted in further evolutions aiming to use
them in detergent formulation [76].

4. Relevant Immobilization Methods for Recombinant Lipases

The use of enzymes in various industrial areas has significantly increased due to several associated
benefits. However, some factors, such as low enzymatic stability, may limit the use of lipases and
other industrial enzymes [120,121]. One of the most important and widely used techniques to improve
enzyme properties is their immobilization, in which the biocatalysts are attached to an inert support.
The immobilization of enzymes provides several benefits, such as (1) the production of efficient and
stable biocatalysts; (2) possibility of recovery and reusability of enzymes [122,123]; (3) easy purification
of the products when compared to the free enzymes; (4) increasing the efficiency; (5) permitting their
applications in continuous fixed-bed operation [122].

The immobilization methods can be separated into two classes—namely, the physical and chemical
methods. Physical methods include support and enzyme interactions of different types, including
hydrogen bonds and hydrophobic interactions. In the latter method, the formation of covalent
bonds can be achieved through amide, ether, thio-ether or carbamate bonds between the support
and the enzyme [124–126]. The physical methods specifically include entrapment and adsorption,
while chemical methods include cross-linking and covalent binding. Different enzyme immobilization
methods are grouped and listed in Figure 3.
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The immobilization of an enzyme by adsorption is a simple technique with high commercial value
due to its simplicity, regular use in large-scale processes, low cost, retention of high enzyme activity,
and relatively chemical-free enzyme binding [127]. Supports with different degrees of hydrophobicity
were previously used such as butyl Sepabeads and octadecyl Sepabeads [126], decaoctil-Sepabeads [128],
macroporous resin HPD826 [129], polypropylene powder [124,130,131] and pore-expanded mesoporous
silica (SBA-15) [132]. The use of hydrophobic supports is of particular interest, because these supports
mimic the enzymes’ natural media and can often promote hyperactivation, highly selective adsorption,
purification, increased enantioselectivity, and strong but reversible immobilization, making support
reuse possible after the enzyme has been deactivated [133,134].
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Hydrophobic core-shell polymeric supports, including Accurel, PMMA/PMMA (poly(methyl
methacrylate) on core and shell) and PMMA-co-DVB/PMMA-coDVB (methyl methacrylate
copolymerized with divinylbenzene on core and shell) obtained by a combined suspension and
emulsion polymerization process have demonstrated great potential in the immobilization of a
recombinant C. antarctica lipase [135]. This technique involves the lipase interfacial activation versus
the hydrophobic surface of the support, which is the main cause of the lipase improved activity and
stabilization [135,136].

One example of commercial lipase immobilized on a hydrophobic support is Novozym 435 (N435),
supplied by Novozymes. The enzyme is expressed in A. niger and produced by interfacial activation
of lipase B from C. antarctica on the resin, Lewatit VP OC 1600. This resin is a macroporous support
formed by poly(methyl methacrylate) crosslinked with divinylbenzene. N435 is considered one of the
most widely used commercial biocatalysts in both academy and industry [137].

In physical adsorption, enzyme leaching is a critical problem that limits the use of the immobilized
enzyme in different reaction conditions [138]. To solve this problem, entrapment is employed to
restrict the enzyme in the polymer frameworks [139]. In the entrapment method, the enzyme is
locked inside the lattice of a polymer matrix or membrane so that it is retained while allowing the
penetration of the substrate. That can be achieved with a variety of materials, including polymers,
sol-gels, polymer/sol-gel composites and other inorganic materials.

It has been observed that the entrapment of lipases in silica sol-gels increases thermal stability and
enhances reaction rates by several orders of magnitude [140]. The entrapment of CALB was successfully
achieved with poly 1-vinyl-3-ethylimidazolium bromide (VEImBr) [139], and the immobilization of
the whole cells or cell lysates of E. coli, producing a thermostable lipase from T. lanuginosus (rE.coli/lip),
was also reported using silica xerogel and nanocarbon in silica composites [141].

For chemical methods, the enzyme is firmly immobilized on the chemically modified support
through covalent binding and cross-linking, effectively preventing enzyme leakage. Cross-linking is
an improvement on the covalent attachment because the enzyme is cross-linked to the support with
the help of a cross-linker. The most commonly used cross-linking reagent is glutaraldehyde, as it is
economical and easily obtainable in large quantities [142].

CALB was immobilized by covalent binding on strongly hydrophobic polystyrene microspheres
(poly glycidyl methacrylate) activated by epoxy groups, and this immobilization has been proven to
play a key role in improving the properties of the lipase [143]. The carrier hollow silica microspheres
(MAT540TM) activated by six bisepoxides enclosing different spacers was applied for the immobilization
of CALB. The immobilized preparation was used in the kinetic resolution of racemic 1-phenyethanol
and five racemic amines using shaken flasks and continuous-flow packed-bed microreactors with good
yields and high enantiomeric excess (ee > 99%, for all) [144]. Furthermore, the recombinant CALB
expressed in K. phaffii was immobilized by cross-linked enzyme aggregate (CLEA) technology and
tested for the synthesis of olvanil [145].

A recombinant lipase from Thermus thermophilus WL expressed in E. coli was immobilized onto
the surface, being rich in the amine functional groups (−NH2), of the 3-APTES-modified Fe3O4@SiO2
nanoparticles [125]. The covalent bond on the aldehyde activated-agarose in the presence of DTT
(glyoxyl-DTT-agarose) at pH 7.0 and on glyoxyl-agarose at pH 10.2 was applied for the immobilization
of the lipase from Archaeon Pyrococcus furiosus (Pf2001) produced in E. coli B21 [126].

In the last decade, applications of new materials for the immobilization of lipases have drawn
special interest. These new material groups include magnetized nano-sized materials [146,147],
which provide large surface areas for the attachment of the enzyme and increase the probability of its
efficient activity. By using this technique, the improvement of the downstream processing is clear as
it facilitates the immobilized enzyme separation from the reaction mixture. Abd El-Aziz et al. [147]
immobilized a recombinant Pseudomonas aeruginosa lipase through surface conjugation with gold
nanoparticles and observed higher lipolytic activity in the bioconjugate compared to the free enzyme.
Dandavate et al. [148] and Yilmaz et al. [149] immobilized a Candida rugosa lipase onto the silica
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nanoparticles surface and glutaraldehyde-activated aminopropyl glass beads, resulting in easy recovery,
and enzyme reuse for ester synthesis. In this context, when Candida antarctica lipase was immobilized
on chitosan-coated magnetic nanoparticles of iron activated with glutaraldehyde for the production
of the biolubricant ester, the biocatalyst gave half of the initial conversion after seven cycles of
esterification [150].

Another special area of interest has been the applications of hybrid and composite materials for
lipase immobilization. The hybrid origin materials are synthesized from combinations of precursors
of inorganic, organic and mixed inorganic and organic origin and offer high stability, good affinity
for enzymes and the presence of many chemical functional groups compatible with the chemical
moieties present in the protein structure [133]. An interesting example of a composite material used for
enzyme immobilization is the combination of graphene oxide (GO) decorated with ZnO nanoparticles
(GO/ZnO). Zhang et al. [151] used this support for the adsorption immobilization of a C. rugosa lipase
(CRL) and it exhibited excellent performance in terms of thermal stability and reusability.

A general combined purification and immobilization method, based on modified controlled
porosity glass (GPGs) and polymer-coated versions thereof (HybCPGs), which can bind protein affinity
tags, named EziG™, was used to immobilize C. antarctica and could be obtained in a significantly
shorter time compared to the corresponding Accurel®-based preparations [152]. Affinity tags are
exogenous amino acid residues that selectively bind to a biological or chemical ligand placed on a solid
support (e.g., His-tags connected to immobilized Ni) or an immobilized protein partner. Among all
the tags, the His-tags are the most used because they are small, less disruptive than other tags and
non-immunogenic [153]. The combination of nanotechnology with fusion strategy seems a promising
approach and can be devised by using several nanomaterials combined with self-cleaving peptides for
one-step, economical, high-yield, and large-scale purification and the immobilization of recombinant
proteins [154].

5. Application of Recombinant Lipases

The versatility of lipases in catalyzing the hydrolysis of esters and reactions of esterification,
trans-esterification and inter-esterification, considerably expands the commercial and technological
applications of these enzymes. For this reason, they can be applied in the food, oleochemical,
pharmaceutical, fine chemical, cosmetics, pulp and paper, leather and biosensor industries and in the
treatment of effluents rich in oils and fats [155–157]. In addition, they have been used for the synthesis
of different oleochemical products, such as free fatty acids, glycerin and its derivatives, biodiesel,
biolubricants and different alkyl esters [158].

Despite the vast application potential of the lipases, their application spectrum is limited due to an
absence of the process-suitable characteristics necessary to endure harsh processing conditions during
industrial applications operating at relatively high temperature and pH conditions. Hence, the lipases
envisioned for industrially applicable processes must possess the necessary characteristics, such as
stability and high yield, in order to prove their worth. The use of lipases as industrial catalysts depends
heavily on the production of recombinant enzymes with biochemical and catalytic characteristics
improved by protein engineering. The evolution of strategies to apply these techniques on an industrial
scale has enabled a significant reduction in lipase cost, consequently stimulating the development of
other industrial applications.

Lipases are commonly applied in the dairy industry for the selective hydrolysis of milk
triacylglycerols during cheese ripening. Particularly, a lipase from R. miehei expressed in A. oryzae
is commercially available with the trade name Palatase M (Novozymes) and used in the dairy
industry to improve cheese properties. Lipase (Est_p6) isolated from a metagenomic library from
marine sediments was produced in E. coli and applied to efficiently hydrolyze milk fat and impart
a desirable and distinctive flavor to milk products [159]. A Penicillium cyclopium lipase produced in
K. phaffii [160] has been used for the synthesis of mono- and diacylglycerols and showed its potential
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for food emulsifier preparations. The commercial enzyme Novozym 435, an immobilized lipase from
C. antarctica expressed in A. niger, has been successfully used to produce sugar esters [161].

Specifically, in the pharmaceutical industry, recombinant enzymes are mainly used for applications
as biocatalysts in the synthesis of chiral intermediates for the development of drugs, and as therapeutic
drugs for the treatment of various diseases. Lipases offer several advantages compared to other
enzymes and several chemical catalysts, such as capacity for the resolution of racemic mixtures by
the synthesis of a simple enantiomer being currently exploited for the production of medicines by
the pharmaceutical industry, mainly for the manufacturing of antidepressant, antihypertensive and
vasodilator drugs [156,162].

Single-enantiomer intermediate synthesis for the preparation of drugs is important in the
pharmaceutical industry. Single enantiomers can be produced either by chemical or biocatalytic
routes. Biocatalysis is emerging as an efficient alternative to traditional chemical methods for the
production of pharmaceuticals. The advantages of the enzyme-catalyzed reactions compared to
chemical processes include enantioselectivity and the use of mild reaction conditions which may
reduce energy consumption and waste generation.

The following reported examples show that recombinant lipases have been an important tool in
improving pharmaceutical processes for chiral drug intermediates and vitamin synthesis.

Pharmaceutical Applications of Recombinant Lipases

Profens (2-arylpropionic acids) are drugs commonly used in the treatment of pain and inflammation
associated with tissue injury. The anti-inflammatory activity of ketoprofen, flurbiprofen, ibuprofen,
and naproxen is mainly related to their (S)-enantiomer. For these drugs, (R)-enantiomers contribute
weakly to cyclooxygenase (COX) inhibition and have been related to side effects—e.g., gastrointestinal
pain [163,164].

In recent years, the kinetic resolution of 2-arylpropionic acids by enantioselective esterification
has been widely studied. Lipases have been applied in this process and their relevant characteristics
demonstrated in many papers; the promising results point to the future applications of these
enzymes [5,6,164,165]. For instance, lipases from C. antarctica, C. rugosa [164,166] and A. niger [6]
have been applied in the kinetic resolution of profens, making it possible to obtain drugs with
high enantiomeric purity—e.g., (R)-flurbiprofen, eep = 96.3%; E = 90.5%; C = 35.7%), therefore,
demonstrating their great potential as biocatalysts in pharmaceutical synthesis. Figure 4 illustrates the
kinetic resolution of racemic profens using lipases.
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A lipase from the S. marcescens ECU1010 strain produced in E. coli catalyzed the hydrolysis of
racemic ketoprofen esters into (S)-ketoprofen, with the highest ee (enantiomeric excess) (91.6%) and
yield (48.2%) [168]. A lipase from C. rugosa produced in K. phaffii was used for the kinetic resolution of
racemic ibuprofen by means of enantioselective esterification with 74% ee [130].

Commercial lipase from C. antarctica produced in A. niger and immobilized onto
polymethylmethacrylate (Novozym 435) has been efficiently used for the enantioselective esterification
of (R,S)-flurbiprofen to obtain the (R)- flurbiprofen methyl ester in 96% ee [166]. A lipase gene from
S. marcescens ES-2 was reinserted in the same strain for lipase homologous production and was applied
in the enantioselective hydrolysis of (R,S)-flurbiprofen ethyl ester for the production of the optically
active form (S)-flurbiprofen [169].

Taking into consideration that the lipase Lip2p from Y. lipolytica has higher catalytic activity than C.
rugosa lipases to hydrolyze profen ethyl esters, though its selectivity is not sufficient, Gérard et al. [167]
improved Lip2p enantioselectivity by site-directed mutagenesis. The authors identified two amino
acid residues (232 and 235) in the lipase hydrophobic substrate binding site as crucial for enantiomer
discrimination and enzyme activity. Their results demonstrated the high potential of rational
engineering to create biocatalysts suitable for industrial applications.

Chemical synthesis is the common process for obtaining vitamin A derivatives. However,
the process presents some issues, such as synthesis steps, which could destroy raw materials (use of
acid and alkali), create difficulties in the separation of the final product due to the instability of
intermediate products, as well as considerable energy consumption and pollution. Accordingly,
a green and environmentally friendly manufacturing method has become the current trend in obtaining
vitamin A derivatives. To conveniently prepare the immobilized enzyme for the green synthesis of
vitamin A palmitate, T. lanuginosus lipase (TLL) was assembled with apatite derived from calcium
phosphate in solution to form TLL@apatite hybrid nanoflowers (hNFs) by mimetic biomineralization.
Under the optimized conditions, when vitamin A acetate and palmitic acid were applied as substrates,
the yield of the product was up to 90.4% [170].

Recombinant CALB produced by K. phaffii was immobilized and used to synthesize vitamin
A palmitate by transesterification of vitamin A acetate and palmitic acid in organic solvent with a
conversion ability of 54.3% after 15 cycles [129]. As represented in Figure 5, vitamin A palmitate
synthesis could be catalyzed by C. antarctica lipase B.

Catalysts 2020, 10, x FOR PEER REVIEW 22 of 33 

 

Commercial lipase from C. antarctica produced in A. niger and immobilized onto 
polymethylmethacrylate (Novozym 435) has been efficiently used for the enantioselective 
esterification of (R,S)-flurbiprofen to obtain the (R)- flurbiprofen methyl ester in 96% ee [166]. A lipase 
gene from S. marcescens ES-2 was reinserted in the same strain for lipase homologous production and 
was applied in the enantioselective hydrolysis of (R,S)-flurbiprofen ethyl ester for the production of 
the optically active form (S)-flurbiprofen [169]. 

Taking into consideration that the lipase Lip2p from Y. lipolytica has higher catalytic activity than 
C. rugosa lipases to hydrolyze profen ethyl esters, though its selectivity is not sufficient, Gérard et al. 
[167] improved Lip2p enantioselectivity by site-directed mutagenesis. The authors identified two 
amino acid residues (232 and 235) in the lipase hydrophobic substrate binding site as crucial for 
enantiomer discrimination and enzyme activity. Their results demonstrated the high potential of 
rational engineering to create biocatalysts suitable for industrial applications. 

Chemical synthesis is the common process for obtaining vitamin A derivatives. However, the 
process presents some issues, such as synthesis steps, which could destroy raw materials (use of acid 
and alkali), create difficulties in the separation of the final product due to the instability of 
intermediate products, as well as considerable energy consumption and pollution. Accordingly, a 
green and environmentally friendly manufacturing method has become the current trend in 
obtaining vitamin A derivatives. To conveniently prepare the immobilized enzyme for the green 
synthesis of vitamin A palmitate, T. lanuginosus lipase (TLL) was assembled with apatite derived 
from calcium phosphate in solution to form TLL@apatite hybrid nanoflowers (hNFs) by mimetic 
biomineralization. Under the optimized conditions, when vitamin A acetate and palmitic acid were 
applied as substrates, the yield of the product was up to 90.4% [170]. 

Recombinant CALB produced by K. phaffii was immobilized and used to synthesize vitamin A 
palmitate by transesterification of vitamin A acetate and palmitic acid in organic solvent with a 
conversion ability of 54.3% after 15 cycles [129]. As represented in Figure 5, vitamin A palmitate 
synthesis could be catalyzed by C. antarctica lipase B. 

 
Figure 5. Immobilized lipase-catalyzed scheme of vitamin A palmitate (adapted from Yao et al. [129]). 

Pregabalin, a GABA (gamma-aminobutyric acid) analogue, is a drug developed for treatment of 
several central nervous system disorders, involving neuropathic pain, fibromyalgia, anxiety, social 
phobia and epilepsy. The synthesis of pregabalin involves 2-carboxyethyl-3-cyano-5-methylhexanoic 
acid ethyl ester, an intermediate substance with chiral characteristic. The (S)-2-carboxyethyl-3-cyano-
5-methylhexanoic acid enantiomer is the key chiral intermediate for pregabalin synthesis. 
Considering the significant increase in the use of pregabalin in recent years, different routes have 
been explored using chemical and enzymatic approaches [171,172]. 

Lipozyme TL IM® and Lipolase® (Novozymes) are commercially available lipases for the kinetic 
resolution of (S)-2-Carboxyethyl-3-cyano-5-methylhexanoic acid [172]. In particular, high resolution 
yields (45%) and enantioselectivity (98% enantiomeric excess, ee) were achieved by using commercial 
Lipolase, a recombinant T. lanuginosus lipase expressed in A. oryzae [173]. Figure 6 illustrates an 
optimized route of pregabalin synthesis by enzymatic resolution and decarboxylation steps, 
considering the work of Martinez et al. [173]. 

Figure 5. Immobilized lipase-catalyzed scheme of vitamin A palmitate (adapted from Yao et al. [129]).

Pregabalin, a GABA (gamma-aminobutyric acid) analogue, is a drug developed for treatment
of several central nervous system disorders, involving neuropathic pain, fibromyalgia, anxiety,
social phobia and epilepsy. The synthesis of pregabalin involves 2-carboxyethyl-3-cyano-5-
methylhexanoic acid ethyl ester, an intermediate substance with chiral characteristic. The (S)-2-
carboxyethyl-3-cyano-5-methylhexanoic acid enantiomer is the key chiral intermediate for pregabalin
synthesis. Considering the significant increase in the use of pregabalin in recent years, different routes
have been explored using chemical and enzymatic approaches [171,172].

Lipozyme TL IM® and Lipolase® (Novozymes) are commercially available lipases for the kinetic
resolution of (S)-2-Carboxyethyl-3-cyano-5-methylhexanoic acid [172]. In particular, high resolution
yields (45%) and enantioselectivity (98% enantiomeric excess, ee) were achieved by using commercial
Lipolase, a recombinant T. lanuginosus lipase expressed in A. oryzae [173]. Figure 6 illustrates an
optimized route of pregabalin synthesis by enzymatic resolution and decarboxylation steps, considering
the work of Martinez et al. [173].
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A mutant L206F/P207F/L259F of T. thermophilus lipase was efficiently immobilized onto epoxy
resin D5730 to enable the reuse (using n-heptane/water biphasic system) of the enzyme and to
improve the conversion at a high concentration of 2-carboxyethyl3-cyano-5-methylhexanoic acid ethyl
ester with 49.7% conversion and 95% eep (enantiomeric excess of the product) under the optimized
conditions [172].

Diltiazem hydrochloride is a typical calcium channel blocker clinically used as an antianginal and
antihypertensive agent [174]. Trans-3-(4′-methoxyphenyl)glycidic acid methyl ester ((2R, 3S)-MPGM or
(−)-MPGM) is a key chiral intermediate for its synthesis. Some approaches involving lipases have been
applied in the production of this diltiazem intermediate, such as the application of the S. marcescens
lipase, a well-known and important lipase for industrial applications.

Lipase from S. marcescens ECU1010 catalyzed production of (−)-MPGM by the enzymatic resolution
of trans-3-(4′-methoxyphenyl)glycidic acid methyl ester ((±)-MPGM) with chitosan in an isopropyl
ether water biphasic system (Zhao et al., 2010). Overexpression of S. marcescens lipase in E. coli often
promotes inclusion bodies, which is one of the major problems in industrial recombinant protein
production [174,175]. A simple and efficient method for refolding with simultaneous purification
of S. marcescens lipase in E. coli in the production of (−)-MPGM has been described with an overall
yield of 41.5% and ee of 99% [175]. Figure 7 shows a lipase-catalyzed scheme of the synthetic process
of diltiazem.
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Beta-blockers belong to an important therapeutic class, which is used to treat several cardiovascular
conditions [176]. Chirality is a key factor to consider for the efficacy of this class of drugs. Atenolol is a
synthetic, beta1-selective (cardioselective) adrenoreceptor blocking agent and it is used in the treatment
of hypertension, angina pectoris due to coronary atherosclerosis, as well as acute myocardial infarction
angina [177]. It is known that its b1-blocking activity is attributed to its (S)-enantiomer [178]. In a
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screening with commercially available lipases, Candida antarctica lipase-A was considered adequate in
a new chemoenzymatic route for the (R)- and (S)-atenolol synthesis based on an enzymatic kinetic
resolution approach. Compared to the other published methods, the synthesis of the intermediates in
an aqueous medium and enzymatic kinetic resolution in an ionic liquid improved overall yield and
made the process greener [179].

Lipase B from Candida antarctica (CALB) is one of the most used lipases for pharmaceuticals
manufacturing, mainly to obtain key enantioselective intermediates, as well as final enantiomer drug
products. There are some characteristics that make this enzyme widely used in pharmaceutical
processes, such as good stability, the production of optically pure products, esterification reactions
and regioselective modifications of multifunctional substrates. Novozym 435 (Novozymes) is a
commercially available immobilized preparation of CALB, being the most used lipase preparation
described in the literature. The large-scale production involves the expression of CALB gene in
Aspergillus niger and the immobilization of the enzyme on an hydrophobic carrier (acrylic resin) [137,180].

Many pharmaceutical industries and academic research groups have published patents that
applied CALB to catalyze reactions in order to obtain pharmaceutical intermediates, as well as ”final”
active pharmaceutical ingredients [180]. Table 3 shows some examples of granted patents involving
enzymatic synthesis of drugs and/or intermediates using CALB.

Table 3. Examples of granted patents applying CALB for enzymatic synthesis of pharmaceuticals.

Substance Reaction
Analyzed Application Patent Number Sponsor Reference

Valsartan Stereoselective
hydrolysis

Enantioselective hydrolysis of
racemic esters of valsartan CN105420338A

Tiantai Yisheng
Biochemical Technology

Co. Ltd.
[181]

Levetiracetam Stereoselective
hydrolysis

Kinetic resolution of a racemic
2-haloester CNA2009100263523A Zhejiang Changming

Pharmaceutical Co. Ltd. [182]

Ticagrelor Stereoselective
hydrolysis

Kinetic resolution of an alcohol
used for the drug preparation CN104164469A Beijing University of

Chemical Technology [183]

Sofosbuvir Site-selective
acyl-transfer

Mono-deacetylation of a precursor
for sofosbuvir preparation WO2017144423A1 HC-Pharma AG [184]

Posaconazole Stereoselective
acyl-transfer

Stereoselective monoacylation of
prochiral intermediate with

isopropanoic anhydride.
CN105753693A Ningbo Xinkai

Biotechnology Co. Ltd. [185]

L-carnitine Stereoselective
acyl-transfer

Kinetic resolution of
racemic hidroxynitrile CN106748843A Wuxi Fortune

Pharmaceutical Co. Ltd. [186]

Carbamate
prodrug

Stereoselective
hydrolysis

Kinetic resolution of
an intermediate WO2016208709A1 Daiichi Sankyo Co. Ltd. [187]

6. Conclusions

Lipases are one of the most versatile industrial biocatalysts and the most used enzyme in organic
synthesis. For their industrial use, they should be highly stable in specific conditions, active and
frequently selective for the substrate. Obviously, most of native lipases are far from being ready for
industrial use. In this context, promising lipase candidates from various sources can be optimized
through procedures that include strain engineering for enhanced lipase production, lipase engineering
with improved properties and lipase immobilization to be reused for long time periods in batches or
packed bed reactors. However, these techniques should be applied in combination with bioprocess
optimization. The past and recent advances in genetics and computational modelling have incited
a revolution in recombinant DNA technologies in addition to complementary techniques, such as
molecular dynamics (MD) simulations fields. A great number of new genomes, vectors, genetically
modified strains, genetic toolbox, and immobilization and chromatographic matrices are currently
available, and their will be an increasing trend in the coming years, accompanying industrial demand.
These new technologies have been substantially used in academia and by companies to explore and
improve the features of lipases, with the final goal of making them commercial biocatalysts.
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